
DSM Hints
This page is a cheat sheet for the DSMs deployed with ISS for Perdigao, but most of it is general information which applies to any DSM. Two of the sites
have a DSM.

Site Hostname IP address Sensors

SODAR dsm-sodar 192.1681.206 GPS, WXT (RS232 on ttyUSB3), Lufft (RS485 on ttyUSB1)

Sounding GPS, Lufft

Logging In
Checking DSM Data

Monitor serial data directly with rserial
Run data_stats on the real-time stream
Show sample stats for the latest raw data file
Dump individual messages
Check that data files are recording

Check time synchronization
Checking the DSM Configuration
ISFS Man Page

Logging In
The user account on a DSM is 'daq', ask Gary for the password. So you can ssh to a DSM like so:

ssh daq@192.168.1.206

The DSM at the sounding site will be on the Ubiquiti tower network, so it can be reached from any host on that network. The SODAR DSM is connected to
the Internet over a cell modem, so it can only be reached remotely through the SSH tunnel. To log into it directly, you have to be at the site and either on
the TP-Link wifi or plugged into the ethernet switch in the DSM. Add the excerpt below to your ssh config file to use 'ssh dsm-sodar' to connect to it:

ssh config excerpt

Host dsm-sodar
User daq
HostName eol-rt-data.fl-ext.ucar.edu
HostKeyAlias dsm-sodar
Port 15422

Checking DSM Data
There are a few ways to check on the WXT data, so I'll just give examples of all of them. For reference, the WXT is plugged into port 3 of the SODAR
DSM, which is device /dev/ttyUSB3.

Monitor serial data directly with rserial

Use the 'rs' script to tap the serial stream directly through NIDAS. The rserial program will print the messages received from the WXT while nidas still
keeps recording the data.

rs 3

Run data_stats on the real-time stream

The DSM has a shortcut for the data_stats program called . By default the data_stats program connects to the real-time sample stream provided by the ds
main process, so it can be a convenient way to see which ports are receiving data and at what rates. It just keeps collecting samples until it is dsm
interrupted with Control-C. So it is not so useful with low-rate data, because you must wait until at least one sample should have been received to know if
that sensor is working. You don't know if a one-minute sensor is sending messages unless you wait a full minute. If there is no line for a port in the output,
then no samples were received on that port. If there is, then the line includes the dsm and sample ID, and those can be used to inspect the processed
measurements with the command.data_dump

mailto:daq@192.168.1.206

daq@dsm-sodar:~ $ ds
2017-05-05,00:56:55|NOTICE|parsing: /home/daq//isfs/projects/Perdigao/ISFS/config/perdigao.xml
^Creceived signal Interrupt(2), si_signo=2, si_errno=0, si_code=128
sensor dsm sampid nsamps |------- start -------| |------ end -----| rate minMaxDT(sec)
minMaxLen
dsm-sodar:/dev/gps_pty0 5 10 101 2017 05 05 00:56:54.869 05 05 00:57:44.853 2.00 0.142
0.918 69 80
dsm-sodar:/dev/ttyUSB3 5 30 1 2017 05 05 00:57:04.725 05 05 00:57:04.725 nan 0.000
0.000 143 143
dsm-sodar:/dev/ttyUSB1 5 130 8 2017 05 05 00:57:00.003 05 05 00:57:40.003 0.18 5.000
10.000 69 78
IOException: inet:127.0.0.1:34182: recv: Interrupted system call

Show sample stats for the latest raw data file

NIDAS records the sensor data to a raw data file on the USB flash disk. While NIDAS is running, the disk is mounted on /media/usbdisk, and the data files
are written to /media/usbdisk/projects/Perdigao/raw_data. So the command below uses the data_stats program to print sample statistics on all the sensors
recorded in that data file:

Running data_stats on most recent raw data file

daq@dsm-sodar:~ $ data_stats `ls /media/usbdisk/projects/Perdigao/raw_data/dsm-sodar_2016* | tail -1`
2016-12-16,22:33:03|NOTICE|parsing: /home/daq//isfs/projects/Perdigao/ISFS/config/perdigao.xml
Exception: EOFException: /media/usbdisk/projects/Perdigao/raw_data/dsm-sodar_20161216_120000.dat: open: EOF
sensor dsm sampid nsamps |------- start -------| |------ end -----| rate minMaxDT(sec) minMaxLen
dsm-sodar:/dev/gps_pty0 5 10 75966 2016 12 16 12:00:00.046 12 16 22:33:02.808 2.00 0.142 0.930 69 80

The above shows that only the GPS messages are being received, at a rate of 2 Hz, with the most recent at 22:33. data_stats also gives the DSM and
raw sample IDs for each sensor, so for the GPS messages the DSM ID is 5 and the sample ID is 10.

Dump individual messages

The data_dump program dumps individual messages from each sensor. Knowing the IDs given in data_stats, this command dumps all the WXT
messages (ID 30) from the latest data file. Probably this would be piped into a pager like 'less':

data_dump -i 5,30 `ls /media/usbdisk/projects/Perdigao/raw_data/dsm-sodar_2016* | tail -1`

data_dump can also be used to dump samples immediately, as they are received by NIDAS, by tapping into a default network sample stream provided by
NIDAS. Since this is real-time, nothing will be shown until a sample is received, so you have to wait for a minute before knowing that a 1-minute sample
stream is not working.

data_dump -i 5,30

If you want to see all the sensors from data_dump, use '-i -1,-1', or data_dump -i '*,*', just remember to quote the asterisks.

Check that data files are recording

The script to report the space available on the flash disk and also the last 10 data files. Run that script and check that the most recent data file lsu
corresponds to the current time.

Checking raw data file archive with lsu

daq@dsm-sodar:~ $ lsu
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 7.3G 187M 6.7G 3% /media/usbdisk
-r--r--r-- 1 daq eol 313400 Dec 13 16:37 dsm-sodar_20161213_120000.dat
-r--r--r-- 1 daq eol 4869400 Dec 14 00:00 dsm-sodar_20161213_161715.dat
-r--r--r-- 1 daq eol 6994554 Dec 14 10:34 dsm-sodar_20161214_000000.dat
-r--r--r-- 1 daq eol 856393 Dec 14 12:00 dsm-sodar_20161214_101718.dat
-r--r--r-- 1 daq eol 7933076 Dec 15 00:00 dsm-sodar_20161214_120000.dat
-r--r--r-- 1 daq eol 7932680 Dec 15 12:00 dsm-sodar_20161215_000000.dat
-r--r--r-- 1 daq eol 7932833 Dec 16 00:00 dsm-sodar_20161215_120000.dat
-r--r--r-- 1 daq eol 7555441 Dec 16 11:25 dsm-sodar_20161216_000000.dat
-r--r--r-- 1 daq eol 357247 Dec 16 12:00 dsm-sodar_20161216_111716.dat
-r--r--r-- 1 daq eol 7447951 Dec 16 23:25 dsm-sodar_20161216_120000.dat
daq@dsm-sodar:~ $ date
Fri Dec 16 23:25:45 UTC 2016

Note this doesn't indicate whether all the sensors are being recorded, only that at least one sensor has been recorded to disk recently.

Check time synchronization
The DSM should get its time from the GPS messages, synchronized to the PPS signal. The chronyd program manages the system time and keeps it in
sync with GPS. So there are a couple things to check: GPS messages are being recorded and GPS is locked, and that chrony is working and
synchronized.

 is an alias for 'chronyc sources'. Use 'cs -v' to dump an explanation of the fields along with the stats:cs

Checking chrony sources with -v

daq@dsm-sodar:~ $ cs -v
210 Number of sources = 2
 .-- Source mode '^' = server, '=' = peer, '#' = local clock.
 / .- Source state '*' = current synced, '+' = combined , '-' = not combined,
| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
|| .- xxxx [yyyy] +/- zzzz
|| / xxxx = adjusted offset,
|| Log2(Polling interval) -. | yyyy = measured offset,
|| \ | zzzz = estimated error.
|| | |
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
#* PPS0 0 4 377 9 +1139ns[+1211ns] +/- 391ns
#? NMEA 0 4 377 9 +74ms[+74ms] +/- 6256us

The asterisk in the PPS0 line is the most important, followed by the measured offset between GPS and system time inside the brackets. Typically it will be
on the order of microseconds, as above where the offset is 1.21 microseconds.

 uses the rserial program to tap the GPS messages being recorded by NIDAS.rs G

Checking GPS serial messages

daq@dsm-sodar:~ $ rs G
connecting to inet:localhost:30002
connected to inet:localhost:30002
sent:"/dev/gps_pty0
"
line="OK"
parameters: 4800 none 8 1 "\n" 1 0 prompted=false
$GPRMC,233927.00,A,3941.77412,N,00743.14572,W,0.020,,161216,,,D*65\r\n
$GPGGA,233927.00,3941.77412,N,00743.14572,W,2,08,1.48,373.5,M,49.2,M,,0000*46\r\n

The important part is the 'A' in the GPRMC line, meaning the time in that sentence is 'valid', whereas V indicates invalid.

Checking the DSM Configuration
The DSM data acquisition is configured with a NIDAS XML file. The XML contains a node for the particular dsm, where the hostname of the dsm matches
the name in the dsm element. For example, below is the SODAR dsm entry. It may not match exactly what's on the DSM, depending on when the DSM
was last updated. Also, the XML configuration file on the DSM may only contain an excerpt of the full configuration file, whatever is necessary to run on
just that DSM.

/home/daq/isfs/projects/Perdigao/ISFS/config/perdigal.xml

 <site name="sodar" class="isff.GroundStation" suffix=".sodar">
 <dsm name="dsm-sodar" id="5" rserialPort="30002">
 <!-- GPS input is tee'd to this pseudo-terminal -->
 <serialSensor IDREF="Garmin_GPS_LITE" devicename="/dev/gps_pty0"
 id="10" readonly="true">
 </serialSensor>
 <serialSensor IDREF="LUFFT"
 devicename="/dev/ttyUSB1"
 id="130">
 </serialSensor>
 <serialSensor IDREF="WXT510" class="WxtSensor"
 devicename="/dev/ttyUSB3"
 id="30" suffix=".wxt">
 </serialSensor>
 <output class="RawSampleOutputStream">
 <socket type="server" port="30000" maxIdle="60" block="false"></socket>
 </output>
 <!-- Local Data Storage on DATAMNT, most likely media/usbdisk per dsm_env.sh -->
 <output class="RawSampleOutputStream">
 <fileset dir="$DATAMNT/projects/${PROJECT}/raw_data" file="${DSM}_%Y%m%d_%H%M%S.dat" length="
43200">
 <mount dir="$DATAMNT"></mount>
 </fileset>
 </output>
 </dsm>
 </site>

The outermost element contains a single DSM, which will usually be the case for ISS deployments. The element has name , and <site> <dsm> dsm-sodar
that matches the hostname of the DSM assigned to the sodar site. Then there are three sensors specified to be recorded by this DSM: GPS, LUFFT, and
WXT510. Each of those names is a reference to a more complete definition elsewhere, either earlier in the XML file or in a separate XML file <sensor>
called . The elements above only specify the device to which the sensor is attached, and the sensor ID required by NIDAS to sensor_catalog.xml
differentiate samples from different sensors. The device names /dev/ttyUSB1 and /dev/ttyUSB3 correspond to ports 1 and 3 on the Raspberry Pi
DSMs. Search for the LUFFT sensor reference to find out the rest of the configuration, such as the expected baud rate and other settings for serial
sensors.

ISFS Man Page
There is a man page, 'man isfs'. It lists these shortcuts and a few others. Usually it is possible to get more detailed usage information by running the
command without any arguments or by passing the -h option.

	DSM Hints

