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Section 0.0

The CVMix Parameterizations Project

Community Ocean Vertical Mixing (CVMix) Parameterizations is a software package that aims to
provide transparent, robust, flexible, well documented, shared Fortran source code for use in parameter-
izing vertical mixing processes in numerical ocean models. The project is focused on developing software
for a consensus of first-order closures that return a vertical diffusivity, viscosity, and possibly a non-local
transport, with each quantity dependent on the tracer or velocity being mixed. CVMix modules are writ-
ten as kernals designed for use in a variety of Fortran ocean model codes such as MPAS-ocean, MOM,
and POP. CVMix modules use MKS units and expect the same for input and output. Code development
occurs within a community of scientists and engineers who make use of CVMix modules for a variety of
ocean codes. When mature, CVMix modules will be freely distributed to the open source community under
GPLv2 using an open source methodology.

As of August 2012, the CVMix project remains in a very early stage, with most of the algorithms listed in
this document uncoded. Hence, this document largely summarizes aspirations of its authors, and it serves
to help develop software design documents.

This document is freely distributed and should be referenced as the following.

Community Ocean Vertical Mixing (CVMix) Parameterizations
Many authors...
76 + v pages

Information about how to download the source code can be found at...

This document was prepared using LATEX as described by Lamport (1994) and Goosens et al. (1994).
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Chapter 1
CVMix Parameterizations

Contents
1.1 Vertical mixing parameterizations in CVMix . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The general form of CVMix parameterizations . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Ordering the calculations of CVMix parameterizations . . . . . . . . . . . . . . . . . . 3

The purpose of this chapter is to provide an overview to the various parameterized vertical mixing
schemes available with the Community Ocean Vertical Mixing (CVMix) Parameterizations Project. We give
particular attention to scheme dependencies.

1.1 Vertical mixing parameterizations in CVMix

CVMix was initiated around the common need of various ocean modeling groups to code, test, tune, and
document parameterizations of oceanic vertical mixing for numerical ocean simulations. The initial fo-
cus of the project concerns first-order turbulence closures for turbulent vertical mixing processes. Those
interested in higher order turbulence closure schemes for ocean modeling may find the General Ocean
Turbulence Model (GOTM) from Umlauf et al. (2005) to be suitable.

The CVMix project developers are targetting the following parameterizations as part of the software.

• Static background mixing: Certain turbulent processes, in particular the ambient background grav-
ity wave “noise”, constitute a background level of mixing that is largely steady in time from the
pespective of large-scaling ocean modeling. Though roughly time independent, these processes gen-
erally have a nontrivial space dependence. CVMix provides options for various of these time inde-
pendent schemes, such as the classical vertical profile from Bryan and Lewis (1979); the equatorially
reduced profile from Henyey et al. (1986) and measured by Gregg et al. (2003); and other approaches
such as those from Jochum (2009). Chapter 3 describes such schemes.

• Shear induced mixing: There are various methods available for shear mixing, including those from
Pacanowski and Philander (1981), targetted largely for tropical circulation; Large and Gent (1999),
which builds on the Pacanowski and Philander (1981) scheme; and Jackson et al. (2008), which con-
siders a non-local method to determine shear mixing throughout the world ocean. These methods are
detailed in Chapter 4.

• Double diffusive processes: Double diffusive processes arise from the distinct mixing properties of
temperature and salinity. Chapter 6 details the parameterization implemented in CVMix.

• Tidally induced mixing: There are various schemes available for parameterizing mixing induced by
ocean tides, such as those from Simmons et al. (2004), Lee et al. (2006), Legg et al. (2006), and Melet
et al. (2012), with details provided in Chapter 5.
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Chapter 1. CVMix Parameterizations Section 1.3

• KPP surface boundary layer: The K-profile parameterization (KPP) scheme from Large et al. (1994)
provides for a diffusivity as well as a non-local transport, each within the surface planetary boundary
layer. Details are provided in Chapter 7.

• Vertical convective mixing: Vertical profiles can become gravitationally unstable, such as when the
ocean is forced with a negative buoyancy flux. Older approaches such as Cox (1984) and Rahm-
storf (1993) considered a convective adjustment algorithm, in which vertical pairs of grid cells were
adjusted towards a profile of static stability. In effect, the vertical diffusivity is infinite when using
adjustment schemes. CVMix does not provide options for convective adjustment. Instead, CVMix
allows for the specification of a diffusivity that is large in regions of gravitational instability, thus
enabling vertical convective mixing rather than adjustment. Notably, when using the KPP surface
boundary layer scheme, convective mixing is not computed inside the KPP boundary layer. Instead, it
is only computed beneath the boundary layer, and it is done so after the KPP boundary layer matching
has occurred (see Section 1.3).

• Specified minimum dissipation: One may choose to specify a floor to the dissipation, and thus deter-
mine the minimum diffusivity that satisfies that floor. This approach is discussed in Chapter 9.

1.2 The general form of CVMix parameterizations

All schemes considered in CVMix can be formulated in terms of a diffusivity and a non-local transport.
That is, the vertical turbulent flux of a scalar or velocity component is written in the form

w′ λ′ = −Kλ
(
∂λ
∂z
−γλ

)
, (1.1)

where w′ is the turbulent or fluctuating portion of the vertical velocity component

w = w′ +w, (1.2)

λ′ is a turbulent scalar or velocity component, and the overline denotes an Eulerian ensemble or time
average that separates the mean flow from the turbulent flow.1 The first term on the right hand side
of equation (1.1) provides for the familiar downgradient vertical diffusion determined by a non-negative
vertical diffusivity, Kλ ≥ 0, and the local vertical derivative of the model’s resolved mean field, ∂λ/∂z. This
term is referred to as the local portion of the vertical mixing parameterization

w′ λ′
local

= −Kλ
(
∂λ
∂z

)
. (1.3)

Note that the term “local” is used for this portion of the parameterized flux (1.1) since it is determined by
the local derivative of the mean field, λ. However, the diffusivity can generally be determined as a non-
local function of boundary layer properties, with such being the case for the KPP scheme (Chapter 7). The
second term in equation (1.1), γλ, accounts for non-local transport that is not directly associated with local
vertical gradients of Λ, in which we have

w′ λ′
non-local

= Kλ γλ. (1.4)

KPP is the only scheme available with CVMix that prescribes a nonzero value for γλ. Other schemes return
zero for this term.

Every scheme available in CVMix returns a value, possibly the null value, for the diffusivity, Kλ, and the
non-local transport, γλ. It does so based on a standard suite of inputs taken from the calling model, such
as the surface buoyancy and momentum fluxes, the vertical stratification, and the vertical shear. Besides
the diffusivity and non-local transport, various diagnostic fields are available to help those interested in
studying or modifying elements of the parameterizations.

CVMix does not determine time stepping for the model prognostic fields. Instead, time stepping is the
responsibility of the calling model code.

1In Chapter 7, we follow the notation of Large et al. (1994) by writing the mean quantities with an uppercase, W and Λ, and
turbulent fluctuations with a lowercase, w and λ. For the present chapter, we follow the more standard notation of equation (1.2).
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Chapter 1. CVMix Parameterizations Section 1.3

1.3 Ordering the calculations of CVMix parameterizations

Certain of the CVMix schemes are independent, with their resulting diffusivities and viscosities merely
added to the total mixing coefficients. Other schemes, however, must be called in a certain order given the
underlying assumptions built into the scheme. The main issue concerns the KPP scheme, and there are two
points to consider.

• KPP after interior non-convective mixing: Since the KPP scheme matches diffusivities at the base
of the boundary layer to values computed beneath the boundary layer (Section 7.5.3), KPP must
be called subsequent to those schemes determining non-convective mixing coefficients in the ocean
interior.

• KPP before interior convective mixing: The matching of diffusivities at the base of the KPP bound-
ary layer intrinsically assumes there to be a transition from typically larger diffusivities in the bound-
ary layer to typically smaller diffusivities in the interior. However, this sort of transition cannot
always be ensured, since gravitationally unstable water can appear beneath the boundary layer in
which case the interior diffusivities can be quite large. Problems with the diffusivity matching occur
if insisting that KPP match its boundary layer diffusivity to a potentially large interior diffusivity
arising from convective mixing. To eliminate these problems, convective mixing must be called after
the KPP boundary layer scheme.

These considerations lead to the recommended flow diagram shown in Figure 1.1 for use of the CVMix
schemes.

CVMix Documentation August 9, 2012 Page 3



Chapter 1. CVMix Parameterizations Section 1.3

Flow diagram for CVMix Parameterization modules

algorithmic task code

initialization ocean vmix.F90 or vmix driver.F90

static background diffusivities vmix background.F90

receive ocean surface fluxes

and penetrative radiation
ocean vmix.F90 or vmix driver.F90

interior non-convective schemes
vmix ddiffusion.F90

vmix shear.F90, vmix tide.F90

surface boundary layer vmix kpp.F90

convective mixing vmix convection.F90

minimum dissipation vmix dissipation.F90

send diffusivities and non-local
to the calling ocean model

ocean vmix.F90 or vmix driver.F90

Figure 1.1: This flow diagram depicts the general algorithmic steps required to utilize the CVMix param-
eterization modules. The initialization step occurs either in vmix driver.F90, if running CVMix code as a
stand-alone one-dimensional model, or via ocean vmix.F90 if running CVMix modules as part of an ocean
model such as MOM, POP, or MPAS-ocean. This initialization serves to set up arrays and derived type
structures, all as a function of the input that it receives from the calling ocean model code. The next
step during initialization is to call the module vmix background.F90 to fill chosen static background dif-
fusivities. Upon entering the time dependent portion of the ocean model integration, vmix driver.F90

receives the surface fluxes and penetrative radiative fluxes for the case when running CVMix as stand-
alone modules, or such fluxes are passed to CVMix modules from ocean vmix.F90 when running CVMix
within ocean models such as MOM, POP, or MPAS-ocean. Calls are made to chosen interior non-convective
mixing schemes, such as shear mixing, tide mixing, and double diffusion. Thereafter, the surface bound-
ary layer scheme is called, with KPP the scheme most often used by CVMix modelers. The boundary layer
calculation is key to the whole process, as it must come after the interior non-convective portion, and
before the convective portion. After the boundary layer, then convective mixing is called, with regions of
gravitationally unstable water given a large diffusivity. Notably, if KPP is used for the surface boundary
layer, convective mixing is performed only beneath the KPP boundary layer. If choosing to set a floor to the
dissipation, then vmix dissipation.F90 is used to boost the diffusivity in regions where the dissipation is
below the specified level. The final step is to have vmix driver.F90 return the diffusivity Kλ, viscosity, and
non-local transport γλ, arrays to the calling ocean model code. A new time step starts by reinitializing the
diffusivities to their static background values.
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Chapter 2
Elements of vertical mixing schemes

Contents
2.1 Discrete vertical grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Gravitational stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Infinitesimal displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Neutral directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Squared buoyancy frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3.1 Stability to upward displacements from a deeper reference point . . . . . . 9
2.2.3.2 Stability to downward displacements from a shallower reference point . . . 9
2.2.3.3 Combined displacements to approximate gravitational stability at interface

depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3.4 Discrete calculation of the squared buoyancy frequency . . . . . . . . . . . . 11

2.3 Gradient Richardson number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Considerations for the B-grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Considerations for the C-grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Considerations for unstructured grids used by MPAS-ocean . . . . . . . . . . . . . . . 15

This chapter presents certain of the elements required for computing various CVMix parameterization
schemes. Details specific to particular schemes are provided in the relevant chapters.

2.1 Discrete vertical grid

As part of the numerical discretizations used by CVMix modules, we have need to describe how discrete
fields are placed on a vertical grid, and how finite difference operations are performed. A vertical column
generally has time dependent positions of the discrete fields, distances between the positions, and thick-
nesses of the cells over which the discrete fields are defined. Generality is necessary for models where grid
cell thicknesses are functions of time, and CVMix allows for such freedom.

Figure 2.1 provides a schematic of the conventions for a tracer column used by CVMix modules. The
conventions are motivated by those used in MOM and POP, yet some details may differ slightly. A summary
of the choices made in developing this figure are as follows.

• vertical coordinate: The vertical coordinate z increases upward and extends from the ocean bottom
at z = −H(x,y) to the sea surface at z = η(x,y, t).

• tracer cell arrays: Tracer cell arrays are labelled with the discrete index kt, and have dimensions
nlevs. The index kt increases downward starting from kt =1 for the top model grid cell. The number
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Chapter 2. Elements of vertical mixing schemes Section 2.2

of levels, nlevs, is a function of the column, with only wet points included in a CVMix column.
Examples of tracer cell arrays include temperature, salinity, pressure, density, thermal expansion
coefficient, and haline contraction coefficient.

• w-cell or interface arrays: W-cell or interface arrays are labelled with the discrete index kw, and
have dimensions nlevs+1. The index kw increases downward starting from kw =1 at the top ocean in-
terface. The notation “w-cell” originates from the continuity equation, in which the vertical velocity
component, w, transfers mass across the vertical interfaces of tracer cells. Examples of w-cell or inter-
face arrays are diffusivity, viscosity, vertical tracer derivatives, buoyancy frequency, and Richardson
number. For most w-cell arrays, both the top interface at kw=1 and bottom interface at kw=nlevs+1
have zero values.

One argument for using nlevs+1 interfaces is that we avoid ambiguity of where the data resides.
Interface arrays of size nlevs could start at either the top or bottom of the first level and, despite
documentation, the ambiguity will increase the potential for code errors. It does not matter so much
whether interface arrays are dimensioned 0:nlevs or 1:nlevs+1; there is only one way the data
could be laid out relative to the tracer arrays which have dimensions 1:nlevs. Yet the reason to
prefer 1:nlevs+1 is that this dimensioning simplifies declarations and argument passing, given the
standard assumptions made by Fortran in laying out memory for arrays.

• tracer cell thickness: The rectangular boxes in Figure 2.1 represent tracer cells whose thickness is
measured by the array element dzt(kt) with units of meter. This array has dimensions dzt(nlevs).
The array dzt is an input to CVMix, passed from the ocean model each time step.

• w-cell thickness or tracer point separation: The array dzw has dimensions dzw(nlevs+1). The
array element dzw(kw=1) measures distance (in meters) from the top of the top tracer cell to the tracer
point T(kt=1), and array element dzw(kw=nlevs+1) measures the distance from the bottom tracer
point T(kt=nlevs) to the bottom of the bottom tracer cell. Intermediate elements of dzw measure the
distance between tracer points, or equivalently the thickness of a w-cell. The array dzw is an input to
CVMix, passed from the ocean model each time step.

• distance from ocean surface to tracer cell point: The distance (in meters) from the tracer cell point
to the ocean surface is given by the array element zt(kt). This array has dimensions zt(nlevs). If
needed, the array zt is constructed inside CVMix code based on the values of dzt and dzw.

• distance from ocean surface to interface: The distance from the tracer cell interface, or the w-point,
to the ocean surface is given by the array element zw(kw). This array has dimensions zw(nlevs+1). If
needed, the array zw is constructed inside CVMix code based on the values of dzt and dzw.

2.2 Gravitational stability

Buoyancy stratification plays a key role in ocean physical proceses. We thus have need to quantify what
we mean by stratification, and the associated gravitational stability of a water column. For this purpose,
we introduce the notion of an adiabatic and isohaline parcel displacement, from which we develop an
algorithm for computing the buoyancy frequency used to measure vertical stratification.

2.2.1 Infinitesimal displacements

Consider an infinitesimal displacement dx of a fluid parcel. The in situ density at the new point is related
to the reference density by

ρ(x + dx) = ρ(x) + dρ(x). (2.1)

CVMix Documentation August 9, 2012 Page 6



Chapter 2. Elements of vertical mixing schemes Section 2.2

z

kt,kw

z = η(x, y, t)

z = −H(x, y)

zw(kw=nlevs+1)

zw(kw=4)

dzw(kw=1)

dzw(kw=2)

dzw(kw=3)

dzw(kw=4)

dzw(kw=5)

zt(kt=3)

dzt(kt=1)

dzt(kt=2)

dzt(kt=3)

dzt(kt=4)

kw=1

kt=1

kw=2

kt=2

kw=3

kt=3

kw=4

kt=4

kw=5

Figure 2.1: Schematic of a discrete vertical column used in CVMix modules, with the surface at z = η(x,y, t)
and bottom at z = −H(x,y). The vertical coordinate z increases upward, whereas the discrete vertical
indices kt and kw increase downward. CVMix code assumes distances and thicknesses are in units of
meters. The rectangular boxes represent tracer cells in the ocean model. The array element dzt(kt)
measures the thickness of a tracer cell. This array has dimensions dzt(nlevs), where nlevs is the number
of wet cells in a particular column. For this particular example, nlevs = 4. The array dzw has dimensions
dzw(nlevs+1). The array element dzw(kw=1) measures the distance from the top of the top tracer cell
to the tracer point T(kt=1), and array element zw(kw=nlevs+1) measures the distance from the bottom
tracer point T(kt=nlevs) to the bottom of the bottom tracer cell. Intermediate elements of dzw measure
the distance between tracer points, or equivalently the thickness of w-cells. The distance from the ocean
surface to a tracer point is measured by the array element zt(kt), and the distance to the interface is
measured by zw(kw). The total thickness of a column is zw(nlevs+1), and it is generally time dependent,
as are all of the grid distances dzt and dzw. Arrays that are defined at the interface, such as buoyancy
frequency, Richarson number, diffusivity, viscosity, have vertical indices kw. Arrays defined at the tracer
cell point, such as temperature, salinity, and density, have vertical indices kt.

Using a Taylor series expansion, the density increment can be written

dρ = dx · ∇ρ
= ρdx · ρ−1∇ρ

= ρdx ·
(
−α∇Θ + β∇S +

∇p
ρc2

sound

)
,

(2.2)

where all terms on the right hand side are evaluated at the reference point x. To reach this expression, we
introduced the thermal expansion coefficient

α = −1
ρ

(
∂ρ

∂Θ

)
, (2.3)
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Chapter 2. Elements of vertical mixing schemes Section 2.2

the haline contraction coefficient

β =
1
ρ

(
∂ρ

∂S

)
, (2.4)

and the squared sound speed

c2
sound =

(
∂p

∂ρ

)
. (2.5)

The ambient density at the new point, ρ(x + dx), thus differs from density at the reference point, ρ(x), by an
amount dρ(x) according to

ρ(x + dx)− ρ(x) = ρ(x)dx ·
(
−α∇Θ + β∇S +

∇p
ρc2

sound

)
. (2.6)

2.2.2 Neutral directions

Displacements that allow for temperature and salinity to change require energy for mixing to occur. Such
energy can arise from various sources, such as astronomical tides (Munk and Wunsch, 1998). We are not
concerned here with such energy sources. Instead, we wish to know if through buoyancy forces alone a
particular parcel displacement is favored, resisted, or neutral. For this purpose, we introduce the notion
of a displacment restricted to adiabatic and isohaline conditions (i.e., no heat or salt exchanged during the
parcel displacement). Such fictitious displacements occur in the absence of energy needed for mixing, and
so they are useful to explore where parcel motions may signal a fluid instability associated with buoyancy
forces.

The density change associated with an adiabatic and isohaline displacement is determined just by pres-
sure changes arising from the displacement, so that

ρ(x + dx)adiabatic/isohaline − ρ(x) = ρdx ·
(
∇p
ρc2

sound

)
. (2.7)

This density change occurs merely through the pressure dependence of in situ density. Operationally, to
compute ρ(x + dx)adiabatic/isohaline, we may choose to evaluate the right hand side of equation (2.7), or we may
evaluate the equation of state at the temperature and salinity of the reference point, x, but with pressure at
the displaced point, x + dx

ρ(x + dx)adiabatic/isohaline = ρ[Θ(x),S(x),p(x + dx)]. (2.8)

The difference in density between a parcel undergoing an adiabatic and isohaline displacement, ρ(x +
dx)adiabatic/isohaline, and the density of the ambient environment, ρ(x + dx), is thus given by

ρ(x + dx)− ρ(x + dx)adiabatic/isohaline = ρ[Θ(x + dx),S(x + dx),p(x + dx)]− ρ[Θ(x),S(x),p(x + dx)]

= ρdx · (−α∇Θ + β∇S) .
(2.9)

If a parcel makes an adiabatic and isohaline excursion and finds itself in a region where the ambient den-
sity is unchanged, then there are no buoyancy forces to resist that displacement. Directions defined by
such displacements are termed neutral directions (McDougall, 1987). By definition, neutral directions are
orthogonal to the local dia-neutral unit vector

γ̂ =
(
−α∇Θ + β∇S
| −α∇Θ + β∇S |

)
, (2.10)

so that
ρ(x + dx)− ρ(x + dx)adiabatic/isohaline = (ρdx · γ̂) | −α∇Θ + β∇S |. (2.11)

2.2.3 Squared buoyancy frequency

When measuring the gravitational stability of a fluid column, we are concerned with vertical displacements
and the resistence from buoyancy stratification to such displacements. To anticipate the needs of the dis-
crete calculation, we assume knowledge of the density, tracer concentration, and pressure at depths z and
z+ dz (see Figure 2.2).
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2.2.3.1 Stability to upward displacements from a deeper reference point

Consider first an upward displacement starting from the reference depth z and going to z + dz. Following
the notation of Figure 2.2, we have

ρ(z+ dz)− ρ(z+ dz)adiabatic/isohaline = ρ[Θ(z+ dz),S(z+ dz),p(z+ dz)]− ρ[Θ(z),S(z),p(z+ dz)]. (2.12)

As for the case of a general displacement considered in Section 2.2.2, we perform a Taylor series expansion
about the reference depth at z to render the leading order identity

ρ(z+ dz)− ρ(z+ dz)adiabatic/isohaline ≈ ρ(z)dz
[
−α(z)

(
∂Θ
∂z

)
+ β(z)

(
∂S
∂z

)]
= −

(
ρdz
g

)
N2.

(2.13)

The final equality in equation (2.13) introduced the squared buoyancy frequency

N2 = g
(
α
∂Θ
∂z
− β ∂S

∂z

)
, (2.14)

where the vertical derivatives and expansion coefficients are evaluated at the deep reference point z. Calcu-
lating gravitational stability according to the approximate expresson (2.14) is accurate so long as all higher
order terms in the Taylor series approximation can be neglected. The higher order terms are potentially
important in regions where the equation of state becomes quite nonlinear, such as the high latitudes of the
Southern Ocean. So one may question this approximation for global modeling.

Again, the calculation (2.13) will determine gravitational stability of an upward parcel displacement
from depth z to z+dz. To further expose the physics of this calculation, consider two vertical stratifications.

• gravitationally stable stratification: N2 > 0: In this case, a vertically upward displacement oc-
curring without heat or salt exchange will produce a parcel density that is more than the ambient
density: ρ(z + dz) − ρ(z + dz)adiabatic/isohaline < 0. This particular adiabatic and isohaline displacement is
resisted by buoyancy forces. The vertical density profile is thus gravitationally stable.

• gravitationally unstable stratification: N2 < 0: Now the upward adiabatic and isohaline displace-
ment leads to a lesser density than the ambient environment: ρ(z + dz)− ρ(z + dz)adiabatic/isohaline > 0. This
particular adiabatic and isohaline displacement is encouraged by buoyancy forces to rise even further.
The vertical density profile is thus gravitationally unstable.

2.2.3.2 Stability to downward displacements from a shallower reference point

We now determine the gravitational stability of fluid to displacements from a shallow reference point
z∗ = z+ dz downward to z, which requires the calculation

ρ(z)− ρ(z)adiabatic/isohaline = ρ[Θ(z),S(z),p(z)]− ρ[Θ(z+ dz),S(z+ dz),p(z)]

= ρ[Θ(z∗ −dz),S(z∗ −dz),p(z)]− ρ[Θ(z∗),S(z∗),p(z)]

≈ −ρdz
[
−α

(
∂Θ
∂z

)
+ β

(
∂S
∂z

)]
=

(
ρdz
g

)
N2,

(2.15)

where terms in the final two equalities are evaluated at the shallow reference point z∗ = z+ dz.
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z

z + dz

z

z + dz/2

Figure 2.2: Illustration of how parcels are displaced when checking for the gravitational stability. As for the
discrete column shown in Figure 2.1, we assume knowledge of the tracer and pressure values at the tracer
points z and z + dz. Two displacements are considered: one vertically up and one vertically down. The
notation corresponds on the discrete grid of Figure 2.1, where z+dz in the present figure corresponds to an
interface depth zw(kw); the deeper point at z corresponds to the tracer point zt(kt+1); and the shallower
point z+ dz corresponds to the tracer point zt(kt).

2.2.3.3 Combined displacements to approximate gravitational stability at interface depth

Let us summarize the two previous results. Again, we have two tracer points at depths z and z + dz. Grav-
itational stability can be probed in two separate ways. First we consider the deeper depth z as a reference
point and displace parcels vertically upward to z + dz. This calculation leads to the squared buoyancy
frequency at the reference point z

N2(z) = g
(
α
∂Θ
∂z
− β ∂S

∂z

)
≈ −

g

ρ

(
ρ[Θ(z+ dz),S(z+ dz),p(z+ dz)]− ρ[Θ(z),S(z),p(z+ dz)]

dz

)
.

(2.16)

All terms in the first equality are evaluated at the reference point z. Note that an approximation of the
vertical tracer derivative at the reference point is, to leading order, given by the derivative at the interface
point z+ dz/2, which is the natural positioning of the vertical derivative given values for the tracer at z and
z+ dz.

Next we consider the shallower depth z + dz as a reference point and displace parcels vertically down-
ward to z. This calculation leads to the squared buoyancy frequency at the reference point z+ dz

N2(z+ dz) = g
(
α
∂Θ
∂z
− β ∂S

∂z

)
≈ −

g

ρ

(
ρ[Θ(z),S(z),p(z)]− ρ[Θ(z+ dz),S(z+ dz),p(z)]

dz

)
,

(2.17)

where all of the terms in the final equality are evaluated at the shallow reference point z + dz, though the
vertical derivatives can be approximated by their values at the interface depth z+ dz/2.

We can use these two results to render an approximation to the squared buoyancy frequency at the
interface point z+dz/2, which is where the discrete calculation requires the stability to be estimated (Section
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2.2.3.4). For this purpose, we take the simple average to yield an expression in terms of density differences

N2(z+ dz/2) ≈ N
2(z) +N2(z+ dz)

2

= −
g

2

(
ρ[Θ(z+ dz),S(z+ dz),p(z+ dz)]− ρ[Θ(z),S(z),p(z+ dz)]

ρ(z)dz
−
ρ[Θ(z),S(z),p(z)]− ρ[Θ(z+ dz),S(z+ dz),p(z)]

ρ(z+ dz)dz

)
.

(2.18)

We note that there are two non-standard calculations of the in situ density required, ρ[Θ(z),S(z),p(z + dz)]
and ρ[Θ(z+ dz),S(z+ dz),p(z)], which makes this approach somewhat more expensive than the subsequent
method given by equation (2.20). As a sanity check, note that if the density is independent of pressure,
and we replace densities in the denominator with the constant reference density ρo, we have the familiar
simplified result

N2(z+ dz/2) = −
g

ρo

(
ρ[Θ(z+ dz),S(z+ dz)]− ρ[Θ(z),S(z)]

dz

)
density independent of pressure. (2.19)

Instead of writing in terms of density differences, we can write the squared buoyancy frequency in terms
of tracer derivatives, so that

N2(z+ dz/2) ≈ N
2(z) +N2(z+ dz)

2

= g
(
αz
∂Θ
∂z
− βz ∂S

∂z

)
,

(2.20)

where we introduced the vertical averaging operator to bring the expansion coefficients from the tracer
point to the interface

α(z+ dz/2) =
α(z) +α(z+ dz)

2
. (2.21)

Contrary to the density difference approach of equation (2.18), the expression (2.20) requires no non-
standard calculations of the equation of state. What it does require is calculation of the thermal expansion
coefficients, with that calculation also used for neutral physics. So the expression (2.20) may be somewhat
more efficient. Nonetheless, when used as a measure of gravitational stability, the expression (2.18) makes
less assumptions about our ability to truncate the Taylor series at the leading order. This truncation may
become problematic particularly in high latitudes where the equation of state can become quite nonlinear.

2.2.3.4 Discrete calculation of the squared buoyancy frequency

CVMix modules do not compute the buoyancy frequency. Rather, the calling model does and then passes
N2 to CVMix. Nonetheless, CVMix modules must assume a placement for the buoyancy frequency, with
the following choice made:

CVMix modules assume the squared buoyancy frequency, N2, lives at the vertical interface of
tracer cells, following the convention given by Figure 2.1.

We now write the buoyancy frequency expressions (2.18) (2.20) in terms of discrete indices for ready incor-
poration into a numerical model. For the density difference expression (2.18), we have

N2(kw) = −
g

2

(
ρ[Θ(kt),S(kt),p(kt)]− ρ[Θ(kt+ 1),S(kt+ 1),p(kt)]

ρ(kt+ 1)dzw(kw)
−
ρ[Θ(kt+ 1),S(kt+ 1),p(kt+ 1)]− ρ[Θ(kt),S(kt),p(kt+ 1)]

ρ(kt)dzw(kw)

)
.

(2.22)
Note that by referring to Figures 2.1 and 2.2, we see that the discrete label kt corresponds to the shallower
point z+dz, whereas kt+1 corresponds to the deeper point z. This correspondence is made when converting
equation (2.18) to equation (2.22).

The second method for computing the squared buoyancy frequency is given by a discretization of

N2 = g
(
α
∂Θ
∂z
− β ∂S

∂z

)
. (2.23)
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The vertical derivatives of temperature and salinity are naturally placed on the vertical cell interfaces.
However, the thermal expansion and haline contraction coefficients, α and β, both are naturally defined
at the tracer cell centers, along with the in situ density. The average given by equation (2.20) takes on the
semi-discrete form

N2(kw) = g
(
αz
∂Θ
∂z
− βz ∂S

∂z

)
, (2.24)

where the vertical derivatives are evaluated at the interface kw, and vertical averages are performed to bring
α and β to the interface. As noted when discussing equation (2.20), this calculation requires no extra non-
standard evaluations of the equation of state. However, the density derivatives ∂ρ/∂Θ and ∂ρ/∂S must be
computed. Since these derivatives are needed for other processes, such as neutral physics, it can readily be
assumed they are available.

2.3 Gradient Richardson number

The gradient Richardson number measures the ratio of the stabilizing effects from buoyancy stratification
to the destabilizing effects from vertical shear

Ri =
N2

|∂zu|2
. (2.25)

In this equation, N2 is the squared buoyancy frequency (equation (2.14), whose discrete calculation was
detailed in Section 2.2.3.4. The denominator contains the squared vertical shear of the horizontal velocity,
|∂zu|2. When the Richardson number is small, say below 1/4, the flow tends toward a turbulent state via
production of Kelvin-Helmholz instabilities. Consequently, many vertical mixing schemes make use of
the Richardson number, such as the shear mixing schemes presented in Chapter 4. Additionally, the KPP
boundary layer scheme (Chapter 7) makes use of a bulk Richardson number used to define properties of
the surface planetary boundary layer (Section 7.5.5).

As for the squared buoyancy frequency N2, the CVMix modules do not compute a Richardson num-
ber, since the details of this calculation are very much dependent on choices made in the ocean model.
Rather, the Richardson number is an input to CVMix modules. CVMix modules assume a placement for
the Richardson number, with the following choice made:

CVMix modules assume the gradient Richardson number, Ri, lives at the vertical interface of
tracer cells, following the convention given by Figure 2.1. This positioning follows that of the
squared buoyancy frequency discussed in Section 2.2.3.4.

Staggering of tracer and velocity fields on a discrete grid leads to ambiguity for how to compute a dis-
crete Richardson number. The issue is the squared buoyancy frequency in the numerator naturally lives at
the vertical interface between tracer grids (Section 2.2.3.4), whereas the horizontal positioning for the de-
nominator depends on the chosen horizontal staggering of velocity. We detail here some possible methods
for the B-grid, C-grid, and unstructured grids used by MPAS-ocean, each of which involve averaging op-
erations performed to the shear. There are even further methods available if we choose a different discrete
placement of N2 beyond that discussed in Section 2.2.3.4.

2.3.1 Considerations for the B-grid

Figure 2.3 illustrates the horizontal arrangement of prognostic model fields used with the B-grid. The B-
grid places both horizontal prognostic velocity components at the same point, the corner of the tracer cell.
This placement is natural when computing the Coriolis Force. However, it is unnatural for computation of
advective tracer transport or the horizontal pressure gradient force acting on velocity. The need to perform
an averaging operation when computing the horizontal pressure gradient leads to the computational mode
associated with gravity waves on the B-grid (Mesinger (1973), Killworth et al. (1991), Pacanowski and
Griffies (1999), Griffies et al. (2001), and Section 12.9 of Griffies (2004)).

We present here some methods for computing the squared vertical shear of the horizontal velocity on
the B-grid, and thus methods for computing the Richardson number.
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j

i

U(i,j,k)

T(i,j,k)

Figure 2.3: Illustration of how fields are placed on the horizontal B-grid using a northeast convention. Ve-
locity points U(i,j,k) are placed to the northeast of tracer points T(i,j,k). Both horizontal velocity
components ui,j,k and vi,j,k are placed at the velocity point U(i,j,k). Both the tracer point and velocity
point have a corresponding grid cell region, denoted by the solid and dashed squares.

• T-grid average of U-grid velocity: The first approach considered computes a horizontal average of
the velocity field to place it onto the T-grid, and then computes the vertical derivative and its square.
The 4-point horizontal average to compute a T-grid velocity is written

uT = ux,y . (2.26)

Note that this, and all, four point averages do not include land points. We next compute the squared
vertical shear with the T-grid horizontal velocity for use in the Richardson number calculation

Ri(Ba) =
N2∣∣∣∂uT

∂z

∣∣∣2 . (2.27)

• T-grid average of U-grid shear: A slight modification of the Ri(Ba) calculation takes the T-grid hori-
zontal average of the U-grid shear (

∂u
∂z

)T

=
(
∂u
∂z

)x,y
, (2.28)

and then computes the square so that

Ri(Bb) =
N2∣∣∣∣(∂u
∂z

)T
∣∣∣∣2 . (2.29)

With uniform vertical grid spacing, the two Richardson number calculations are the same

Ri(Ba) = Ri(Bb) uniform vertical grid spacing. (2.30)

• T-grid average of squared U-grid shear: The third method computes the squared shear on the
original U-grid, and then averages the squared shears onto the T-grid(∣∣∣∣∣∂u

∂z

∣∣∣∣∣2)T

=
(∣∣∣∣∣∂u∂z

∣∣∣∣∣2 +
∣∣∣∣∣∂v∂z

∣∣∣∣∣2)
x,y

, (2.31)

so that

Ri(Bc) =
N2(∣∣∣∂u
∂z

∣∣∣2)T . (2.32)
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j

i

X
q(i,j,k)

T(i,j,k)
ui, j,k

vi, j,k

Figure 2.4: Illustration of how fields are placed on the horizontal C-grid. We illustrate here the convention
that the zonal velocity component ui,j,k sits at the east face of the tracer cell T(i,j), and the meridional
velocity component vi,j,k sits at the north face of the tracer cell T(i,j,k). This convention follows the
northeast convention also used for the B-grid.

2.3.2 Considerations for the C-grid

Figure 2.4 illustrates the horizontal arrangement of prognostic model fields used with the C-grid. The C-
grid places the zonal velocity component on the zonal tracer cell face, and meridional velocity component
on the meridional tracer cell face. This placement is suited for computation of advective tracer transport. It
is also suited for computing the stress tensor and the horizontal pressure gradient force acting on velocity
components. However, it is not natural for computation of the Coriolis Force. The need to perform an
averaging operation to compute the Coriolis Force leads to the presence of a computational null mode
associated with geostrophically balanced flow (Adcroft et al., 1999).

We present here some methods for computing the squared vertical shear of the horizontal velocity on
the C-grid, and thus methods for computing the Richardson number.

• T-grid average of u,v-grid velocity components: The first approach considered computes a hori-
zontal average of the u,v velocity components to place both onto the T-grid, and then computes the
vertical derivative and its square. The horizontal averaging requires a two-point average so that

(uT,vT) = (ux,vy). (2.33)

As for the B-grid averaging considered in Section 2.3.1, all averages considered here do not include
land points. The squared vertical shear with the T-grid horizontal velocity is then used for the
Richardson number calculation ∣∣∣∣∣∂uT

∂z

∣∣∣∣∣2 =
(
∂ux

∂z

)2

+
(
∂vy

∂z

)2

(2.34)

Ri(Ca) =
N2∣∣∣∂uT

∂z

∣∣∣2 . (2.35)

• T-grid average of u,v-grid shear: A slight modification of the Ri(Ca) calculation takes the T-grid
horizontal average of the u,v-grid shear(

∂u
∂z

)T

=

(∂u∂z
)x
,

(
∂v
∂z

)y , (2.36)

and then computes the square so that

Ri(Cb) =
N2∣∣∣∣(∂u
∂z

)T
∣∣∣∣2 . (2.37)
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With uniform vertical grid spacing, the two Richardson number calculations are the same

Ri(Ca) = Ri(Cb) uniform vertical grid spacing. (2.38)

• T-grid average of squared u,v-grid shear: The third method computes the squared shear on the
original u,v-grid, and then averages the squared shears onto the T-grid(∣∣∣∣∣∂u

∂z

∣∣∣∣∣2)T

=
∣∣∣∣∣∂u∂z

∣∣∣∣∣2
x

+
∣∣∣∣∣∂v∂z

∣∣∣∣∣2
y

(2.39)

so that

Ri(Bc) =
N2(∣∣∣∂u
∂z

∣∣∣2)T . (2.40)

2.3.3 Considerations for unstructured grids used by MPAS-ocean
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Chapter 3
Static background vertical mixing
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This chapter presents options in CVMix code for prescribing static background diffusivities and viscosi-
ties. The following CVMix Fortran module is directly connected to the material in this chapter:

vmix background.F90

3.1 Options for static background mixing coefficients

Jochum (2009) describes the large sensitivities found in climate model simulations to the choice of back-
ground vertical diffusivities. There are various options in CVMix code for specifying a static background
diffusivity and viscosity. These mixing coefficients are generally a function of space but remain the same
value throughout the simulation, and so are independent of the flow state. These static values are primarily
determined for tracer diffusivity, with a Prandtl number (ratio of diffusivity to viscosity) used to determine
the background viscosity. A common choice for Prandtl number is 10, although for some background
diffusivities there is no corresponding background viscosity (i.e., zero Prandtl number).

3.2 The profile from Bryan-Lewis (1979)

A classic choice for background diffusivity is that proposed by Bryan and Lewis (1979), which has an
arctangent form with smaller values in the upper ocean and larger values beneath a pivot depth, typically
set to around 1500 m

κBryan-Lewis = vdc1+ vdc2 arctan[(|z| − dpth)linv ] . (3.1)

This is the form appearing in POP, where the parameters are defined as follows.

• vdc1 is the diffusivity (squared length per time) at |z| = dpth,

• vdc2 = amplitude of variation for the diffusivity (squared length per time)

• linv is an inverse length scale

• dpth is the vertical depth where the diffusivity equals vdc1.
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All lengths and diffusivities should be in MKS units. In many implementations, such as for GFDL-CM2.1,
there is no corresponding Bryan-Lewis viscosity, so the corresponding Bryan-Lewis Prandtl number is zero.
But more generally, the viscosity is computed according to a chosen Prandtl number.

In the MOM code, the form (3.1) is written in the somewhat more cumbersome manner for historical
reasons

κBryan-Lewis = convert (afkph+ (dfkph/π) arctan[sfkph(100 |z| − zfkph)]) , (3.2)

where afkph, dfkph, sfkph, and zfkph are tunable constants, and convert = 1 × 10−4 m2s−1 converts from
the original CGS to MKS. The mapping between the MOM and POP forms (3.1) is given by the following

vdc1 = κo afkph (3.3)

vdc2 = κo dfkph/π (3.4)

linv = 100sfkph (3.5)

dpth = 100zfkph. (3.6)

We provide this mapping since Figure 3.1 was constructed using the original MOM-based form. Shown are
two examples of vertical diffusivity profiles used in the GFDL-CM2.1 simulations (see Griffies et al., 2005,
for discussion).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

5000

4000

3000

2000

1000

0
Background vertical tracer diffusivity in OM3

Diffusivity (1e 4 m2/sec)

De
pt

h 
(m

)

low latitudes
high latitudes

Figure 3.1: Sample vertical profiles for background diffusivities (in units of m2 s−1) given by the Bryan
and Lewis (1979) functional form, as used by the OM3 ocean component of the GFDL-CM2.1 climate
model (Griffies et al., 2005). The surface values in the tropics are 0.1 × 10−4 m2 s−1, whereas they are
increased in the high latitudes to 0.3 × 10−4 m2 s−1. The Bryan-Lewis coefficients from equation (3.2)
are afkph=0.725, dfkph=1.15, sfkph=4.5 × 10−5, zfkph=2500 in the high latitudes, and afkph=0.675,
dfkph=1.15, sfkph=4.5 × 10−5, zfkph=2500 in the tropics.

The original implementation from Bryan and Lewis (1979) chose the background as a function only of
depth. However, the CM2.1 implementation shown in Figure 3.2 provides an exponential transition from
the lower latitude form to the higher latitude form, with the transition latitude taken as 35deg. In this way,
the background diffusivity is a function of both latitude and depth. The resulting diffusivity is shown in
Figure

3.3 The profile from Henyey et al. (1986)
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Figure 3.2: Shown here is the latitude dependent Bryan-Lewis diffusivity (cm2 s−1) based on values used
in GFDL-CM2.1 configuration discussed in Griffies et al. (2005). The diffusivity is composed of the two
profiles shown in Figure 3.1, with an exponential transition at 35deg from the lower values in the tropics to
the larger values in the high latitudes.
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Chapter 4
Parameterized shear induced mixing
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4.4 Richardson number mixing from Jackson et al. (2008) . . . . . . . . . . . . . . . . . . . 22

The purpose of this chapter is to summarize the CVMix implementations of parameterizations arising
from shear induced mixing. The following CVMix Fortran module is directly connected to the material in
this chapter:

vmix shear.F90

4.1 Mixing from shear instability

Shear instability mixing occurs when vertical shears in the horizontal velocity overcome the stabilizing ef-
fects from vertical buoyancy stratification. Shear instability is governed by the local or gradient Richardson
number (Section 2.3)

Ri =
N2

|∂zu|2
, (4.1)

where

N2 = g
(
α
∂Θ
∂z
− β ∂S

∂z

)
(4.2)

is the buoyancy frequency, and

|∂zu|2 =
(
∂u
∂z

)2

+
(
∂V
∂z

)2

(4.3)

is the squared vertical shear of the horizontal velocity vector resolved by the model grid. When the Richard-
son number gets below a critical value, Rio, shear instability turns on, which leads to enhanced mixing be-
tween water masses. The canonical value of Rio is 1/4, which corresponds to the critical value for initiation
of a Kelvin-Helmholz instability.

4.2 Richardson number mixing from Pacanowski and Philander (1981)

Shear instability mixing is generally parameterized in terms of Ri. An early form for shear mixing param-
eterization was proposed by Pacanowski and Philander (1981), with focus on equatorial dynamics. They
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used a different viscosity, νpp shear, and diffusivity, κpp shear. For gravitationally stable profiles (i.e., N2 > 0), they
chose

νpp shear =
ν0

(1 + aRi)n
(4.4)

κpp shear =
ν0

(1 + aRi)n+1 , (4.5)

where ν0, a and n are adjustable parameters. Common settings used in POP are a = 5 and n = 2. With
N2 < 0, one should set the diffusivity and viscosity to a large value to reduce the gravitational instability
(see Chapter 8).

4.3 Richardson number mixing from Large et al. (1994)

For regions beneath the KPP boundary layer (see Figure 7.1), Large et al. (1994) and Large and Gent (1999)
parameterized shear induced mixing using the following diffusivities

κkpp shear =


κ0 Ri < 0 gravitational instability regime

κ0

[
1−

(
Ri
Ri0

)2
]3

0 < Ri < Ri0 shear instability regime

0 Ri ≥ Ri0 stable regime.

(4.6)

The form in the shear instability regime falls most rapidly near Ri = 0.4Ri0, which aims to parameterize
the onset of shear instability. In this neighborhood, rapid changes in Ri can cause gravitational instabilities
to develop in the vertical, but these are largely controlled by vertically smoothing Ri profiles with a 1−2−1
smoother. Unlike Pacanowski and Philander (1981), Large et al. (1994) chose a unit Prandtl number for
shear induced mixing; i.e., the shear induced viscosity is the same as the shear induced diffusivity.

4.4 Richardson number mixing from Jackson et al. (2008)
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The purpose of this chapter is to summarize the CVMix implementation of the parameterized vertical
mixing associated with tidal dissipation in both the ocean interior and near the bottom. The following
CVMix Fortran module is directly connected to the material in this chapter:

vmix tide.F90

5.1 Introduction to tidal induced mixing

Dianeutral mixing of tracer and momentum arises when energy dissipates at the small scales. There are
two sources of energy dissipation considered in this chapter.

• Internal waves in ocean interior: Breaking internal gravity waves are considered with the gravity
wave energy source arising from barotropic tidal energy scattered into internal tidal energy. This
process occurs when tides interact with rough bottom topography,
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• Tidal waves interacting with continental shelves: Frictional bottom drag is enhanced as tides
encounter continental shelves (whose depths are generally 500m or less). There is an associated
mixing of water masses due to this dissipation.

To resolve both of these dissipation processes explicitly in a numerical model requires grid resolution no
coarser than meters in the vertical (throughout the water column), and 1-10 kilometers in the horizontal.
This very fine resolution is not generally accessible to global climate models, in which case it is necessary
to consider a parameterization.

CVMix has implementations for the following tide mixing parameterizations.

• baroclinic or internal wave mixing: Simmons et al. (2004) presented the first implementation in
an ocean climate model of an internal tide mixing parameterization. Jayne (2009) followed with an
updated implementation. A more recent study by Melet et al. (2012) implemented the ideas from
Polzin (2009) to remove the arbitrariness of the vertical deposition function used by Simmons et al.
(2004) and Jayne (2009). Any of these schemes aim to provide a physically based replacement for the
vertical tracer diffusivity of Bryan and Lewis (1979) (Chapter 3).

• barotropic tidal drag on shelves: Lee et al. (2006) and presents a method to account for the mixing
associated with tidal dissipation occuring near and on continentual shelves.

• bottom drag induced mixing: Legg et al. (2006) present a method to account for the mixing associated
with bottom drag dissipation.

Although CVMix provides an optional Prandtl number1, it is general practice to assume a unit Prandtl
number for each of the tide parameterization schemes.

5.2 Energetic elements of tide mixing parameterizations

We now consider some elements of how various of the energetic based tide mixing parameterizations are
formulated. Notably, the scheme from Lee et al. (2006) (Section 5.5) is not energetically based, and so
follows a different route to parameterization.

5.2.1 Bottom drag

Frictional bottom drag is typically parameterized as

Dbottom drag = CD u |u| (units of m2 s−2), (5.1)

where CD is a dimensionless drag coefficient with a value on the order of

CD ≈ 2× 10−3. (5.2)

Energy dissipation associated with this bottom drag is given by

Ebottom drag = ρou ·Dbottom drag = ρo |u|3 (units of W m−2), (5.3)

where ρo is a reference ocean density.
A component to the energy dissipation (5.3) is associated with barotropic tides as they encounter the

ocean bottom, particularly continental shelves and other shallow ocean regions. In an ocean model that
does not represent the astronomical tides, we may choose to enhance the model’s bottom velocity through
a root-mean-square tidal velocity, Utide, so that the bottom drag takes the form

Dbottom drag = CD u
(
u2 +U2

tide

)1/2
, (5.4)

where now the velocity u refers to the model’s resolved bottom velocity field. The modified energy dissipa-
tion from bottom drag thus takes the form

Ebottom drag = ρoCD u2
(
u2 +U2

tide

)1/2
. (5.5)

1The Prandlt number is the ratio of viscosity to diffusivity.
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5.2.2 Wave drag from breaking internal gravity waves

A drag associated with breaking internal gravity waves was written by Jayne and St.Laurent (2001) as

Dwave drag = (1/2)Nbottκtopo h
2
topo u (units of m2 s−2), (5.6)

where Nbott is the buoyancy frequency at the ocean bottom, and (κtopo,htopo) are wavenumber (dimensions of
inverse length) and amplitude (dimensions of length) scales for the topography. The product κtopo h

2
topo has

dimensions of length and defines a roughness length

Lrough = κtopo h
2
topo (5.7)

to be specified according to statistics of the observed ocean bottom topography. The internal wave drag can
thus be written as

Dwave drag = (1/2)NbottLrough u (units of m2 s−2). (5.8)

The energy dissipation associated with breaking internal gravity waves is given by

Ewave drag = ρo 〈u ·Dwave drag〉
= (ρo/2)NbottLrough 〈u2〉 (units of W m−2).

(5.9)

In the Jayne and St.Laurent (2001) paper, they emphasize that κtopo, which sets the roughness length through
Lrough = κtopo h

2
topo, is used as a tuning parameter, with the tide model tuned to give sea level values agreeing

with observations. Then, the energy dissipation can be diagnosed from the tide model.
As with the bottom drag (Section 5.2.1), the wave energy dissipation arises from energy removed from

the barotropic tides, yet here the is transferred into baroclinic tides. Some of the energy transferred into
the baroclinic tides dissipates locally due to local wave breaking, and this then leads to enhanced mixing
locally. The remaining baroclinic energy propogates away (i.e., it is non-local). The ratio of local to non-
local energy is not well known, and is the focus of research.

5.2.3 Relating dissipation to mixing via Osborn (1980)

Mixing occurs when mechanical energy is dissipated in the presence of stratification. The relation between
energy dissipation and mixing is not known from first principles, so we consider dimensional arguments to
establish a useful form. Since we are concerned with vertical mixing, we assume that diffusivity is inversely
proportional to the vertical stratification, with stratification strength measured by the buoyancy frequency

N2 = −
g

ρ

(
∂ρ

∂θ
∂θ
∂z

+
∂ρ

∂S
∂S
∂z

)
. (5.10)

Mechanical energy per mass has units of m2 s−2 = J kg−1, and the dissipation of this energy, written as ε,
has units of m2 s−3 = W kg−1

ε = mechanical energy dissipation in units of m2 s−3 = W kg−1. (5.11)

Together, the energy dissipation and buoyancy frequency define a diffusivity given through the relation
(Osborn, 1980)

κdissipate =
Γ ε

N2 , (5.12)

where the dimensionless parameter Γ measures the efficiency that mechanical energy dissipation translates
into mixing that can be parameterized by a diffusivity acting on vertical stratification. This relation is
used throughout the mixing community for converting measurements of mechanical energy dissipation
into diffusivity.

The efficiency parameter in equation (5.12) is often chosen as

Γ = 0.2 (5.13)
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based measurements (Osborn, 1980; Ivey and Imberger, 1991). However, in regions of very weak vertical
stratification, where N2→ 0, we suggest following Melet et al. (2012), in which the mixing efficiency tends
to zero according to

Γ = 0.2
(

N2

N2 +Ω2

)
(5.14)

where

Ω =
(2π+ 2π/365.24

86400s

)
=

( π
43082

)
s−1

= 7.2921× 10−5s−1.

(5.15)

is the angular rotation rate of the earth about its axis and about the sun. This modified mixing efficiency
reduces the regions where spuriously large values of diffusivity may occur, especially next to the bottom,
where low values of N2 may appear. There is little physical reason to believe the huge diffusivities diag-
nosed from regions with N2 <Ω2.

5.2.4 Vertical deposition function

We are generally concerned in this chapter with mixing induced by energy dissipation that is largest near
the bottom. This bottom intensified dissipation leads to the largest levels of mixing also near the bottom.
Yet there are means for dissipation to move upwards into the water column, and it is this mixing that gen-
erally has far more impact on the ocean stratification. Details of how dissipation moves upwards into the
column remains a topic of research. We present here a formulation followed by the CVMix implemen-
tations of the Simmons et al. (2004) and Melet et al. (2012) schemes. In this case, we write the energy
dissipation in the form

ε = E F(z), (5.16)

where E is an energy dissipation times a length scale, and F(z) is a vertical deposition function with units
of inverse length. Both Simmons et al. (2004) and Melet et al. (2012) chose

E =
qEwave drag(x,y)

ρ
, (5.17)

where Ewave drag(x,y) is the energy input to wave drag originating from the bottom (equation (5.9)), ρ is the
in situ density, and q is the dimensionless fraction of energy that dissipates locally rather than propagating
away to dissipate non-locally. We have more to say on q in Section 5.2.5. The vertical deposition function
is assumed to integrate to unity over an ocean column

η∫
−H

F(z)dz = 1. (5.18)

Simmons et al. (2004) chose an empirical exponential function (equation (5.27)) for F(z), whereas Melet
et al. (2012) based their choice on theoretical results from Polzin (2009).

5.2.5 Local versus non-local wave energy dissipation

The dimensionless parameter, q, introduced in equation (5.17) measures the fraction of wave energy dis-
sipated locally, and thus contributes to local mixing. Simmons et al. (2004) and Melet et al. (2012) both
chose

q = 1/3 (5.19)

based on the work of St.Laurent et al. (2002). The remaining 2/3 of the wave energy propagates away
and is assumed to dissipate non-locally. The non-local dissipation of internal tidal energy, as well as the
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dissipation of internal energy from other sources (e.g., wind energy), are accounted for in an ad hoc manner
via the background diffusivity κ0 (and background viscosity). A value within the range

κ0 = (0.1− 0.2)× 10−4 m2 s−1 (5.20)

is recommended based on the measurements of Ledwell et al. (1993). Other choices are considered in
Chapter 3.

Setting q = 1/3 globally is strictly incorrect for internal gravity wave dissipation. The actual value
is related to the modal content of the excited internal tide, which is related to the roughness spectrum
of topography. The redder the mode/roughness spectrum, the lower q. For example, Hawaii has been
modelled as a knife-edge by (St.Laurent et al., 2003). This topography excites predominantly low modes,
and these modes are stable, propogate quickly, and have long interaction times. That is, they propagate
to the far field. Klymak et al. (2005) argue that q = 0.1 for Hawaii from the Hawaiian Ocean Mixing
Experiment (HOME) data. For the mid-Atlantic ridge, the use of q = 1/3, as in Simmons et al. (2004) and
Melet et al. (2012), may be more suitable.

The bottom mixing scheme from Legg et al. (2006) in effect assume

q = 1 bottom mixing scheme, (5.21)

which is sensible given that the mixing considered in their scheme occurs predominantly within a bottom
boundary layer.

5.2.6 Prandtl number

The Prandtl number is the ratio of viscosity to diffusivity. In most treatments of mixing due to tides, there
is little is any mention of the Prandtl number. In particular, Simmons et al. (2004) do not discuss vertical
viscosity in their study. If one considers a non-zero Prandtl number, then vertical viscosity is enhanced
along with the diffusivity when considering internal wave breaking. The following are examples of the
Prandlt number chosen for the tide mixing parameterizations.

• The earth system models of Dunne et al. (2012) assume a unit Prandtl number for mixing related to
tide mixing.

• What about Jayne (2009)?

5.2.7 General form of the vertical diffusivity

The previous considerations lead to the following general form for a diffusivity arising from mechanical
energy dissipation that originates from the ocean bottom

κdissipate =
Γ εdissipate

N2

=
Γ EdissipateF(z)

N2

=
q Γ Edissipate(x,y)Fdissipate(z)

ρN2 .

(5.22)

The energy dissipation at the ocean bottom, Edissipate(x,y), and the vertical deposition function, Fdissipate(z),
distinguish the schemes considered by Simmons et al. (2004) and Melet et al. (2012).

5.2.8 Energetic balances

One of the main reasons to formulate diffusivites based on mechanical energy input is that this energy
is exchanged in a conservative manner within the ocean. This conservation then leads to self-consistency
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tests for the model implementation of various energy-based mixing parameterizations. We consider here
in particular the work done against stratification by vertical diffusion with a diffusivity κdissipate is given by

P ≡
∫
κdissipateρN

2 dV . (5.23)

Use of equation (5.26) for the vertical diffusivity with a constant mixing efficiency Γ = 0.2 yields

P =
∫
κdissipateρN

2 dV

= q Γ
∫
Edissipate(x,y)dxdy,

(5.24)

assuming q Γ constant. Note that to reach this result, we set
∫
Fdissipate(z)dz = 1 (Section 5.2.4), which is

a constraint that is maintained by the COVMix implementation of the energetic-based mixing schemes.
Equation (5.24) says that the energy from some form of dissipation mechanism is deposited in the ocean
interior and works against stratification.

For the more general case of q Γ spatially dependent, we have the balance

P =
∫
κdissipateρN

2 dV

=
∫
q Γ Edissipate(x,y)Fdissipate(z) dV ,

(5.25)

which again is a statement of energy conservation between wave dissipation and mixing of density. Al-
though equation (5.25) is a trivial identity following from the definition of the closure, it is not trivial to
maintain in the ocean model. The main reason is that we work with diffusivities when integrating the equa-
tions of an ocean model, and these diffusivities are often subjected to basic numerical consistency criteria,
such as the following.

• We may wish to have the diffusivities monotonically decay upwards in the column. Given the N−2

dependence of the diffusivity in equation (5.22), monotonicity is not guaranteed. Without an added
monotonicity constraint, the simulation can be subject to spurious instabilities in which intermediate
depths destratify, then producing larger diffusivities, and further reducing the stratification. Jayne
(2009) discovered this behaviour in his simulations.

• The diffusivities should be bounded by a reasonable number, such as 50− 100cm2 sec−1.

Imposing constraints such as these on the diffusivity corrupts the identity (5.24). In general, the constraints
remove energy from the interior, so that in practice

∫
κdissipateρN

2 dV <
∫
q Γ Edissipate(x,y)dV .

5.3 The Simmons et al. (2004) scheme

To account for mixing associated with energy dissipation from breaking internal gravity waves, Simmons
et al. (2004) propose a diffusivity given by

κsimmons =
Γ εwave drag

N2

=
Γ Ewave dragFsimmons(z)

N2

=
q Γ Ewave drag(x,y)Fsimmons(z)

ρN2 ,

(5.26)

which again is the general form introduced in Section 5.2.7. To reach this result, we used equation (5.16)
to introduce the vertical deposition function Fsimmons, and equation (5.17) to introduce the wave drag energy
dissipation, Ewave drag, given by equation (5.9).
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5.3.1 Calculation of the wave energy dissipation

The wave energy dissipation, Ewave drag, is evaluated as follows.

• Nbott is computed from the model’s evolving buoyancy frequency at the top face of a bottom boundary
layer (often just the bottom-most tracer cell). Note that the buoyancy frequency at the bottom face of
the bottom-most cell is zero, by definition.

• The effective roughness length Lrough = κtopo h
2
topo requires an algorithm to compute htopo from observed

bottom topography, and tide model to tune κtopo. However, in practice what can be done is to take
htopo given some variance of topography within a grid cell, and then tune Ewave drag to be roughly 1TW in
ocean deeper than 1000m, with κtopo as the tuning paramter.

5.3.2 Deposition function

The bottom intensified vertical profile, or deposition function, is taken as

Fsimmons(z) =
e−(D−h)/ζ

ζ (1− e−D/ζ)

=
eh/ζ

ζ (eD/ζ − 1)
.

(5.27)

In this expression,
D =H + η (5.28)

is the time dependent thickness of water between the free surface at z = η and the ocean bottom at z = −H ,
and

h = −z+ η (5.29)

is the time dependent distance from the free surface to a point within the water column.2 The chosen form
of the deposition function is motivated by the microstructure measurements of St.Laurent et al. (2001) in
the abyssal Brazil Basin, and the continental slope measurements of Moum et al. (2002). This profile re-
spects the observation that mixing from breaking internal gravity waves, generated by scattered barotropic
tidal energy, is exponentially trapped within a distance ζ from the bottom. An ad hoc decay scale of

ζ = 500m (5.30)

is suggested by Simmons et al. (2004) for use with internal gravity wave breaking in the abyssal ocean.

5.3.3 Regularization of the diffusivity

The diffusivities resulting from this parameterization can reach levels upwards of the maximum around
20× 10−4 m2 s−1 seen in the Polzin et al. (1997) results. Due to numerical resolution issues, the scheme can
in practice produce even larger values. We need to consider the physical relevance of these large values.
The following lists some options that the modeller may wish to exercise.

• We may choose to limit the diffusivity to be no larger than a maximum value, defaulted to 50 ×
10−4 m2 s−1 in CVMix.

• Based on observations, the mechanical energy input from wave drag (equation (5.9)) should not ex-
ceed roughly 0.1Wm−2 at a grid point (Bob Hallberg, personal communication 2008). Depending on
details of the bottom roughness and tide velocity amplitude, a typical model implementation may
easily exceed this bound. Hence, it may be necessary to cap the mechanical energy input to be no
larger than a set bound.

• Use of the stratification dependent mixing efficiency (5.14) provides a physically based means to
regularize the regions where N2 can get extremely small.

2We emphasize that with a free surface, D and h are generally time dependent. Furthermore, with general vertical coordinates, h
is time dependent for all grid cells.
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5.3.4 Regarding a shallow depth cutoff

Simmons et al. (2004) do not apply their scheme in waters with ocean bottom shallower than 1000m,
whereas Jayne (2009) applies the scheme for all depths. CVMix has a namelist that allows for setting a
cutoff depth. In principle, there is nothing wrong with using the Simmons et al. (2004) scheme all the way
to shallow waters, and removing the somewhat arbitrary depth cutoff is more satisfying. So one may wish
to naively use q = 1/3 without a 1000m depth cutoff.

Likewise, ζ = 500m globally may be a reasonable choice. The structure function will properly integrate
to unity, whether or not the ocean depth H is greater or less than ζ.

5.3.5 Further comments

Here are some further points to consider when setting some of the namelists for this scheme.

• One means to ensure that the diffusivities are within a reasonable bound, without capping them after
their computation, is to artificially restrict the stratification used in the calculation to be no less than
a certain number. Simmons et al. (2004) chose the floor value N2 ≥ 10−8 s−2. There is a great deal of
sensitivity to the floor value used. GFDL practice is to keep the floor value quite low so thatN2

min <Ω2.

• If the maximum diffusivity realized by the scheme is allowed to be very large, say much greater than
as 1000cm2 sec−1, then the near bottom stratification can become very small. In this case, Ewave drag can
dip below the canonical 1TW value. This process resembles a negative feedback in some manner,
though it has not been explored extensively.

5.4 The Melet et al. (2012) scheme

A limitation of the Simmons et al. (2004) scheme is the arbitrary choice of their empirical vertical deposition
function (5.27) and the corresponding exponential decay length, ζ. Melet et al. (2012) build on ideas
proposed by Polzin (2004, 2009) to overcome these limitations. In their parameterization, they propose a
deposition function corresponding to finescale internal wave shear producing an energy dissipation given
by

εmelet =
(

εo
(1 + z∗/z∗p)2

) (
N2(z)

N2
z

) (
1
H

+
1
z∗p

)
. (5.31)

The corresponding diffusivity is given by the general form (5.22), so that

κmelet =
εmelet Γ

N2

=
(
Ewave drag

(1 + z∗/z∗p)2

) (
Γ

N2
z

) (
1
H

+
1
z∗p

)
=

q Γ Ewave drag

ρN2
z

( 1
(1 + z∗/z∗p)2

) (
1
H

+
1
z∗p

)
,

(5.32)

where we set

Ewave drag =
qEwave drag

ρ
(5.33)

according to equation (5.17).
The vertical deposition function

Fmelet =
N2

N2
z

(
1

(1 + z∗/z∗p)2

) (
1
H

+
1
z∗p

)
(5.34)

CVMix Documentation August 9, 2012 Page 30



Chapter 5. Mixing from tidal dissipation Section 5.5

is algebraic, rather than the exponential suggested by Simmons et al. (2004) (equation (5.27)). A funda-
mental element to the deposition function is the scaled vertical distance from the bottom

z∗(hbott) =
1

N2
z

hbott∫
0

N2(z′)dz′ , (5.35)

where the vertical integral extends from the bottom at hbott = 0 to an arbitrary distance above the bottom.
The depth averaged squared buoyancy frequency is given by

N2
z

=
1

H + η

η∫
−H

N2(z)dz. (5.36)

Note that by definition, the rescaled vertical height from the bottom satisfies

0 ≤ z∗ ≤H. (5.37)

We also introduced the rescaled length scale according to

z∗p = zp

(
N2

bott

N2
z

)
, (5.38)

The bottom buoyancy frequency, N2
bott, is computed according to the discussion in Section 5.3.1.

The length scale zp is computed according to Polzin (2004, 2009), and needs to be written here...

5.5 The Lee et al. (2006) scheme

The Lee et al. (2006) scheme provides a means to parameterize mixing from barotropic tides interacting
with the continental shelf regions. Notably, it does not follow the energetic approach of the other schemes
detailed in this chapter. Instead, it follows an earlier approach from Munk and Anderson (1948).

5.5.1 Formulation and implementation

Following Munk and Anderson (1948), Lee et al. (2006) introduce a vertical diffusivity given by

κbottom drag = κmax (1 + σ Ri)−p exp−(D−h)/ztide , (5.39)

where the dimensionless parameters σ and p have the default values

σ = 3 (5.40)

p = 1/4. (5.41)

The Richardson number is given by

Ri =
N2

|∂zu|2
. (5.42)

Small Richardson numbers (e.g., regions of low stratification or strong vertical shear) will give larger verti-
cal diffusivities, with the maximum diffusivity set by κmax. Lee et al. (2006) set the default for the maximum
diffusivity arising from bottom drag dissipation as

κmax = 5× 10−3 m2 s−1. (5.43)

Since we do not generally resolve the bottom boundary layer in global models, we must approximate the
vertical shear to compute the Richardson number, with Lee et al. (2006) using the form

2 |∂zu|2 =
(
Ũtide

D − h

)2

, (5.44)
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with the scaled tidal speed Ũtide given by

Ũtide =Utide

( √
CD

κvon Karman

)
. (5.45)

Here, CD is the bottom drag coefficient, taken as CD = 2.4 × 10−3 by Lee et al. (2006), κvon Karman = 0.4 is the
von Karman constant, and Utide is the tidal speed taken from a barotropic tidal model. These speeds are
largest in the shallow regions.

5.5.2 Caveats about spuriously large diffusivities

The exponential decay appearing in equation (5.39) is not part of the original Lee et al. (2006) scheme, nor
was it part of the MOM4.0 and MOM4p1 implementations. However, it is an essential element added for
the MOM implementation as of 2012 that ensures diffusivities drop off exponentially when moving away
from the ocean bottom. It is thus part of the CVMix implementation as well.

Absent this exponential decay, regions of small Richardson number, leading to large κdrag, can move
upwards in a column. The chosen exponential decay length scale is given by

ztide = Ũtide

τtide

2π
(5.46)

where
τtide = 12× 3600 s, (5.47)

corresponding to the M2 tide period. Another means for removing the spurious diffusivities from the Lee
et al. (2006) scheme is to enable the scheme only in continental shelf regions, which is where it is physically
appropriate. Such is the default for the CVMix implementation.

CVMix Documentation August 9, 2012 Page 32



Chapter 6
Double diffusion

Contents
6.1 Introduction to mixing from double diffusive processes . . . . . . . . . . . . . . . . . . 33
6.2 Salt fingering regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Diffusive convective regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

This chapter details the parameterization of mixing from double diffusive processes. The following
CVMix Fortran module is directly connected to the material in this chapter:

vmix ddiffusion.F90

Elements of this chapter should be rewritten to incorporate the presentation of Large (2012) (see his
Figure 6.8)

6.1 Introduction to mixing from double diffusive processes

Double diffusion processes (Schmitt, 1994) have the potential to significantly enhance vertical diffusivities.
The key stratification parameter of use for double diffusive processes is

Rρ =
α
β

(
∂Θ/∂z
∂S/∂z

)
, (6.1)

where the thermal expansion coefficient is given by

α = −1
ρ

(
∂ρ

∂Θ

)
, (6.2)

and the haline contraction coefficient is

β =
1
ρ

(
∂ρ

∂S

)
. (6.3)

Note that the effects from double diffusive processes on viscosity are ignored in CVMix for two reasons:

• The effects on viscosity are not well known.

• For most applications, the vertical Prandtl number is larger than unity (often 10) for background
viscosities (Chapter 3), so that modifying the vertical viscosity according to double diffusion will not
represent a sizable relative impact.

There are two regimes of double diffusive processes, with the parameterization different in the regimes.
We now detail how CVMix parameterizes vertical mixing in these two regimes.
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6.2 Salt fingering regime

The salt fingering regime occurs when salinity is destabilizing the water column (salty above fresh water)
and when the stratification parameter Rρ is within a particular region:

∂S
∂z

> 0 (6.4)

1 < Rρ < R
0
ρ = 2.55. (6.5)

The parameterized vertical diffusivity in this regime is fit to observational estimates given by Laurent and
Schmitt (1999), who propose the following form

κd = κ0
d

1− Rρ − 1

R0
ρ − 1

3

. (6.6)

The values for the parameter κ0
d are set to

κ0
d =

{
1× 10−4 m2 s−1 for salinity and other tracers
0.7× 10−4 m2 s−1 for temperature.

(6.7)

6.3 Diffusive convective regime

Diffusive convective instability occurs where the temperature is destabilizing (cold above warm) and with
0 < Rρ < 1

∂Θ
∂z

< 0 (6.8)

0 < Rρ < 1. (6.9)

For temperature, the vertical diffusivity used in Large et al. (1994) is given by

κd = νmolecular × 0.909exp
(
4.6exp

[
−.54

(
R−1
ρ − 1

)])
, (6.10)

where
νmolecular = 1.5 × 10−6 m2 s−1 (6.11)

is the molecular viscosity of water. Multiplying the diffusivity (6.10) by the factor

factor =


(
1.85− 0.85R−1

ρ

)
Rρ 0.5 ≤ Rρ < 1

0.15Rρ Rρ < 0.5,
(6.12)

gives the diffusivity for salinity and other tracers.
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This chapter summarizes the KPP scheme originally proposed for the ocean surface boundary layer by
Large et al. (1994) as well as Large (1998). Limitations and possible research questions are identified. The
following CVMix Fortran module is directly connected to the material in this chapter:

cvmix kpp.F90

7.1 Elements of the K-profile parameterization (KPP)

The ocean surface boundary layer (OBL) mediates the exchange of properties between the ocean and other
components of the climate system. Hence, parameterization of processes active in the OBL are fundamental
to the integrity of a climate simulation. The K-profile parameterization (KPP) is a widely used method for
parameterizing boundary layer processes in both the atmosphere and ocean. The paper by Large et al.
(1994) introduced this scheme to the ocean community for use in parameterizing processes in the surface
ocean boundary layer . The pedagogical lecture by Large (1998) provides added insight into the scheme
that complements some of the material in Large et al. (1994).

The KPP scheme has been used by many ocean climate studies for parameterizing mixing in the OBL,
with examples discussed in Large et al. (1997), Holland et al. (1998), Gent et al. (1998), Umlauf et al. (2005),
Li et al. (2001), Smyth et al. (2002),Durski et al. (2004), Chang et al. (2005)). We consider here only the
implementation of KPP for the surface ocean boundary layer, as implementations for the bottom do not
exist in MOM, nor are they well documented in the peer-review.

7.1.1 Conventions

We use the following conventions that are consistent with Large et al. (1994) and Large (1998).

• The fluid is assumed to be volume conserving Boussinesq, with extensions to a mass conserving non-
Boussinesq fluid trivial.

• The vertical direction, z, increases up with z = 0 defining the resting ocean surface. The ocean free
surface is defined by z = η(x,y, t) and the static ocean bottom is at z = −H(x,y).
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• A lowercase λ is used to denote a turbulent fluctuation of an arbitrary field within the surface ocean
boundary layer; e.g., a tracer such as potential or conservative temperature θ and salinity s), or a
velocity component (u,v,w). Note that x is the notation used in Large et al. (1994) and Large (1998),
but we prefer the Greek letter λ to avoid confusion with the horizontal spatial coordinate.

• An uppercase Λ is used to denote the Eulerian mean of a tracer or velocity component within the
surface ocean boundary layer; e.g., potential or conservative temperature Θ, salinity S, or velocity
component (U,V ,W ). The Eulerian mean fields are time stepped by an ocean climate model within
the boundary layer, and correlations of turbulent variables must be parameterized to close the mean
field equations.

• The expression wλ is used to symbolize the Eulerian correlation of the fluctuating turbulent vertical
velocity and a fluctuating scalar or vector field. This correlation appears in the mean field time ten-
dency equation for Λ in the Boussinesq primitive ocean equations (see equation (7.2)). KPP provides
a parameterization of this vertical turbulent flux within the surface ocean boundary layer.

• The mean and turbulent vertical velocity components, W,w, are positive for upward motion. This
sign convention implies that

wλ > 0 =⇒ turbulent flux for λ transported vertically upward. (7.1)

If λ is the temperature, then a positive correlation at the ocean surface, wθ
(η)
> 0, corresponds to

surface cooling.

7.1.2 General form of the parameterization

Ignoring all terms except vertical advective transport in the prognostic equation for the mean field Λ, its
time tendency is determined by

∂Λ
∂t

= −
(
∂ (W Λ)
∂z

)
−
(
∂ (wλ)
∂z

)
. (7.2)

The advective flux by the mean vertical velocity,W Λ, is represented via a numerical advection operator. In
contrast, the turbulent correlation, wλ, is a subgrid scale flux that must be parameterized in order to close
the equation for Λ. Here, the overbar signifies an Eulerian averaging operator over unresolved turbulent
motions occurring within the OBL.

The KPP scheme provides a first order closure for wλ within the OBL. It does so by introducing two
terms in the following manner

wλ = −Kλ
(
∂Λ
∂z
−γλ

)
. (7.3)

In effect, the KPP parameterization (7.3) splits the vertical turbulent flux into two terms

wλ = wλ
local

+wλ
non-local

. (7.4)

The first term provides for the familiar downgradient vertical diffusion determined by a vertical diffusivity
and the local vertical derivative of the mean field. This term is referred to as the local portion of the
parameterization

wλ
local

= −Kλ
(
∂Λ
∂z

)
, (7.5)

even though the diffusivity is a non-local function of boundary layer properties. The second term, γλ,
accounts for non-local transport that is not directly associated with local vertical gradients of Λ, in which
we have

wλ
non-local

= Kλ γλ. (7.6)

We next provide a general discussion of these two contributions to the KPP parameterization.
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7.1.3 The vertical diffusivity

The vertical diffusivity arising from KPP in the OBL is determined as a non-local function of boundary
layer properties. It is written in the following form

Kλ(σ ) = hwλ(σ )Gλ(σ ). (7.7)

The diffusivity is a constructed as the product of three terms: the boundary layer thickness h, the vertical
turbulent velocity scale wλ(σ ), and the vertical shape function Gλ(σ ). Note that we introduce a dependence
of the shape function on the field diffused. As discussed in Section 7.5.3, this dependence arises from
matching to interior diffusivities, which generally differ as a function of λ.

7.1.3.1 Boundary layer thickness

The boundary layer thickness is denoted by

h ≥ 0 is the boundary layer thickness. (7.8)

This is the thickness of the OBL prescribed by the KPP scheme, with details given in Section 7.5.5. The
direct dependence of the vertical diffusivity in equation (7.7) on the OBL thickness manifests the common
property of boundary layers, whereby thicker layers generally arise from stronger eddy motions and are
thus associated with more rapid mixing of tracer concentration and momentum.

Figure 7.1 provides a schematic of the KPP boundary layer, the Monin-Obukhov surface layer, and the
associated momentum, mass, and buoyancy fluxes impacting these layers. Details of this figure will be
explored in the following.

7.1.3.2 Measuring vertical distances within the OBL

When measuring distances within the boundary layer, it is the thickness of the water as measured from the
ocean surface that is important. Free surface undulations can be a nontrivial fraction of the boundary layer
thickness, particularly under conditions of stable buoyancy forcing. Hence, we make explicit note that the
ocean has an undulating free surface at z = η(x,y, t), which contrasts to Large et al. (1994) and Large (1998),
where it is assumed that z = 0 sets the upper ocean surface.

Following Large et al. (1994), we introduce the non-dimensional depth, σ , given by

σ =
d
h
. (7.9)

In this definition, d ≥ 0 is the distance from the ocean surface at z = η to a point within the boundary layer

d = −z+ η. (7.10)

Likewise, h ≥ 0 is the distance from the free surface to the bottom of the boundary layer

h = hobl + η, (7.11)

where hobl is the depth of the boundary layer as measured from z = 0. That is, h is the thickness of the OBL,
and it is this thickness, not hobl, that is predicted by KPP (Section 7.5.5). Regions within the boundary layer
are given by the non-dimensional depth range

0 ≤ σ ≤ 1 within boundary layer, (7.12)

with σ = 0 the ocean surface and σ = 1 the bottom of the boundary layer.

7.1.3.3 Vertical turbulent velocity scale wλ

The velocity scale wλ is a function of depth within the boundary layer, and a function of the field to which
it refers. We return to its specification in Section 7.5.1.
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air-sea or ice-sea interface: z = η
BR, B f , τ, Qm

surface fluxes

penetrative

shortwave

ε h

KPP boundary
layer thickness: h

Monin-Obukhov surface layer

ocean bottom: z = −H
geothermal

Figure 7.1: Schematic of the upper ocean boundary layer regions associated with the KPP boundary layer
parameterization. The upper ocean is exposed to non-penetrative air-sea and ice-sea fluxes of momentum
τ (Section 7.2), mass Qm(Section 7.3), and buoyancy Bf (Section 7.3). In addition, there is penetrative
shortwave radiation, −wθR (Section 7.3), indicated by the exponentially decaying vertical sinusoidal. The
Monin-Obukhov surface layer (Section 7.4) has a thickness εh, with ε ≈ 0.1. The surface layer is where
turbulence delivers fluxes to the molecular skin layer for transfer to the atmosphere or ice. The surface
layer starts from just beneath the surface roughness elements at the upper ocean interface. Since nei-
ther these roughness elements, nor the molecular viscous sublayer, are resolved in ocean models, we
assume in practice that the Monin-Obukhov surface layer extends to the sea surface at z = η(x,y, t). The
KPP boundary layer includes the surface layer, and it has a thickness h(x,y, t) determined by the KPP pa-
rameterization (Section 7.5.5). The ocean bottom at z = −H(x,y) is rigid and is exposed to geothermal
heating. Presently, the KPP boundary layer scheme has not been implemented in MOM to parameterize
bottom boundary layer physics, though nothing fundamental precludes such. In fact, Durski et al. (2004)
provide just such an implementation.

7.1.3.4 Non-dimensional vertical shape function Gλ(σ )

Non-dimensional vertical shape function Gλ(σ ) is used to smoothly transition from the ocean surface to
the bottom of the boundary layer. Large et al. (1994) chose a cubic polynomial

Gλ(σ ) = a0 + a1σ + a2σ
2 + a3σ

3. (7.13)

Since turbulent eddies do not cross the ocean surface at σ = 0, we should correspondingly have a vanishing
diffusivity at σ = 0. This constraint is satisfied by setting

a0 = 0. (7.14)
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We detail in Section later how to specify the remaining expansion coefficients a1, a2, a3. In particular, we
simplify the specification of Large et al. (1994), with their approach more complex than justified physically.

7.1.4 The non-local transport γλ
Section 2 of Large et al. (1994) notes the presence of many processes in the boundary layer that lead to
nonlocal transport. This behaviour leads to a diffusivity Kλ that is a function of the surface fluxes and
boundary layer thickness h. Furthermore, under convective forcing (negative surface buoyancy forcing;
Bf < 0), fluxes can penetrate into stratified interior. This characteristic then motivates the introduction of a
non-local transport term γλ to the KPP parameterization (equation (7.3)) when Bf < 0. To further identify
the need for a non-local transport term γλ, we reproduce Figure 1 from Large et al. (1994), here shown
as Figure 7.2. The caption to Figure 7.2 explores the many facets of this figure used to help justify the
non-local term in KPP.

As part of the KPP parameterization, the non-local transport, γλ, aims to account for such processes as
boundary layer eddies whose transport may be unrelated to the local vertical gradient of the mean field, and
whose impacts may penetrate within the stratified ocean interior. In general, Large et al. (1994) prescribe
the following characteristics to γλ.

• Page 371 of (Large et al., 1994) notes that there is no theory for non-local momentum transport, and
so the non-local transport directly affects only the tracer fields:

γλ =
{

0 if λ = (u,v,w) a velocity component
, 0 nonzero if λ = θ,s or another tracer. (7.15)

However, Smyth et al. (2002) consider a non-local term for momentum, thus motivating further re-
search to see whether it is suitable for climate modeling.

• The non-local transport is non-zero only within the OBL:

γλ =
{

0 if σ > 1
, 0 if 0 ≤ σ ≤ 1. (7.16)

• The non-local transport is non-zero only in the presence of destabilizing negative surface ocean buoy-
ancy flux, whose presence gives rise to convective mixing:

γλ =
{

0 for positive (stabilizing) surface buoyancy forcing
, 0 for negative (destabilizing) surface buoyancy forcing. (7.17)

• The non-local transport can give rise, under certain conditions, to either down-gradient or up-gradient
transport of the mean tracer field. Hence, it can either act to smooth gradients of mean fields (down-
gradient non-local fluxes) or enhance gradients (upgradient non-local fluxes).

In Section 7.5.4, we provide to the KPP parameterization of γλ.

7.2 Surface ocean boundary momentum fluxes

In this section and Section 7.3, we present features of how surface boundary fluxes force the upper ocean,
largely following Appendix A of Large et al. (1994). The aim is to identify how surface boundary fluxes
impact the upper ocean, with this characterization then used in Section 7.4 to help establish some basic
features of ocean boundary layers. These ideas are then used in Section 7.5 to specify the diffusivity and
non-local transport from the KPP parameterization.

Vertical exchange of momentum across the atmosphere-ocean or sea-ice-ocean boundary occurs largely
through turbulent processes. The resulting horizontal stress vector acting on the ocean, τ, is determined
through application of a bulk formula (e.g., see Appendix C of Griffies et al., 2009). For our purposes,
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Figure 1. Relative buoyancy (solid trace, bottom scale) and 
buoyancy flux (dashed trace, top scale) profiles after 3.0 
days of convective deepening into an initially uniformly 
stratified water column of OzT = 0.1øC m -1, N = 0.016 s -1, 
under the action of a steady cooling, Q t = -100 W m -2. 
Axes have been normalized with a boundary layer depth, h 
= 13.6 m and a surface buoyancy flux, wbo - 6.3 x 10- 8 
m 2 s -3. Also shown are the entrainment depth, he, and the 
mixed layer depth, h,n. 

properties and gradients, local fluxes depend on 
boundary layer parameters such as the surface fluxes 
and h. Important characteristics of nonlocal behavior 
are the coherent structures that can be detected in 

PBLs [Mahr! and Gibson, 1992]. Coherent structures 
identified in the turbulent ABL include buoyant verti- 
cal plumes, convergence lines, sweeps, microbursts, 
horizontal roll vortices, mesoscale cellular convective 
elements, Kelvin-Helmholtz waves, and internal grav- 
ity waves. Most of these structures are described by 
Stull [1988]. After surface and internal gravity waves, 
the most important coherent structures in the OBL are 
thought to be Langmuir cells [Weller and Price, 1988]. 
These are near-surface, counterrotating vortices with 
horizontal axes that are nearly aligned with the mean 
wind. Their dynamics are not well understood, but in 
the model of Craik and Leibovich [1976] they are 
generated by the interaction between the surface grav- 
ity wave induced current (Stokes drift) and the wind- 
driven current. It is uncertain what role Langmuir 

upward buoyancy flux • > 0 in locally stable or 
neutral regions where the mean buoyancy increases or 
remains constant with height. In general, such fluxes 
can be present with any gradient, so nonlocal transport 
[Holtslag and Boville, 1993] is a more general term 
that also applies to passive scalar transports. This 
feature of convection is generally observed throughout 
the central 50% or more of both atmospheric and 
laboratory boundary layers [Deardorff, 1966] and of 
LES experiments [Deardorff, 1972b; Holtslag and 
Moeng, 1991]. In Figure 1 it dominates the region 0.35 
< d/h < 0.80. Different theoretical considerations 

lead to the same result, namely, that the heat flux 
should have a nonlocal convective transport in addi- 
tion to the familiar local downgradient component. 
Theoretical expressions for the countergradient heat 
flux have been derived from the turbulent evolution 

equation for 0tw0. Deardorff[ 1972b] finds that it arises 
from the buoyant production term, while Holtslag and 
Moeng [1991] find the turbulent transport term respon- 
sible. Holtslag and Moeng [1991] use LES data to 
evaluate both these possibilities and find that both give 
similar nonlocal behavior throughout the central re- 
gion of the boundary layer despite the differing phys- 
ics. 

Wyngaard and Brost [1984] suggest that another 
fundamental property of convective boundary layers is 
that the vertical diffusivity profile for passive scalars is 
radically different depending on whether the property 
fluxes are driven by entrainment or surface fluxes. 
Because they were considering the ABL, entrainment- 
driven diffusion was termed "top-down" and the more 
familiar surface-driven diffusion was termed "bottom- 

up." Furthermore, they attribute this peculiar behav- 
ior to vertical asymmetry. An observed characteristic 
of this asymmetry is that buoyant plumes are horizon- 
tally narrower and have larger vertical velocities than 
the more diffuse return flows. Wyngaard and Brost 
[1984] present LES results that confirm that entrain- 
ment-driven diffusivities are significantly smaller than 
surface-driven diffusivities. An important implication 
is that a single diffusivity defined for the total process 
may be ill behaved but that the two processes can be 
parameterized separately and later superimposed. 
However, Holtslag and Moeng [1991] use the LES 
data of Moeng and Wyngaard [1989] and obtain well- 
behaved expressions by incorporating a nonlocal 
transport term in the flux parameterizations. Entrain- 
ment-driven diffusion may be very important in the 

ci_r•ulatipn phys_in thepc•.an, but We!!er_et aL_[!984] ...... ocean,_. where it_.is__the_ prin_cipa!___sourc_.e.gf_. sglt and 
suggest that it could be an important factor in trans- 
porting properties that are not uniformly distributed 
within the mixed layer. 

Figure 1 illustrates expected profiles of buoyancy 
and buoyancy flux in a convective oceanic boundary 
layer. One manifestation of nonlocal behavior found in 
such boundary layers is what is traditionally termed 
countergradient heat flux. This flux is characterized by 

nutrients to the OBL. 

In the case of a purely convective boundary layer, 
u* = 0 and Bf < 0, eroding into a region of stable 
stratification (Figure 1), the entrainment depth he, 
where the negative buoyancy flux is maximum, is less 
than the boundary layer depth h. The mixed layer 
depth hm can depend a great deal on definition [Lukas 
and Lindstrom, 1991]. Here it is arbitrarily taken as 

Figure 7.2: This is a reproduction of Figure 1 from Large et al. (1994). The figure is derived from a one-
dimensional simulation after 3 days of convective deepening (zero winds; negative surface buoyancy forc-
ing) into initially uniformly stratified water column. The vertical axis is vertical distance starting from the
ocean surface interface at z = η and d = 0, extending down to d = h (h = 13.6 m at this point of the inte-
gration), which is the base of the boundary layer, and finally to d = 1.4h, which is beneath the boundary
layer.

The horizontal axis on the bottom is the mean buoyancy, B, relative to that at the surface, B0, and the
profile is depicted by the solid line. Positive values of B−B0 indicate that the mean buoyancy at a point is
larger than at the surface, with B−B0 > 0 expected under negative buoyancy forcing at the ocean surface.

The horizontal axis on the top is the ratio of the local turbulent buoyancy flux wb to the surface turbu-
lent flux wb

η
(denoted wb0 by Large et al. (1994)). The dashed line depicts this ratio. Positive values of

wb represent upward turbulent buoyancy fluxes; e.g., upward fluxes of heat for the case where buoyancy
is determined by temperature, and the thermal expansion coefficient is positive.

Positive values for wb in regions between roughly 0.35 < d < 0.8 represent upward turbulent buoyancy
fluxes in a region where the mean vertical gradient of B is nearly zero, thus indicating non-local turbulent
transport. In shallower regions with d < 0.35, the mean gradient is negative, ∂zB < 0, and the fluxes are
positive,wb > 0, thus representing downgradient turbulent fluxes. Likewise, for d > 0.8, the turbulent fluxes
are downgradient.

The mixed layer depth is denoted by hm, though this depth is subject to arbitrary specification of the
density difference. The entrainment depth is he, with this depth taken where the buoyancy flux reaches a
negative extrema. Note that it is an empirical result that under pure convective forcing (τ = 0,Bf < 0), the

turbulent entrainment flux is roughly 20% of the surface flux: wb
d=he = −βT wb

d=0
, where βT = 0.2. This

situation is depicted in the figure.

we assume τ is given, thus yielding the ocean kinematic fluxes associated with the turbulent transport of
momentum across the ocean surface

−wuη =
(
τ
ρ(η)

)
≈

(
τ
ρ0

)
. (7.18)

In this equation, ρ(η) is the surface ocean density, which is commonly approximated by the constant Boussi-
nesq reference density ρ0. A positive sign on a component of τ acts to accelerate the flow in the respective
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direction, whereas a positive sign to a component of wuη removes momentum from the ocean. These sign
conventions give rise to the minus sign in the relation (7.18). In addition to defining the kinematic surface
fluxes, knowledge of τ allows us to compute surface boundary layer velocity scales when working within
the Monin-Obukhov similarity theory (Section 7.4.2).

In addition to turbulent momentum transfer, τ is associated with momentum transported through mass
exchange across the ocean surface, since water transported across the ocean generally carries a nonzero
momentum. Kantha and Clayson (2000) (see their page 431) point out that this effect can be nontrivial,
particularly when resolving strong atmospheric storms. They also make the case for including this effect
in computing the Monin-Obukhov length scale defined by equation (7.65)) (see their equation (4.3.11)).
Notably, when running a coupled model, the stress from rain is included, since it is part of the momen-
tum convergence acting at the bottom of the atmospheric column. Modifying the stress from a prescribed
atmospheric state, such as CORE (Large and Yeager, 2009), requires further considerations.

7.3 Surface ocean boundary buoyancy fluxes

Turbulent and advective fluxes of momentum and buoyancy are transferred across the upper ocean surface
boundary, with ocean processes such as advection and mixing then transporting the boundary momentum
and buoyancy laterally as well as into the ocean interior. In contrast, penetrative shortwave radiation is
absorbed into the ocean absent ocean transport processes, with such absorption a function of ocean op-
tical properties. In the unphysical case of perfectly transparent seawater, shortwave radiation penetrates
through the boundary layer and so has no influence on boundary layer processes. In realistic cases, much
of the shortwave radiation is absorbed in the boundary layer, with only a fraction leaking through to the
interior. In general, such non-turbulent and non-advective transport of buoyancy via penetrative radia-
tion represents a fundamentally novel aspect of ocean boundary layer physics relative to the atmosphere.
Namely, for the atmosphere, radiative absorption is far less relevant than in the upper ocean, since the
atmosphere is largely transparent to radiation. We therefore consider penetrative shortwave radiation as
distinct from other buoyancy fluxes when formulating how boundary fluxes impact the ocean.

7.3.1 General features of buoyancy forcing

The buoyancy of a fluid is commonly defined as (e.g., page 83 of Large (1998))

B = g
(
ρ0 − ρ
ρ0

)
, (7.19)

where g is the constant gravitational acceleration, and ρ0 is a reference density, taken here to equal the
Boussinesq reference density. A reduction in density is associated with an increase in buoyancy; that is,
the water becomes more buoyant. Changes in buoyancy arise through changes in density associated with
temperature and salinity changes, since buoyancy changes are computed relative to a fixed pressure level.
In this way, buoyancy changes are directly related to processes that impact locally referenced potential
density.

Ocean buoyancy is affected through surface ocean heat, salt, and water fluxes.

• Turbulent processes transfer heat through latent and sensible heating.

• Longwave radiation cools the upper ocean, with this radiation affected by the upper ocean boundary
temperature.

• Penetrative shortwave radiation is absorbed in seawater.

• The transfer of salt occurs when sea ice melts and forms. This transfer is proportional to the water
mass flux and the difference in salinity between the liquid ocean and sea ice. More generally, we
simply consider this to be a salt flux between sea ice and ocean, with this flux operationally computed
as part of a sea ice model.
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• Advective processes transfer heat and salt across the ocean surface through the transfer of water mass
across the interface.

We further detail these fluxes in the following.

7.3.2 Temperature, salinity, and mass budget for a surface ocean model grid cell

Buoyancy is not a prognostic variable in ocean models. So to develop a quantative understanding of how
buoyancy is impacted by surface fluxes, we consider the evolution of temperature, salinity, and mass in
an arbitrary top model grid cell, and focus exclusively on evolution arising from surface boundary fluxes.
We write these budgets in their finite volume sense (as implemented in MOM), which includes density and
thickness weighting

∂t (ρdzΘ) =QmΘm −Q
non-pen

θ +
(
Qpen

θ (z = η)−Qpen

θ (z = −∆z)
)

(7.20)

∂t (ρdzS) =QmSm −QS (7.21)

∂t (ρdz) =Qm. (7.22)

We now detail the terms appearing in these equations.

• ρdz is the mass per horizontal area of seawater in the grid cell. For a volume conserving Boussinesq
fluid, ρ is set to the constant reference density ρ0.

• Θ is the grid cell potential temperature or conservative temperature.

• S is the grid cell salinity.

• Qm is the mass flux (kgm−2 sec−1) of water crossing the ocean surface, with Qm > 0 for water entering
the ocean (as when precipitation plus runoff exceeds evaporation).

• Θm is the temperature of water crossing the ocean surface, and CpQmΘm is the associated heat flux
(Wm−2). We further discuss this heat flux in Section 7.3.4.

• Sm is the salinity of water crossing the ocean surface, andQmSm is the associated mass flux. Note that
Sm is typically taken to be zero, as for precipitation and evaporation. However, rivers can contain a
nonzero salt concentration, so we keep Sm for the following formulation. We further discuss this salt
flux in Section 7.3.4.

• Cp is the seawater heat capacity at constant pressure (Jkg−1 ◦C−1). IOC et al. (2010) provides the most
precise value appropriate for an ocean with heat measured through conservative temperature.

• QS is the flux of salt (kgm−2 sec−1) that leaves the ocean through the ocean surface. This flux arises in
the transfer of salt when sea ice forms and melts. We further discuss this salt flux in Section 7.3.3.

• CpQ
non-pen

θ is the non-penetrative surface heat flux associated with turbulent processes (latent and sen-
sible) and radiative longwave cooling (Wm−2). The sign convention is chosen so that Qnon-pen

θ > 0 for
heat leaving the ocean surface (i.e., ocean cooling). We further discuss this heat flux in Section 7.3.5.

• CpQ
pen

θ (z = η) is the radiative shortwave heat flux (Wm−2) entering the ocean through its surface
at z = η, with Qpen

θ (η) > 0 warming the ocean surface. Likewise, CpQ
pen

θ (z = −∆z) is the radiative
shortwave heat flux leaving the top cell through its bottom face. We further discuss this heat flux in
Section 7.3.7.
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7.3.3 Salt fluxes from sea ice melt and formation

The mass flux of salt QS (kgm−2 sec−1) is positive for salt leaving the ocean surface. There is transport
of salt across the ocean surface when sea ice forms and melts, due to the nonzero salt content in sea ice.
Otherwise, the surface salt flux is generally zero for the large scale ocean. For ocean models, however,
the salt flux can be nonzero when formulating the surface boundary in terms of virtual salt fluxes rather
than real water fluxes (Huang, 1993; Griffies et al., 2001). This formulation is not recommended, as it is
distinctly unphysical and unnatural when using an explicit free surface or bottom pressure solver as in
MOM.

7.3.4 Salt and heat fluxes associated with water transport

In most cases, salinity in the water fluxed across the ocean surface is zero, so that Sm = 0. However, there are
some cases where rivers have a nonzero salinity so that Sm , 0 and the product QmSm leads to an advective
transport of salt across the ocean surface.

Since water transported across the ocean has a nonzero heat content, this transport in turn affects the
net heat content in the upper ocean. One can either prescribe the temperature of this water, Θm, or the
product QmΘm. Consider the case where the product is specified for river water entering the ocean, which
is the case with the GFDL land model. In this case, the heat flux with respect to 0◦C (in units of W m−2) of
liquid river runoff Hliquid runoff is given to the ocean from the land model, so that

QmΘm =
Hliquid runoff

C liquid runoff
p

, (7.23)

with C liquid runoff
p the heat capacity of the water coming in from the river runoff. Likewise, if the heat associated

with frozen runoff (e.g., calving land ice) is provided by the land model, then we have

QmΘm =
Hsolid runoff

Csolid runoff
p

, (7.24)

with Csolid runoff
p the heat capacity of the solid runoff. These two heat capacities are typically provided by the

component model (i.e., the land model) used to compute the runoff fields. Similar considerations hold for
transfer of water betwen sea ice models and the ocean.

7.3.5 Non-penetrative surface heat fluxes

The heat flux CpQ
non-pen

θ (Wm−2) is defined with a sign so that it is positive for heat leaving the ocean. This
flux is comprised of the following contributions (see page 34 of Gill, 1982)

CpQ
non-pen

θ =Qlong +Qlatent +Qsens. (7.25)

Longwave, latent, and sensible heat fluxes are typically deposited or withdrawn from the ocean surface
layer (Section 7.4). In practice, ocean models assume these fluxes are taken entirely from the surface grid
cell.

These fluxes are termed non-penetrative, since they are deposited or withdrawn from the liquid ocean
at a particular depth, generally the top model grid cell. Transport of the boundary buoyancy to another
depth occurs only through the action of ocean transport processes, such as advection or mixing. This
behaviour contrasts to that of penetrative shortwave radiation, which is transferred to depths as a function
of seawater optics, so does not depend on ocean transport. We now comment in a bit more detail on the
various non-penetrative fluxes.

7.3.5.1 Longwave radiation

Qlong is the longwave radiation leaving the ocean in the form of the σSBT
4 Stefan-Boltzmann Law, so that

Qlong is typically positive, thus generally cooling the ocean surface.
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7.3.5.2 Latent heat fluxes

Qlatent arises from phase changes whereby liquid seawater either evaporates, or it acts to melt frozen pre-
cipitation. When seawater evaporates, the latent heat lost by the ocean is determined by the latent heat of
vaporization for fresh water

H vapor = 2.5× 106 Jkg−1, (7.26)

so that

Qevap =H vaporQevap
m (7.27)

where Qevap
m is the mass flux (kgm−2 sec−1) of fresh water leaving the ocean due to evaporation. A similar

expression holds when seawater melts frozen precipitation (e.g., snow), in which case

H fusion = 3.34× 105 Jkg−1, (7.28)

so that

Qmelt =H fusionQfrozen precip
m , (7.29)

where Qfrozen precip
m is the mass flux (kgm−2 sec−1) of frozen precipitation falling onto the ocean surface. Both

Qevap and Qmelt are positive, indicating that they act to cool the ocean.

7.3.5.3 Sensible heat fluxes

Qsens is the sensible heat transfer proportional to the difference between atmosphere and ocean tempera-
tures. Sensible heating generally acts to cool the ocean, particularly near western boundary currents such
as the Gulf Stream, Kuroshio, and Agulhas.

7.3.6 The case of frazil

As the temperature of seawater cools to the freezing point, sea ice is formed, initially through the produc-
tion of frazil ice. Frazil can generally form at various levels in the upper ocean, though many ocean models
assume frazil production occurs just in the top grid cell. Operationally in an ocean model, liquid water can
be supercooled at any particular time step through surface fluxes and transport. An adjustment process
is used to heat the liquid water back to the freezing point, with this positive heat flux Qfrazil > 0 extracted
from the ice model as frazil sea ice is formed. When that adjustment is performed may determine whether
to include Qfrazil as part of the net heat flux impacting the boundary layer turbulence. We omitted frazil
heating in equation (7.25), as that is the approach taken at NCAR. However, others, such as GFDL prior to
2012, include frazil as part of the KPP boundary layer calculation. We summarize the issues here.

• frazil omitted from Bf : When computing Bf for KPP, the NCAR practice omits frazil heating, as
reflected in equation (7.25). In effect, this approach assumes that all the negative buoyancy forcing
that occurs in the upper ocean is used to drive convective boundary layer turbulence. After mixing, a
portion of the heat, Qfrazil > 0, is returned to the liquid ocean to warm the water back to freezing, with
this heat aken from the ice model as it forms frazil sea ice.

• frazil included in Bf : Many ocean climate models compute frazil heating just in the top model grid
cell. It is thus operationally trivial to include Qfrazil > 0 as another term in the non-penetrative heating
(equation (7.25)). Physically, this approach adds the amount of heat Qfrazil to the buoyancy flux, and
so potentially reduces the strength of the otherwise convective turbulence in the upper ocean. This
approach has been used at GFDL prior to 2012.

We have no strong argument for one approach versus the other. Tests should be run to consider sensitivity
to the choice.
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7.3.7 Penetrative shortwave heating

The penetrative shortwave radiative heat flux CpQ
pen

θ > 0 arises from the net shortwave radiation entering
through the ocean surface and absorbed by seawater. This heat flux does not arise from turbulent or ad-
vective processes, which makes it distinct from other heat and salt fluxes impacting the ocean through its
upper boundary. This radiation is not generally deposited entirely within the ocean surface layer or the
top ocean model grid cell. Instead, a fraction of this radiation can penetrate to beneath the surface ocean
grid cell, with the fraction depending on the optical properties of seawater. Hence, we subtract a heat
flux CpQ

pen

θ (z = −∆z), which represents the radiative shortwave heat flux passing through the bottom of the
surface ocean cell at z = −∆z. It is the difference,

net shortwave heating of surface grid cell = Cp
(
Qpen

θ (z = η)−Qpen

θ (z = −∆z)
)

(7.30)

that stays in the surface grid cell. When considering the same budget for the surface ocean boundary layer,
we are interested in the shortwave flux that penetrates through the bottom of the boundary layer at z = −h.

7.3.8 Buoyancy budget for a surface ocean model grid cell

We now bring the previous fluxes together to form the budget for buoyancy in a surface grid cell due to the
impacts of surface fluxes. The resulting expression is then used to derive an expression for the buoyancy
forcing that acts on the ocean surface boundary layer. Buoyancy (equation (7.19)) has a time tendency given
by

−
(
ρ0

g

)
∂B
∂t

= ρ,Θ
∂Θ
∂t

+ ρ,S
∂S
∂t
, (7.31)

where we introduced the shorthand notation

ρ,Θ =
(
∂ρ

∂Θ

)
S,p

(7.32)

ρ,S =
(
∂ρ

∂S

)
Θ,p

(7.33)

for the partial derivatives of density with respect to conservative temperature and salinity, respectively,
each with pressure held constant. We wish to form an evolution equation for buoyancy at the ocean surface
grid cell just due to the effects of surface forcing. For this purpose, multiply the temperature equation
(7.20) by ρ,Θ and add to the surface salinity equation (7.21) multiplied by ρ,S

ρ,Θ (ρdzΘ),t + ρ,S (ρdzS),t =Qm (ρ,ΘΘm + ρ,S Sm) + ρ,Θ
(
−Qnon-pen

θ + δkQ
pen

θ

)
− ρ,SQS , (7.34)

where we introduced the shorthand

δkQ
pen

θ =Qpen

θ (z = η)−Qpen

θ (z = −∆z). (7.35)

We now use the mass budget (7.22) and introduce the buoyancy tendency according to equation (7.31) to
realize an expression for the time tendency of the surface ocean buoyancy

(ρ0/g)ρdz
(
∂B
∂t

)
=Qm

[
ρ,Θ (Θ −Θm) + ρ,S (S − Sm)

]
+ ρ,Θ

(
Qnon-pen

θ − δkQ
pen

θ

)
+ ρ,SQS . (7.36)

Now introduce the thermal expansion and saline contraction coefficients

α = −1
ρ

(
∂ρ

∂Θ

)
S,p

(7.37)

β =
1
ρ

(
∂ρ

∂S

)
Θ,p

(7.38)

to render

dz
(
∂B
∂t

)
=
g

ρ0

(
Qm [−α (Θ −Θm) + β (S − Sm)] +α (δkQ

pen

θ −Q
non-pen

θ ) + βQS
)
. (7.39)
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7.3.9 Surface boundary terms contributing to ocean buoyancy evolution

We now summarize the various surface boundary terms appearing on the right hand side of the surface
buoyancy budget (7.39).

7.3.9.1 Heat carried by water transport

Assuming a positive thermal expansion coefficient, α > 0, the term −Qmα (Θ−Θm) reduces ocean buoyancy
when adding water Qm > 0 to the ocean that is colder than the surface ocean temperature, Θ = Θk=1. The
opposite occurs in regions of cold fresh waters, such as the Baltic, where α < 0. In such cases, adding
water to the ocean that is colder than the sea surface temperature increases seawater buoyancy. We now
consider in turn the three cases evaporation, precipitation, and liquid river runoff and indicate how they
are typically treated in climate models.

• It is quite accurate to assume that evaporating water leaves the ocean at the sea surface temperature,
so that

Θevap = Θk=1, (7.40)

in which case there is no change to ocean buoyancy upon transfer of evaporating water across the
ocean surface. This is the approach taken by all ocean climate models.

• Precipitating liquid water need not fall on the ocean at the sea surface temperature, so that

Θprecip ,Θk=1 real world. (7.41)

Kantha and Clayson (2000) (see their page 429) discuss this difference, and the associated transfer of
heat across the ocean due to rain events, particularly in the West Pacific. However, we know of no
climate modeling application in which the atmospheric model component carries information about
the temperature of its condensed water, nor the heat content of that water. Hence, operationally all
climate modeling applications assume that

Θprecip = Θk=1 climate models, (7.42)

in which case there is no change in ocean buoyancy upon transfer of precipitating liquid water across
the ocean surface.

• Realistic river models carry the heat content of river water and pass this content to the ocean model
at river mouths. Following from the discussion surrounding equation (7.23), we may thus write the
river contribution to the buoyancy budget in the form

−Qmα (Θ −Θm) = α
(
−QmΘ +

Hliquid runoff

C liquid runoff
p

)
. (7.43)

Depending on the heat content of liquid runoff relative to the sea surface, ocean buoyancy may in-
crease or decrease when liquid runoff enters the ocean.

7.3.9.2 Salt carried by water transport

The haline contraction coefficient, β, is generally positive. Hence, the term Qmβ (S − Sm) increases ocean
buoyancy for those cases where the sea surface salinity, Sk=1, is greater than the salinity of the water trans-
ferred across the ocean surface. Most applications assume Sm = 0, such as for evaporation and precipitation

S evap = 0 (7.44)

Sprecip = 0. (7.45)

However, river models sometimes consider a nonzero salinity of the runoff, in which case

S liquid runoff , 0. (7.46)
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7.3.9.3 Penetrative radiation

Shortwave radiation is absorbed by seawater as it penetrates from the surface into the upper ocean. Hence,
δkQ

pen

θ > 0 so that radiation increases the grid cell buoyancy.

7.3.9.4 Non-penetrative heating

Longwave, latent, and sensible heating generally cool the upper ocean, and so lead to a decrease in ocean
buoyancy for regions where the thermal expansion coefficient, α, is positive. In those few regions where
α < 0, such as the Baltic, non-penetrative cooling can stabilize the column.

7.3.9.5 Salt fluxes due to sea ice melt or formation

Salt is exchanged with the ocean when sea ice melts and forms, so that the term βQS can either increase
(when salt is removed from the liquid ocean) or decrease (when salt is added to the liquid ocean) buoyancy.

7.3.10 Buoyancy forcing that acts on the OBL

The expression (7.39) for the buoyancy forcing from surface fluxes acting on a surface grid cell is now ex-
tended to an expression for the buoyancy forcing on the OBL. The only subtle point concerns the treatment
of penetrative shortwave radiation. Rather than consider that radiation leaving the bottom of the surface
cell at z = −∆z, we are now concerned with that leaving the bottom of the boundary layer at z = −h. We also
multiply this penetrative flux by the thermal expansion coefficient at that depth, rather than the expansion
coefficient in the ocean surface cell. In this way we write the buoyancy forcing acting on the boundary layer

Bf =
g

ρ0

[
Qm [−α (Θ −Θm) + β (S − Sm)]−αQnon-pen

θ + βQS
]
+
[(
αQpen

θ

)
z=η
−
(
αQpen

θ

)
z=−h

]
. (7.47)

This expression for the net buoyancy forcing acting on the boundary layer can be written as the sum of two
terms

Bf = −wbη +BR. (7.48)

The first term takes the form of a kinematic turbulent flux at the ocean surface

−wbη =
g

ρ0

[
Qm [−α (Θ −Θm) + β (S − Sm)]−αQnon-pen

θ + βQS
]
, (7.49)

where the minus sign on the left hand side accounts for the assumption that w > 0 for upward velocity. The
second term accounts for the penetrative radiation, which is neither a turbulent flux nor advective flux

BR =
(
αQpen

θ

)
z=η
−
(
αQpen

θ

)
z=−h

. (7.50)

The corresponding heat flux convergence onto the boundary layer is given by (see equation (A4) of Large
et al. (1994))

QR =
(
Qpen

θ

)
z=η
−
(
Qpen

θ

)
z=−h

. (7.51)

Notably, BR, and hence Bf , are two-dimensional functions of the boundary forcing, even though they de-
pend on the depth to which the penetrative radiation extends.

7.4 Surface layer and Monin-Obukhov similarity

The semi-empirical Monin-Obukhov similarity theory has proven quite useful in describing general fea-
tures of boundary layer turbulence active in the atmospheric planetary boundary layer (see, e.g., Section 3.3
of Kantha and Clayson, 2000). One may thus choose to apply these ideas to the ocean planetary boundary
layer, particularly since the atmospheric boundary layer is far better measured than the ocean, and there
are certain features that are similar. However, before applying the Monin-Obukhov similarity theory to the
ocean, we acknowledge some characteristics of the ocean surface boundary layer that distinguish it from
atmospheric boundary layers.
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• Surface ocean gravity waves can impact a nontrivial fraction of the ocean surface boundary layer,
whereas such waves only impact a small fraction of atmospheric boundary layers.

• The surface ocean velocity is generally the largest velocity in the ocean. In contrast, the surface
atmospheric velocity vanishes over land and is relatively small over the ocean.

• The surface ocean absorbs shortwave solar radiation, whereas the atmosphere is nearly transparent
to radiation.

Despite these basic distinctions between planetary boundary layers in the atmosphere and ocean, Large
et al. (1994) used the Monin-Obukhov similarity theory to introduce scales for turbulent fluctuations and
to identify non-dimensional similarity functions in the ocean surface layer.

7.4.1 The surface layer

A molecular layer exists within roughly a millimetre of the upper ocean interface, with this layer dominated
by molecular viscous and diffusive effects (Large, 1998). Since it is dominated by molecular viscous effects,
this layer is not turbulent and thus leads to negligible mixing of tracer and momentum. It is the molecular
layer that ultimately transfers properties between the ocean and atmosphere or ice, including momentum
and buoyancy. The more this layer is “corrugated” through wave breaking and other turbulent action, the
faster properties are transferred across the surface ocean interface.

The ocean surface layer (Figure 7.1) is a turbulent layer whose turbulent fluxes are roughly independent
of distance from the upper boundary; i.e., the surface layer is nearly a constant flux layer. The surface layer
starts just beneath the molecular viscous layer. Turbulence within the surface layer delivers properties to
the molecular layer for transfer to the atmosphere or ice (Fairall et al., 1996). Given that no ocean model
resolves the molecular sublayer, the upper ocean interface at z = η(x,y, t) in an ocean model operationally
starts at the top of the surface layer.

7.4.2 Monin-Obukhov similarity theory

The surface turbulent layer is of fundamental importance for determining the rate that properties are
transferred across the surface ocean interface. It thus plays a key role in how the ocean is forced. If
we needed to model all the details of this layer, then the problem of coupled modeling would perhaps
be intractable. Fortunately, the Monin-Obukhov similarity theory has proven to be quite useful in many
contexts, particularly for the atmosphere boundary layer. Following Large et al. (1994), we consider its use
for the ocean surface boundary layer.

Monin-Obukhov similarity theory assumes that the turbulent surface layer is a constant flux layer that
starts just beneath any roughness elements, and certainly beneath the the molecular sublayer. In the ab-
sence of breaking surface waves, roughness elements arise from capillary waves that allow the wind to affect
the otherwise smooth ocean surface, in which case the roughness length is on the order of centimetres. With
breaking surface waves, the roughness length can increase to the order of a metre (e.g., see concluding sec-
tion to Craig and Banner, 1994). Furthermore, the scalings from Monin-Obukhov are distinctly not correct
with surface wave breaking (e.g., Craig and Banner, 1994; Terray et al., 1996). In the formulation of Large
et al. (1994), surface gravity waves are ignored, though we have more to say on surface waves in Section
7.6.

Even if the surface layer is not a constant flux layer, the following scalings are relevant so long as
the surface fluxes remain the dominant parameters determining properties of this layer (Tennekes, 1973).
Within the surface layer, the relevant dimensional quantities are the distance d from the surface interface
at z = η, and the surface kinematic fluxes of momentum, tracer, scalars, and buoyancy

wuη = surface kinematic momentum flux (7.52)

ρoCpwθ
η

= surface kinematic heat flux (7.53)

wsη = surface kinematic scalar (e.g., salt) flux (7.54)

wb
η

= surface kinematic buoyancy flux. (7.55)
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We now introduce the following dimensional scales.

• friction velocity: From the surface kinematic momentum flux, we introduce the turbulent velocity
scale, also known as the friction velocity scale

u2
∗ ≡ |wuη | . (7.56)

Use of the identity (7.18) provides a means to compute the surface friction velocity given the surface
momentum stress

ρ0u
2
∗ = |τ|. (7.57)

• temperature scale: From the surface kinematic heat flux and the surface kinematic momentum flux,
we define a scale for the surface turbulent temperature fluctuations

Θ∗ = −
 wθ

η√
|wuη |

 = −
wθηu∗

 . (7.58)

The sign is chosen so that turbulent fluxes leading to surface ocean cooling, wθ
η
> 0, correspond to a

negative turbulent temperature scale, Θ∗ < 0.

• scalar scale: From the surface kinematic scalar flux and the surface kinematic momentum flux, we
define a scale for the surface turbulent scalar fluctuations

S∗ = −
(
wsη

u∗

)
. (7.59)

• buoyancy scale: From the surface kinematic buoyancy flux −wbη (equation (7.49)), and the penetra-
tive buoyancy flux BR (equation (7.50), we define a scale for the surface turbulent buoyancy fluctua-
tions

B∗ =
(
Bf
u∗

)
=

−wbη +BR
u∗

 . (7.60)

7.4.3 Similarity functions and length scale

The Monin-Obukhov similarity theory assumes the vertical gradient of any mean field, Λ, within the sur-
face turbulent layer is a function of the scale Λ∗ of its turbulent fluctuations, the buoyancy scale B∗, the
velocity scale u∗, and the vertical distance from the upper interface, d = −z + η (equation (7.10)). In this
case, we write

∂Λ
∂z

= Ψ (d,u∗,B∗,Λ∗), (7.61)

where Ψ is an unknown function. Although no exact analytical expression exists for Ψ , Monin-Obukhov
theory suggests that progress can be made by fitting data to the following form

∂Λ
∂z

=
(
Λ∗
κd

)
φΛ(ζ). (7.62)

In this expression,
κ ≈ 0.4 (7.63)

is the von Karman constant, φΛ(ζ) is a dimensionless similarity function or flux profile that is dependent
only on the scaled distance

ζ ≡ d
L
, (7.64)

and

L =
u2
∗

κB∗
=

u3
∗

κBf
=
|τ/ρ0|3/2

κBf
(7.65)
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is the Monin-Obukhov length scale determined by the ratio of the momentum forcing to buoyancy forcing.
The Monin-Obukhov length scale takes on the following values for the suite of available boundary

forcing

L =


0 u∗ = 0,B∗ , 0 τ = 0,Bf , 0 zero winds
∞ u∗ , 0,B∗ = 0 τ , 0,Bf = 0 zero buoyancy forcing (neutral forcing)
> 0 u∗ , 0,B∗ > 0 τ , 0,Bf > 0 stabilizing buoyancy forcing
< 0 u∗ , 0,B∗ < 0 τ , 0,Bf < 0 destabilizing or convective buoyancy forcing.

(7.66)

Notably, L is not the finite positive thickness of the surface turbulent layer (Figure 7.1), as evident since L
can be negative or infinite. Instead, L is the depth scale at which buoyancy production of turbulent kinetic
energy is of the same magnitude as shear production. For depths shallower than L > 0, shear production
dominates due to the effects from mechanical forcing through momentum stress τ. The case L = ∞ is
trivially dominated by shear production since there is no buoyancy forcing. For depths deeper than L,
buoyancy production dominates the turbulence. The case of L < 0 (convection) is always dominated by
buoyancy production.

The similarity function φΛ appearing in equation (7.62) satisfies the following limit case under neutral
forcing (zero buoyancy forcing)

φΛ(0) = 1 arising from Bf = 0 so that L =∞ and ζ = d/L = 0. (7.67)

This limit reduces the more general Monin-Obukhov form for the vertical derivative (7.62) to the logarith-
mic Law of the Wall form

∂Λ
∂z

=
(
Λ∗
κd

)
neutral forcing so φΛ = 1. (7.68)

In the general case of nonzero buoyancy forcing, we integrate the similarity form (7.62) to expose the
logrithmic Law of the Wall for neutral forcing, plus a term present with nonzero buoyancy forcing. For this
purpose, rewrite equation (7.62) in terms of the scaled Monin-Obukhov distance, ζ, to have

∂Λ
∂ζ

= −
(
Λ∗
κζ

)
φΛ(ζ), (7.69)

where we used the relation between vertical increments through

dζ = −Ldz (7.70)

using d = −z+ η (equation (7.10)). We now vertically integrate equation (7.69) to have

Λ(ζ) = Λ(Zλ/L) +
(
Λ∗
L

) ζ∫
Zλ/L

(
(1−φΛ)− 1

ζ′

)
dζ′ . (7.71)

In this expression,
Zλ = roughness length (7.72)

introduced the roughness length associated with each fluctuating field. Within a distance Zλ or less from
the boundary at z = η, the kinematic fluxes are not expected to be constant due to the impacts from rough-
ness elements. Hence, we expect the Monin-Obukhov similarity theory to breakdown when getting closer
than the roughness length to the surface.

Integrating the right hand side of equation (7.71) from the roughness length to an arbitrary point within
the surface layer renders1

Λ(ζ) = Λ(Zλ/L)−
(
Λ∗
L

)
ln(ζL/Zλ) +

(
Λ∗
L

) ζ∫
Zλ/L

(
(1−φΛ)
ζ′

)
dζ′ . (7.73)

1The result (7.73) disagrees with equation (4) in Large et al. (1994) by a minus sign, with the origin of the minus sign the relation
(7.70) between infinitesimal changes in ζ and infinitesimal changes in z.
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As expected, the first term exposes the logarithmic Law of the Wall behaviour occurring for neutral forcing
conditions (φΛ = 1). Deviations from Law of the Wall for non-neutral forcing are embodied in the integral
on the right hand side. Recall that values ζ < Zλ/L are within the roughness elements or molecular sublayer,
so the theory cannot be applied there.

Large et al. (1994) (see their page 365) use atmospheric boundary layer results from Tennekes (1973) to
set the surface layer thickness to (see Figure 7.1)

ε = 0.1 fraction of KPP boundary layer occupied by surface layer. (7.74)

Within the surface layer, atmospheric boundary layer studies indicate that turbulent fluxes are within 20%
of their surface values when reaching a distance d = εh from the upper ocean interface at d = 0. The
value of ε = 0.1 has never been observed in the ocean, but there is no reason to believe it is fundamentally
incorrect. Hence, this is the value taken for the KPP scheme.

7.5 Specifying the KPP parameterization

We are now ready to determine the KPP boundary layer depth, h, the diffusivity, Kλ, and non-local trans-
port, γλ, thus enabling a full parameterization of the turbulent flux wλ according to

wλ = −Kλ
(
∂Λ
∂z
−γλ

)
, (7.75)

where the diffusivity is given by equation (7.7), rewritten here as

Kλ(σ ) = hwλ(σ )Gλ(σ ). (7.76)

Recall that
σ = d/h (7.77)

is the dimensionless distance from the upper surface normalized by the boundary layer thickness, with

d = −z+ η (7.78)

the dimensionful distance.

7.5.1 The turbulent vertical velocity scale wλ
We now determine the turbulent vertical velocity scale wλ appearing in equation (7.76).

7.5.1.1 Velocity scale with stable buoyancy forcing

Following page 370 of Large et al. (1994), we first specify the velocity scale within the Monin-Obukhov
surface layer, where σ = d/h < ε = 0.1. We also assume stable buoyancy forcing, so that the non-local term,
γλ, vanishes. We later extend these results to the full boundary layer for arbitrary buoyancy forcing.

The similarity result (7.62) holds in the surface layer, in which

∂Λ
∂z

=
(
Λ∗
κd

)
φΛ(ζ). (7.79)

We may eliminate the vertical gradient ∂Λ/∂z using the KPP parameterization (7.75) with a zero non-local
term under stable buoyancy forcing

φΛ = −κd
Λ∗

(
wλ
Kλ

)
. (7.80)

Substituting the turbulent scale Λ∗ = −wλη /u∗ from equation (7.59) yields

KλφΛ = κd u∗

(
wλ

wλ
η

)
. (7.81)
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The KPP diffusivity expression (7.76) then renders

wλ(σ )σ−1Gλ(σ ) =
(
κu∗
φΛ(σ )

)wλσ
wλ

η

 . (7.82)

Recalling that σ < ε = 0.1 in the surface layer yields the approximate linear relation

σ−1Gλ(σ ) ≈ a1 + a2σ, (7.83)

where we used expression (7.13) for the structure function Gλ(σ ). Furthermore, within the surface layer,
turbulent fluxes for any fluctuating field, wλ

σ
, are linearly proportional to their surface value, wλ

η
. We

may thus use this result to specify a part of the structure function according to

a1 + a2σ =

wλσ
wλ

η

 . (7.84)

Note that as shown in Section 7.5.3, there is generally a dependence of a2 on the field λ, whereas a1 is
unity for all fields. With the specification (7.84), we are led to an expression for the turbulent velocity scale
within the surface layer

wλ(σ ) =
κu∗

φΛ(σ h/L)
for stable forcing Bf > 0 and 0 < σ < ε. (7.85)

Troen and Mahrt (1986) assume this expression is valid throughout the stably forced boundary layer for
0 < σ < 1, and Large et al. (1994) also make that assumption.

7.5.1.2 Velocity scale with unstable buoyancy forcing

For unstable buoyancy forcing conditions, Bf < 0, the turbulent velocity scales within the surface layer
are assumed to be the same as the stable velocity scale (7.85), again within the surface layer. For unstable
forcing beneath the surface layer, ε < σ < 1, Large et al. (1994) cap the velocity scale to that evaluated at the
base of the surface layer at σ = ε.

7.5.1.3 Summarizing properties of the turbulent velocity scale

The net result for all conditions is that the turbulent vertical velocity scale is given by

wλ(σ ) = κu∗


φ−1
Λ

(σ h/L) stable forcing Bf > 0 OBL 0 < σ < 1
φ−1
Λ

(σ h/L) unstable forcing Bf < 0 surface layer σ < ε
φ−1
Λ

(εh/L) unstable forcing Bf < 0 OBL beneath surface layer ε < σ < 1.
(7.86)

We now summarize various properties of the velocity scale, with these properties reflected in Figure 7.3.

• stable forcing: The similarity functions φΛ and velocity scales wλ satisfy the following properties
under positive buoyancy forcing, Bf > 0.

– The similarity functions are increased so that the turbulent velocity scales are reduced.

– The similarity functions are the same for all scalars and momentum, so that the velocity scales
wλ are the same.

• neutral forcing: with zero buoyancy forcing, Bf = 0, the similarity functions satisfy φΛ = 1, so that
wλ(σ ) = κu∗.

• unstable forcing: The similarity functions φΛ and velocity scales wλ satisfy the following properties
under negative buoyancy forcing, Bf < 0.

– The similarity functions φΛ are reduced so that the turbulent velocity scales wλ are enhanced.
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– The similarity functions for momentum are larger than those for scalars, so that the velocity
scales for momentum are smaller than for scalars: wm < ws.

– In the convective limit, for which u∗→ 0, the velocity scales behave according to

wλ ∼ w∗ = (−Bf h)1/3. (7.87)

In order to satisfy this scaling, the similarity functions φΛ must have the form

φΛ = (aλ − cλ ζ)−1/3 convective conditions with u∗→ 0, (7.88)

where ζ = d/L << 0, and the constants aλ and cλ are chosen to match the convective form (7.88)
to less unstable forms.

We now use the expression (7.88) within the unstable surface layer (σ < ε) form in (7.86) to
render

wλ = κ (aλu
3
∗ − cλu3

∗ ζ)1/3

= κ [aλu
3
∗ − cλu3

∗ (hσ/L)]1/3

= κ (aλu
3
∗ − cλσ κhBf )1/3

= κ (aλu
3
∗ + cλσ κw

3
∗ )

1/3

→ κw∗ (cλσ κ)1/3,

(7.89)

where the final limit case is for the convective limit with u∗ → 0. Likewise, outside the surface
layer (ε < σ < 1) we have

wλ = κ (aλu
3
∗ + cλ εκw

3
∗ )

1/3→ κw∗ (cλ εκ)1/3, (7.90)

where again the final limit case is for the convective limit with u∗→ 0.

7.5.2 Similarity functions φΛ

The vertical velocity scales are functions of the similarity functions φΛ, also called the dimensionless flux
profiles. Appendix B of Large et al. (1994) present analytic forms for these functions, based on fits to
available data, with their Figure B1 (reproduced here as Figure 7.4) providing a summary of the choices for
the momentum function φm and the scalar function φs. Both functions agree for stable buoyancy forcing,
and they depend linearly on the dimensionless Monin-Obukhov length ζ = d/L = σ h/L.

7.5.2.1 The Large et al. (1994) choices for unstable buoyancy forcing

For unstable buoyancy forcing, where L < 0 and so ζ < 0, there are two regimes. The scalar function φs is
always less than the momentum functionφm. Hence, for unstable forcing there is a larger turbulent velocity
scale for the scalars than momentum, and thus a larger vertical diffusivity for scalars. The turbulent Prandtl
number, P r, is given by the ratio of the flux functions

P r = Km/Ks = wm/ws = φm/φs. (7.91)

The choices made by Large et al. (1994) lead to a Prandtl number in the convective limit (ζ→−∞) of

P r→ (cm/cs)
1/3 = 0.44, (7.92)

where cm and cs are parameters in the similarity functions φm and φs, respectively.
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Figure 2. (left) Vertical profile of the shape function G(cr), 
where cr = d/h, in the special case of G(1) = 0,•G(1) = 0. 
(right) Vertical profiles of the normalized turbulent velocity 
scale, wx(o')/(Ku*), for the cases of h/L = 1, 0.1, 0, -1, 
and -5. In unstable conditions, Ws(Cr) (dashed traces) is 
greater than Wm(Cr) (solid traces) at all depths, but for stable 
forcing h/L -> 0, the two velocity scales are equal at all 
depths. 

The problem of determining the vertical turbulent 
fluxes of momentum and both active and passive sca- 
lars in (1) throughout the OBL is closed by adding a 
nonlocal transport term •/x to (5): 

wx(a) = -gx(OzX- (9) 

In practice, the external forcing is first prescribed, 
then the boundary layer depth h is determined, and 
finally profiles of the diffusivity and nonlocal transport 
are computed. Here the depth determination is de- 
scribed last because its formulation depends on the 
form of the diffusivity. The external forcing is dis- 
cussed in Appendix A. 

Diffusivity and Nonlocal Transport 
The profile of boundary layer diffusivity is ex- 

pressed as the product of a depth dependent turbulent 
velocity scale w x and a nondimensional vertical shape 
function G(tr): 

Kx(tr) = hwx(o')G(tr) (1 O) 

where tr = d/h is a dimensionless vertical coordinate 

that varies from 0 to 1 in the boundary layer. At all 
depths, values of K x are directly proportional to h, 
reflecting the ability of deeper boundary layers to 
contain larger, more efficient turbulent eddies. Partic- 
ular examples of G(tr) and Wx(tr) profiles are shown in 
Figure 2. The shape function is assumed to be a cubic 

polynomial [O'Brien, 1970], 

G(tr) = a0 + a•tr + a2 0'2 q- a3 0'3 (11) 

so that there are four coefficients with which to control 

the diffusivities and their vertical derivatives at both 

the top and bottom of the boundary layer. 
Turbulent eddies do not cross the surface, so there 

is no turbulent transport across d - 0. The implied 
condition Kx(O) = 0 is imposed by setting ao = 0. 
Molecular transport terms, in addition to (9), are re- 
quired only if the very near surface, where molecular 
processes dominate [Liu et al., 1979], is to be re- 
solved. 

In the surface layer • < e, where Monin-Obukhov 
similarity theory applies, eliminating the property gra- 
dient from (3) and (9) with •/x = 0 and then substituting 
(10) for Kx with G(•r) -• ,(a• + a2{r) leads to 

Wx(O')(al + a2o')= Lx(C)]x wxo / (12) 
A sensible way of satisfying (12) is to equate the term 
in square brackets to the turbulent velocity scales. As 
was argued by Troen and Mahrt [1986], this formula- 
tion is assumed to be valid everywhere in the stably 
forced boundary layer. In unstable conditions the tur- 
bulent velocity scales beyond the surface layer are 
assumed to remain constant at their •r = e values. 

Without this constraint, unstable W x values would be- 
come very large (Figure 2), in the absence of any 
supporting observational evidence. Therefore the gen- 
eral expression for the velocity scales is 

K/,/* 
Wx(•r) = e < •r < 1 • < 0 

q>x( eh/L ) 

nu* (13) 
Wx(e) = otherwise 

These scales are functions of [ = d/L = •rh/L, so 
profiles of Wx(•r) are fixed functions of h/L, as is 
shown in Figure 2. 

The q>x functions (Appendix B, Figure B 1) are such 
that the velocity scales equal nu* with neutral forcing 
(h/L - 0 in Figure 2) and are enhanced and reduced in 
unstable (h/L < 0) and stable (h/L > 0) conditions, 
respectively. The turbulent velocities for momentum 
and scalars are equal in stable forcing. The unstable 
4)m is greater than 4)• (Figure B1), so W m becomes less 
than the corresponding w• (dashed lines) in Figure 2. 
In order for w x to scale with w* in the convective limit, 
the q>x functions in very unstable (convective) condi- 
tions of [ < Ix < 0.0 have the form 

q>x = (ax - Cx[) -•/3 (14) 

where the constants ax and Cx make (14) match less 
unstable forms of q>x at [ = Ix (equation B1). Com- 
bining (2), (6), (13), and (14) leads to 

Figure 7.3: This is a reproduction of Figure 2 from Large et al. (1994). The vertical axis is the dimensionless
vertical coordinate σ = d/h within the KPP boundary layer 0 ≤ σ ≤ 1. The left panel shows the vertical
profile of the shape or structure function, Gλ(σ ), used to scale the vertical diffusivity via equation (7.76).
The analytic form shown here is given by Gλ(σ ) = σ (1 − σ )2, which corresponds to the Troen and Mahrt
(1986) form and which is independent of the quantity Λ being diffused. Large et al. (1994) chose a more
general form, based on the need to match boundary layer diffusivities to interior diffusivities in which case
the shape function becomes a function of λ. We detail this approach in Section 7.5.3. The right panel shows
various examples of the normalized turbulent velocity scale wλ (called wx in Large et al. (1994)), with the
examples differing by the value of the dimensionless ratio h/L between the boundary layer depth, h, and
the Monin-Obukhov length scale L. For unstable buoyancy forcing, L < 0, the velocity scale for scalars,
ws (dashed lines), is greater than that for momentum, wm (solid lines). For stable forcing, L > 0, and both
scalar and momentum have the same turbulent velocity scales, ws = wm. In general, the turbulent velocity
scale is enhanced with unstable surface buoyancy forcing, and reduced with stable buoyancy forcing.

7.5.2.2 Alternative choices for unstable buoyancy forcing

Large et al. (1994) chose two regimes for the unstable buoyancy forced range, transitioning from different
fractional exponents near ζ = 0, to the same −1/3 power for larger negative ζ. The scalar function φs falls
off faster near ζ = 0, with a power −1/2, whereas the momentum function φm falls off with a −1/4 power.
This initial distinct fractional power falloff sets the scale for the Prandtl number in this portion of ζ in the
weakly unstable regime.

Having two regimes for the negative buoyancy forcing adds complexity to the algorithm. We thus
consider how well the original two-regime forms for φm and φs can be fit using a single regime, using only
the fractional power −1/3. Tests suggest that the following forms may be suitable

φm(ζ) =
{

1 + 5ζ ζ > 0
(1− 9ζ)−1/3 ζ < 0

(7.93)

φs(ζ) =
{

1 + 5ζ ζ > 0
(1− 60ζ)−1/3 ζ < 0.

(7.94)

A comparison of the original forms from Large et al. (1994) to the alternative forms is shown in Figure
7.5. Also shown is the ratio of these two functions which yields the turbulent Prandtl number according
to equation (7.91). The agreement between the original forms and the new forms is worse when consider-
ing the Prandtl number. As discussed in the figure caption, a viable means for simplifying the turbulent
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Figure BI. Plots of the nondimensional flux profiles for 
momentum, 4)m, and for scalars, 4)s, as functions of the 
stability parameter [. These functions become -1/3 power 
laws for values of [ more negative than [m and Is, respec- 
tively. 

4)m -- 4)s -- 1 q- 5• 0 -< g (Bla) 

4)m- (l -- 16•) -1/4 •m -< g < 0 (B lb) 

4)rn: (am- Cm•) -1/3 • < gm (alc) 

(bs = (1 - 16i•) -1/2 i• s --< g < 0 (Bld) 

4)s = (as - Csg) -1/3 • < gs (Ble) 

where the subscript s refers to all scalars. The con- 
stants in (B 1) are prescribed as follows' 

gs = -1.0 Cs = 98.96 as = -28.86 
(B2) 

gm= -0.20 Cm = 8.38 am = 1.26 

where the ax and cx are chosen so that both 4)x and its 
first derivative are continuous across g = gm and gs 
(Figure B 1). This matching also ensures continuity of 
w x and its first derivative. In stabilizing forcing nearly 
all measurements have been for 0 < g < 1, and there is 
general agreement on the linear form of (B1), though 
the proportionality constant varies and sometimes dif- 
fers for q>s and l•) m. The value of 5, used in (B1) and by 
Troen and Mahrt [1986] for both, is common practice 
[Panofsky and Dutton, 1984]. The restriction h -< L 
precludes [ ever exceeding 1 in the boundary layer. In 
unstable conditions near neutral, l•) m and q>s are the 
most common Businger-Dyer forms [Panofsky and 
Dutton, 1984]. These forms match the stable functions 
at [ = 0 and are good fits to the available data 
[H6gstr6m, 1988] for •m • • • 0 and •s --< • < O, 
respectively. 

In more unstable conditions there are no observa- 

tions of (bx, but the data of Carl et al. [1973] suggest 
the -1/3 dependency in (B1) and (14) for 4)m' This 
dependency and a similar -1/3 dependency for (Ds is 
also required in order to satisfy the theoretical result of 
w x proportional to w* (equation (6)) in the convective 
limit, as given in (15). The near-neutral Businger-Dyer 
forms in (B1) do not lead to this result. In the Troen 
and Mahrt [1986] formulation, only 4)m has a -1/3 
power law dependency at large negative g. 

The ratio of momentum to scalar diffusivity defines 
the turbulent Prandtl number, Pt, which from (10) and 
(13) becomes, 

Pr = Km/Ks = Wm/Ws '- 4)s/4)m (B3) 

Since there is no physical reason to expect the neutral 
boundary layer to diffuse momentum differently than 
scalars, the near-neutral functions (B 1) are equal at • 
= 0 (Figure B 1), such that Pr = 1. The functions used 
by Troen and Mahrt [1986] give Pr(• = 0) = 0.75 in 
accord with some observations [Businger et al., 1971]. 
Beyond the surface layer, Wx is constant in the con- 
vective limit, and (15) gives Wm = 0.28W* and Ws = 
0.63w* and hence a finite Pr -• (Cm/Cs) 1/3 -- 0.44. 
This value is just the limit of the ratio of the two curves 
in Figure B 1 as [ becomes increasingly negative. Since 
this figure shows l•)rn • l•) s for all [ < 0, convection 
always mixes scalars, including buoyancy, more effi- 
ciently than momentum. 

APPENDIX C: KPP SENSITIVITY EXPERIMENTS 

This appendix explores some sensitivities of the 
KPP simulations in addition to those presented in 
section 5. First, finite resolution is shown to produce 
biases and oscillations in the model's boundary layer 
depth, which are ameliorated numerically (Appendix 
D). With these numerics the overall effect of entrain- 
ment is shown to be well reproduced in a low-resolu- 
tion convective simulation. Next, the sensitivity of the 
stably forced LOTUS simulation is investigated. 
These results are used to establish that the treatment 

of solar radiation, through our values of hB and h•, is 
reasonable. Finally, the sensitivity of the annual cycle 
at OWS Papa is shown to be relatively insensitive to an 
order of magnitude change in vertical resolution. 

Finite Resolution 

Any practical resolution of the upper ocean will not 
always resolve the sharp gradients that occur near the 
bottom of the boundary layer. The computational 
problems that result are illustrated by a strongly wind- 
forced case. Consider the idealized seasonal thermo- 

cline shown in Figure Cl. The continuous buoyancy 
and velocity profiles (solid lines) are constant down to 
a depth h m = 17 m, below which the former has a 

Figure 7.4: This is a reproduction of Figure B1 from Large et al. (1994). The vertical axis provides values
for the dimensionless flux profiles, φΛ, for momentum and scalars, and the horizontal axis gives the di-
mensionless Monin-Obukhov length scale ζ = d/L = σ h/L. There is a transition across the neutrally forced
value of ζ = 0. For stable buoyancy forcing (ζ > 0), both functions are the same, φs = φm, and are linear
functions of ζ. For unstable buoyancy forcing (ζ < 0), the scalar function is less than momentum, φs < φm,
with both functions falling off with a negative fractional power. The analytic forms for the functions are
given by equations (B1) and (B2) in Large et al. (1994).

functions, without compromising much on the values used in Large et al. (1994), is to maintain original
3-region φs form, but to simplify φm to 2-regions according to equation (7.93).

7.5.3 The shape function Gλ(σ )

The vertical shape function Gλ(σ ) is given by the cubic polynomial

Gλ(σ ) = a0 + a1σ + a2σ
2 + a3σ

3. (7.95)

As already noted when introducing this cubic expression (equation (7.13)), turbulent eddies do not cross
the ocean surface at σ = 0, so the diffusivity should vanish at σ = 0. This constraint is satisfied by setting

a0 = 0. (7.96)

We now discuss further constraints to specify the remaining coefficients.
We start by rewriting the expression (7.84) that expresses the ratio of turbulent fluxes within the surface

layer to those at the surface boundary

a1 + a2σ =

wλσ
wλ

η

 surface layer: 0 ≤ σ ≤ ε. (7.97)

Satisfying this relation at the ocean surface, σ = 0, requires

a1 = 1, (7.98)
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Figure 7.5: Shown here are 2-region flux profiles given by equations (7.93) and (7.94) as compared to
the original 3-region profiles rom Large et al. (1994). We also show the ratio, φs/φm, which defines the
turbulent Prandtl number or the ratio of the vertical momentum viscosity to vertical tracer diffusivity. The
top left panel shows the original 3-region φm as compared to the 2-region form (7.93). The agreement
is quite close. The top right panel shows the comparison for φs, with the agreement not very good. The
lower left panel shows the ratio φs/φm for the original 3-region functions and the new 2-region functions.
Their ratio amplifies the problems with the new φs form (7.94). The lower right panel shows the ratio of the
original 3-region φs to the new 2-region form of φm. These results suggest that to remain consistent with
the original Large et al. (1994) results, it is feasible to switch to the 2-region form (7.93) for φm, but we
must maintain the original 3-region form of φs.

so that

1 + a2σ =

wλσ
wλ

η

 surface layer: 0 ≤ σ ≤ ε. (7.99)

Now define the ratio

βλ =

wλε
wλ

η

 , (7.100)

which is the ratio of the turbulent flux at the base of the surface layer, σ = ε, to the flux at the upper ocean
interface, z = η. For atmospheric boundary layers, Troen and Mahrt (1986) set

βλ = 2ε atmospheric boundary layers, (7.101)
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with ε = 0.1. Troen and Mahrt (1986) further assume both the shape function and its first derivative vanish
at the base of the boundary layer, σ = 1. These assumptions lead to the cubic expression valid for all
fluctuating fields λ

G(σ ) = σ (1− σ )2 atmospheric boundary layers, (7.102)

with this function exhibited in the left panel of Figure 7.3.
Large et al. (1994) also assume the surface layer is 10% of the boundary layer, so that

ε = 0.1 KPP scheme. (7.103)

However, they consider a more general approach for the remaining approach to deriving the shape func-
tion. The key reason to generalize the atmospheric approach of Troen and Mahrt (1986) is to admit the
possibility of ocean boundary layer turbulence to be impacted by interior mixing, with this mixing param-
eterized by downgradient vertical diffusion. Such diffusion generally introduces distinct diffusivities for
tracers (e.g., double diffusion) as well as for momentum (e.g., non-unit Prandtl number). For these reasons,
Large et al. (1994) insist that both the diffusivity and its vertical derivative match across the base of the
boundary layer at σ = 1. This matching condition leads to the constraints (18) given by Large et al. (1994),
which in turn leads to shape functions that are dependent on the field being transported.

Matching both the shape function and its vertical derivative across the boundary layer base adds com-
plexity to the KPP algorithm. Furthermore, it is unclear how accurate one can in fact satisfy both matching
conditions on a finite grid with potentially coarse vertical grid spacing at the boundary layer base. To sim-
plify the KPP algorithm, we drop the need to match the vertical derivative of the diffusivity. Instead, we
assume continuity of the diffusivity with a vanishing derivative at the boundary layer base, σ = 1. Setting
∂σG(σ ) = 0 at σ = 1 leads to the relation

3a3 = −(1 + 2a2). (7.104)

Matching diffusivities at σ = 1 between the boundary layer and interior value leads to

a2 = −2 +
(

3Kλ(h)
hwλ(h)

)
, (7.105)

where the diffusivity Kλ(h) is determined by parameterizations of interior mixing. Substituting this expres-
sion for a2 into equation (7.104) for a3 leads to

a3 = 1−
(

2Kλ(h)
hwλ(h)

)
. (7.106)

Allowing for the interior mixing to influence the KPP boundary layer scheme suggests that the KPP calcu-
lation should be called after the various methods used to compute interior diffusivities.

7.5.4 The non-local transport γλ
We now consider the parameterization for the non-local transport (see Section 7.1.4) as suggested by Large
et al. (1994). Again, the KPP parameterization takes the form (equation (7.3))

wλ = −Kλ
(
∂Λ
∂z
−γλ

)
, (7.107)

so that that non-local portion of the turbulent flux is parameterized according to

wλ
non-local

= Kλγλ, (7.108)

where Kλ takes the form in equation (7.76):

Kλ(σ ) = hwλ(σ )Gλ(σ ). (7.109)

For completeness, we repeat elements of the outline presented in Section 7.1.4.
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7.5.4.1 General features of γλ with the KPP parameterization

• Smyth et al. (2002) consider a non-local term for momentum. Until their ideas have been fully tested
in climate models, we follow recommendations from (Large et al., 1994), who set the non-local mo-
mentum transport to zero:

γλ =
{

0 if λ = (u,v,w) a velocity component
, 0 nonzero if λ = θ,s or another tracer. (7.110)

• The non-local transport is non-zero only within the OBL:

γλ =
{

0 if σ > 1
, 0 if 0 ≤ σ ≤ 1. (7.111)

• The non-local transport is non-zero only in the presence of destabilizing negative surface ocean buoy-
ancy flux:

γλ =
{

0 for Bf > 0
, 0 for Bf < 0. (7.112)

• The non-local transport for temperature and arbitrary scalars is given by the following form for desta-
bilizing negative surface ocean buoyancy fluxes:

γθ = Cs

wθη −QR/(ρ0Cp)

hwθ(σ )

 (7.113)

γs = Cs

(
wsη

hws(σ )

)
, (7.114)

where
Cs = C∗κ (csκε)1/3, (7.115)

with
C∗ = 10, (7.116)

and QR is the heat flux from penetrative radiation given by equation (7.51).

Combining the parameterizations (7.113) and (7.114) for the non-local term γλ, with that for the
vertical diffusivity Kλ in equation (7.109) renders the non-local flux parameterization in the form

wθ
non-local

= Kθ γθ = Gλ(σ )Cs
(
wθ

η −QR/(ρ0Cp)
)

(7.117)

wsnon-local = Ksγs = Gs(σ )Cs (wsη) . (7.118)

Notice how explicit dependence on both the turbulent velocity scale, wλ, and boundary layer depth,
h, drop out from the parameterization of the non-local flux.

7.5.4.2 Potential problems with the parameterized non-local transport

Experience has shown that there are cases when the parameteried non-local flux, (7.117) of (7.118), can
produce values larger than the surface flux. That is, one may realize cases when

Gλ(σ )Cs > 1 non-local flux greater than surface flux. (7.119)

This situation arises particularly near the boundary layer base, σ = 1, when the interior diffusivity is large.
The matching conditions employed by Large et al. (1994) (Section 7.5.3) then lead to a very large value for
the shape function G(σ ). In this case, one may be exposed to the production of extrema in the tracer field.
In the presence of sea-ice, problems may arise particularly in fresh water regions such as the Baltic Sea
where the thermal expansion coefficient is negative, α < 0 (Martin Schmidt, personal communication).

The following modifications to the original Large et al. (1994) scheme have been found useful to reduce
the potential for the non-local term to be problematic.
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• interior gravitational instabilities: When the vertical stratification is unstable (N2 < 0), vertical
diffusivity is enhanced to remove the gravitational instability. Notably, it is not appropriate to en-
hance the diffusivity within the KPP boundary layer, beyond that already computed via the KPP
scheme, even when N2 < 0. On those occasions when the instabilities appear beneath the bound-
ary layer, diffusivities are enhanced. If one insisted that such diffusivities should match those in the
boundary layer, then the shape function G(σ ) would indeed become quite large in magnitude. Hence,
NCAR recommends that one pull the “convective adjustment” portion of the mixing scheme outside
of the KPP portion of the algorithm. That is, the interior convective instability diffusivities are not
matched to the KPP boundary layer diffusivities.

• simpler matching: As noted in Section 7.5.3, we propose to simplify the matching at the boundary
layer base, so that only the diffusivities match across the boundary layer base, rather than also insist-
ing on the derivative of the diffusivities as proposed by Large et al. (1994). The simplified matching
condition leads to less problems computing discrete vertical derivatives of the diffusivities, and in
turn produces more well regularized diffusivities and shape functions.

7.5.5 Bulk Richardson number and the OBL thickness

Large et al. (1994) define the KPP boundary layer depth to be an interpolation to the depth at which the
bulk Richardson number, Rib, equals to a critical Richardson number, Ric. Smaller values for Rib, including
negative values, signal that we are still in the boundary layer, whereas larger values are beneath. The
critical value Ric sets a threshold for upper ocean mixing, with such enabling behaviour that is sensitive to
its precise value.

The bulk Richardson number is a non-local version of the gradient Richardson number defined in Sec-
tion 2.3. It aims to measure the ability of an upper ocean eddy, with buoyancy set by values of temperature
and salinity in the surface layer (Figure 7.1), to move downward in the water column, overcoming the
resistence from stratification and aided by both resolved and unresolved vertical shear. Presumably at
some point, such boundary layer eddies will be suppressed by the reduced shear and increased buoyancy
stratification present below the boundary layer.

Using the notation from Large et al. (1994), we may write the bulk Richardson number at a distance d
from the ocean surface in the form

Rib(d) =
d [Br −B(d)]

|Ur −U(d)|2 +U2
t

. (7.120)

This calculation makes use of the surface layer averaged buoyancy, Br , and surface layer averaged horizontal
velocity, Ur , where the surface layer is defined by 0 ≤ σ ≤ ε (Figure 7.1). The term U2

t is associated with
parameterized unresolved vertical shears that may act to further reduce the bulk Richardson number.

Using notation introduced in the local gravitational stability calculation from Section 2.2, we write the
bulk Richardson number in the form

Rib(d) =
(
d g

ρo

)(
ρ[Θ(d),S(d),p(d)]− ρ[Θr ,Sr ,p(d)]

|Ur −U(d)|2 +U2
t

)
. (7.121)

The density ρ[Θ(d),S(d),p(d)] is the in situ value at a distance d from the surface. The density ρ[Θr ,Sr ,p(d)]
is based on an adiabatic and isohaline displacement from the surface layer to the depth d. Now consider
three cases to expose the physics of the bulk Richardson number.

• Surface eddy has negative relative buoyancy: If the density ρ[Θr ,Sr ,p(d)] is greater than the in situ
density, ρ[Θ(d),S(d),p(d)], then a surface layer parcel can move downwards and the boundary layer
based has yet to be reached. That is, the surface layer parcel has negative buoyancy relative to the
ambient fluid. This situation leads to a negative bulk Richardson number, in which case the criteria
Rib(d) > Ric has not yet been reached.

• Surface eddy has positive relative buoyancy and ambient fluid has strong shears: If the density
ρ[Θr ,Sr ,p(d)] is less than the in situ density, a surface layer eddy has positive buoyancy relative to the
ambient fluid. However, if the vertical shear is large, then the bulk Richardson number can still be
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less than the critical value, in which case mechanically induced mixing is still large and the boundary
layer base has yet to be reached.

• Surface eddy has positive relative buoyancy and ambient fluid has weak shears: Finally, if a
surface eddy has positive relative buoyancy and the ambient fluid has weak shears, then at some
point the bulk Richardson number will become larger than the critical value. Interpolating to where
that cross-over occurs determines the boundary layer thickness h.

7.5.5.1 Non-local gravitational stability

Section 2.2 presents a general discussion of local gravitational stability. Much of that material is useful for
the purpose of determining gravitational stability for parcels that are a finite distance from one another.
However, there is one aspect of the discussion in Section 2.2 that differs from the present considerations.
Namely, we are here always considering downward displacements of parcels from the surface layer. The
reason is that we are concerned with parcels starting from the surface layer moving downwards in an
adiabatic and isohaline manner, with the difficulty of such motion determined by the ambient stratification
and shear. Figure 7.6 illustrates this situation. We are not interested in the complement movement of a
deep parcel towards the surface.

z

zt(kt=1)

zt(kt=2)

zt(kt=3)

zt(kt=4)

Figure 7.6: Schematic of the adiabatic and isohaline parcel displacement that is used to determine non-
local gravitational stability for computing the bulk Richardson number according to equation (7.121). The
reference temperature and salinity of this displaced parcel is set according to values determined in the
surface layer, here approximated by the value at the top model grid cell with vertical position zt(kt=1).
The density of this parcel is then computed using the surface layer temperature and salinity and the local
in situ pressure. This displaced parcel’s density is then compared to the ambient in situ density using the
local temperature, salinity, and pressure. We illustrate that process by displacing the parcel to zt(kt=3).
If the resulting bulk Richardson number is larger than the critical value, the base of the KPP boundary layer
is at or shallower than zt(kt=3), with interpolation used to determine the KPP boundary layer thickness
h. If the bulk Richarson number is less than the critical value, the boundary layer bottom has yet to be
reached, so the downward search continues.

The expression (7.121) presents a direct means for computing the non-local gravitational stability via
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the computation of the density difference, written here using discrete notation from Figure 7.6

δρ[kt, r] = ρ[Θ(kt),S(kt),p(kt]− ρ[Θr ,Sr ,p(kt)], (7.122)

where the surface layer values Θr ,Sr are typically approximated by the values as kt =1. This approximation
breaks down for stable boundary layers with vertical grid spacing finer than roughly 2 m, in which case an
averaging is required.

There is an alternative method to approximate δρ[kt, r] based on linear truncations of Taylor series
expansions. The alternative leads to a sum of squared buoyancy frequencies, analogous to the expression
(2.15). There are some advantages offered by the alternative approach, namely there are fewer calculations
of the equation of state, assuming we already have the expansion coefficients α and β. However, the deeper
the boundary layer, and the more nonlinear the equation of state, the less accurate the approximation
becomes. We therefore recommend the more exact calculation based on the density differences in equation
(7.122).

For completeness, we develop the alternative approach. For this purpose, consider a displacement from
level kt = 1 to kt >1, in which we need to compute ρ[Θ(kt = 1),S(kt = 1),p(kt > 1)]. Truncating a Taylor
series at leading order yields

ρ[Θ(1),S(1),p(kt > 1)] ≈ ρ[Θ(1),S(1),p(1)]−
kt∑
n=1

dzw(n+ 1)
(
∂ρ

∂p

∂p

∂z

)
zt(n)

. (7.123)

A similar expression for the in situ density ρ[Θ(kt),S(kt),p(kt]

ρ[Θ(kt),S(kt),p(kt)] ≈ ρ[Θ(1),S(1),p(1)]−
kt∑
n=1

dzw(n+ 1)
(
∂ρ

∂p

∂p

∂z
+
∂ρ

∂Θ
∂Θ
∂z

+
∂ρ

∂S
∂S
∂z

)
zt(n)

. (7.124)

These results lead to the approximation

δρ[kt, r] = ρ[Θ(kt),S(kt),p(kt]− ρ[Θr ,Sr ,p(kt)]

≈ −
kt∑
n=1

dzw(n+ 1)
(
∂ρ

∂Θ
∂Θ
∂z

+
∂ρ

∂S
∂S
∂z

)
zt(n)

=
kt∑
n=1

dzw(n+ 1)
(
ρα

∂Θ
∂z
− ρβ ∂S

∂z

)
zt(n)

=
1
g

kt∑
n=1

dzw(n+ 1)
(
ρN2

)
zt(n)

.

(7.125)

Again, this result is analogous to the approximate forms given in Section 2.2.3 for the local calculation of
gravitational stability. For that calculation, it is sensible to drop the higher order terms in the Taylor series.
However, for the non-local calculation considered here, one may in fact be compromising the determination
of gravitational stability, particularly in regions of deep mixing in the high latitudes. We may also be
compromising the ability of the KPP scheme to include thermobaric convection. We are thus reticent to
recommend this approach, and instead prefer the original approach given by equation (7.121).

7.5.5.2 Unresolved shear Ut

The shear, Ut/d, in the bulk Richardson number (7.121) acknowledges the potential presence of unresolved
shears that can impact on the boundary layer depth. Large et al. (1994) present an argument on page 372
that focuses on an unresolved shear that reduces to a desired form for the case of pure convection

U2
t (d) =

Cv (−βT )1/2

Ricκ2 (cs ε)−1/2 d N ws. (7.126)
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The constant Cv sets the buoyancy frequency at the entrainment depth, and its value is expected to be

1 < Cv < 2. (7.127)

The constant cs is part of the similarity functions discussed in Section 7.4.3. The constant βT is discussed
in the caption to Figure 7.2, and is represents the ratio of the buoyancy flux at the entrainment depth, he,
to the buoyancy flux at the surface,

wb
d=he = −βT wb

d=0
, (7.128)

with
βT ≈ 0.2 (7.129)

an empirical result. The critical Richardson number, Ric, is used to determine when the boundary layer
base is reached, in which case stratification and/or reduced shear lead to a bulk Richardson number larger
than the critical value. Large et al. (1994) choose the value

Ric = 0.3. (7.130)

The dimensionless number ε determines the thickness of the surface layer as in Figure 7.1, with

ε = 0.1 (7.131)

chosen by Large et al. (1994).
It is notable that there are no surface gravity wave parameters in the specification of the unresolved

shear. We have more to say on this topic in Section 7.6.

7.5.5.3 Restrictions on h under stable buoyancy forcing

Large et al. (1994) suggest on page 372 that for stable buoyancy forcing, Bf > 0, the boundary layer thick-
ness, h, should be no larger than either the Monin-Obukhov length scale, L, or the Ekman length scale,

hE = 0.7 u∗/f , (7.132)

with f the Coriolis parameter. The following reasons are noted to motivate these two restrictions.

• Monin-Obukhov: At depths deeper than L, buoyancy stratification suppresses the mechanically
forced turbulence, thus cutting off the boundary layer.

• Ekman: The Ekman depth is the extent of the boundary layer in neutral stratification (N2 = 0). With
stable buoyancy forcing, Bf > 0, we then expect the boundary layer depth to be less than the Ekman
depth. Note that Large et al. (1994) do not mention the origin of the 0.7 factor in equation (7.132).

As noted in Large et al. (1994) and Large and Gent (1999), the restriction based on the Monin-Obukhov
has been dropped in the NCAR implementation of KPP, as it does not lead to favorable effects. Dropping
this constraint is also supported by the results from Shchepetkin (2005) and Lemarié et al. (2012). Likewise,
the constraint based on the Ekman depth is not used at NCAR, as little sensitivity was seen with its use.
Hence, there are no restrictions for the maximum boundary layer depth under stable forcing imposed by
the NCAR implementation of KPP. Such is the standard approach used in the CVMix implementation.

The key problem with the Monin-Obukhov length scale, L, relates to the question of how to include
penetrative shortwave heating in the calculation of the buoyancy forcing, Bf (Section 7.3.10). Depending
on the depth over which the penetrative heating is included (equation (7.50)), one can produce a positive
Monin-Obukhov length (if including sufficient shortwave heating) or negative (if including less heating).
Since there is no fundamental reason to choose a particular amount of the shortwave when considering
the total buoyancy forcing, there is no compelling reason to enforce the L constraint on boundary layer
thickness.

CVMix Documentation August 9, 2012 Page 63



Chapter 7. KPP surface ocean boundary layer Section 7.6

7.5.5.4 Noise in the boundary layer thickness

Experience in MOM, POP, and ROMS indicate that the KPP boundary layer thickness, h, can become quite
noisy. Noise in the boundary layer thickness can translate into noise in the tracer fields within the boundary
layer. Hence, it is common practice to apply a horizontal smoothing operator, such as a Laplacian, to h prior
to its use in computing the diffusivity or non-local transport.

The horizontal smoothing of h poses an algorithmic problem for CVMix, since CVMix modules ideally
know nothing about the horizontal grid. A potential option is to send a preliminary version of h back to
the calling model, where it is smoothed and then returned to CVMix for further calculations in the KPP
scheme.

7.6 KPP with surface waves

The KPP formulation presented by Large et al. (1994) ignores surface waves and the associated breaking
waves and Langmuir turbulence. The basis for KPP must be revisited in regions of waves, since waves
modify the Monin-Obukhov similarity scalings (see Terray et al. (1996) for the case of breaking waves,
and Section 2.2 of Sullivan and McWilliams (2010) for wave-driven winds). In the presence of waves, the
ocean surface contains both breaking waves to enhance upper ocean mixing and dissipation; swell, which
can modify the the atmospheric planetary boundary layer by providing momentum to lower atmospheric
winds; and the coupling of Stokes drift to currents to produce Langmuir cells and associated turbulence
(McWilliams et al., 1997a). These processes act in addition to and in interaction with the shear induced
eddies and buoyant plumes traditionally considered as part of the KPP scheme. The modifications to KPP
with waves represents a research project, with work from Belcher et al. (2012) a step towards this goal, in
which they consider the regimes where winds are more or less important than Langmuir turbulence.

In this section, we identify some incremental steps that may be considered for modifying aspects of
KPP to incorporate features of surface waves. Even with these more humble aspirations, there are many
questions.

7.6.1 Modified budgets with Stokes velocity

Large eddy simulations that incorporate surface waves, such as those from McWilliams et al. (1997b),
McWilliams and Sullivan (2001) and Sullivan et al. (2007), include a contribution in the momentum equa-
tion from the Stokes velocity on the Coriolis force as well as a vortex force. Additionally, the tracer equation
includes advection from the Stokes velocity. Finally, the subgrid scale turbulent kinetic energy equation
also includes advection by the Stokes velocity, as well as vertical shear of the Stokes velocity coupled to
the subgrid scale stresses, thus acting as a source for turbulent kinetic energy. Mathematically, these terms
take the form (see equations (4a), (4b) and (4c) from Sullivan and McWilliams (2010))

∂v
∂t

= . . .− f ẑ ∧ vstokes + vstokes ∧ ω (7.133)

∂C
∂t

= . . .− vstokes · ∇C (7.134)

∂E
∂t

= . . .− vstokes · ∇E − τi3
∂vstokes

i

∂x3
(7.135)

where v is the velocity field (u,v,w) resolved by the LES,ω = ∇∧v is the vorticity, vstokes is the Stokes velocity
due to wave motions, C is an arbitrary tracer concentration, E is the turbulent kinetic energy, and τij is the
deviatoric subgrid-scale stress tensor. The dots denote standard terms such as pressure gradients, friction,
etc.

The question arises as to whether a hydrostatic primitive equation should also modify the prognostic
equations for momentum and tracer in a manner emulating that done for the LES. We offer the following
reasons to not do so.

• In present applications with hydrostatic primitive equation ocean models, a wave model provides
information about the Stokes velocity, or an estimate of this velocity is made based on wind stress
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(Li and Garrett, 1993). However, there is no feedback to the waves from the circulation. Indeed,
there is no such feedback considered in the LES studies from McWilliams et al. (1997b), McWilliams
and Sullivan (2001) and Sullivan et al. (2007). For the primitive equation models used for climate
research, it would be problematic to have a quiescent Eulerian mean flow impacted by a wave to thus
initiate inertial circulations. In fact, it is the Stokes circulation itself that should be impacted.

• The Stokes circulation velocity, vstokes, is generally considered to have only horizontal components

vstokes = (ustokes,vstokes,0) (7.136)

These components are horizontally divergent. Hence, their presence in the flux-form tracer equation
appears both as an advection plus a source term.

• As discussed by Rascle et al. (2006), ensemble averaging of these equations eliminates the added
vortex force term.

• There are cases where the large-scale Eulerian mean flow in an LES will compensate for the Stokes
flow, leading to a vanishing Lagrangian mean velocity. This balance cannot be represented in a prim-
itive equation ocean model, so the selective introduction of only a piece of the full dynamics can lead
to spurious effects.

In conclusion, introduction of the Stokes velocity into the tracer and momentum equations of a hydrostatic
primitive equation ocean model is not recommended.

7.6.2 Modifications from Stokes velocity and Langmuir turbulence

• It is conjectured that the most important change to KPP may arise from enhanced shear due to Stokes
velocity when computing bulk Richardson number (Section 7.5.5). We must be careful to note that
in some cases, a piece of the Eulerian and Stokes velocities in fact cancel, leaving only a residual ve-
locity whose vertical shear impacts the bulk Richardson number. However, this result needs some
care to distinguish the potential for this effect to occur on the larger scaled represented in a prim-
itive equation model. Note that for some reason, Smyth et al. (2002) do not consider this effect in
their modifications to KPP from waves and Langmuir turbulence. Perhaps they assume there is a
piece of the unresolved Eulerian velocity that exactly cancels the Stokes velocity, thus leaving no new
unresolved term in the bulk Richardson number calculation.

• There are additional changes to the turbulent velocity scale, wλ, that may arise from Langmuir turbu-
lence. Questions arise regarding the precise calculation of the Langmuir number, the scaling added
to the turbulence velocity scale, and the depth dependence of the Langmuir number.
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Vertical convective mixing

Contents
8.1 Introduction to convective mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Time-implicit vertical mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The purpose of this chapter is to present the vertical convective mixing scheme available in CVMix. The
following CVMix Fortran module is directly connected to the material in this chapter:

vmix convection.F90.

8.1 Introduction to convective mixing

The hydrostatic approximation necessitates the use of a parameterization of vertical overturning processes.
The original parameterization used by Bryan in the 1960’s was motivated largely from ideas then used for
modeling convection in stars (Bryan (1969)). Work by Marshall and collaborators (Klinger et al. (1996),
Marshall et al. (1997)) have largely supported the basic ideas of vertical adjustment for purposes of large-
scale ocean circulation.

The Cox (1984) implementation of convective adjustment (the “NCON” scheme) may leave columns
unstable after completing the code’s adjustment loop. Various full convective schemes have come on-
line, with that from Rahmstorf (1993) implemented in MOM. An alternative to the traditional form of
convective adjustment is to increase the vertical mixing coefficient to some large value (say ≥ 10m2 s−1) in
order to quickly diffuse vertically unstable water columns. Indeed, it is this form recommended from the
study of Klinger et al. (1996), and it is the approach commonly used in boundary layer schemes such as
Pacanowski and Philander (1981) and Large et al. (1994). It is this vertical convective mixing approach that
is supported in CVMix.

8.2 Time-implicit vertical mixing

An explicit treatment, especially with fine vertical grid resolution, places an unreasonable limitation on
the size of the time step associated with vertical mixing processes. The use of fine vertical resolution with
sophisticated mixed layer and/or neutral physics schemes has prompted the near universal time-implicit
treatment of vertical mixing in ocean climate models.
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Chapter 9
Diffusivity based on a chosen dissipation

Contents
9.1 Power dissipation from vertical diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.2 Setting a floor to the dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

The purpose of this chapter is to summarize an option in CVMix to specify the vertical tracer diffu-
sivities based on setting a floor to the power dissipation. The following CVMix Fortran module is directly
connected to the material in this chapter:

vmix dissipation.F90

9.1 Power dissipation from vertical diffusion

Vertical tracer diffusion is associated with a dissipation of power. Assuming temperature and salinity have
the same vertical diffusivities leads to the expression for power dissipation (W m−3)

ε = ρκN2

= −κg
(
∂ρ

∂θ
∂θ
∂z

+
∂ρ

∂S
∂S
∂z

)
.

(9.1)

In these equations, κ is the vertical tracer diffusivity and g is the gravitational acceleration. When the
temperature and salinity diffusivities differ, as occurs with double diffusion (Chapter 6), power dissipation
is computed via

ε = −g κtemp

(
∂ρ

∂θ
∂θ
∂z

)
− g κsalt

(
∂ρ

∂S
∂S
∂z

)
. (9.2)

9.2 Setting a floor to the dissipation

We now compute a floor to the dissipation according to

εfloor = εmin +B |N |, (9.3)

where
εmin ∼ 10−6 W m−3 (9.4)
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is a specified minimum power dissipation (set according to a namelist),

B ∼ 1.5× 10−4 J m−3 (9.5)

is another namelist parameter, and |N | is the absolute value of the buoyancy frequency. The B |N | contribu-
tion to dissipation is motivated by the stratification dependent diffusivity proposed by Gargett (1984). We
establish a floor to the vertical diffusivity according to

κfloor =
εfloor Γ

regularized

ρN2

≈ 0.2εfloor

ρo (N2 +Ω2)
.

(9.6)

In this equation,

Γ regularized =
0.2N2

N2 +Ω2 (9.7)

is a regularized mixing efficiency, and
Ω = 7.2921× 10−5s−1 (9.8)

is the angular rotation rate of the earth about its axis and around the sun.
When utilizing this module in CVMix, the tracer diffusivity used for temperature, salinity, and passive

tracers is set to be no smaller than κfloor. The check is made at the end of the vertical mixing processes for
whether the diffusivity satisfies this constraint (see Figure 1.1). If too small, then diffusivity is increased to
meet the constraint. This approach was used in the isopycnal ocean model component used for the GFDL
Earth System Model discussed by Dunne et al. (2012).
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