HOMME CMake b
testing syste

Ben Jamroz
HOMME Meeting
March 14, 2013

'/ ‘ColpStbal & Information Systems Laboratory

Z
2
o

Outline

Build and testing system design overview
How to use the CMake build and Testing syste
Build and testing dashboard

Future extensions and conclude

’ ‘ColpStbal & Information Systems Laboratory

Z
2
o

ColpStbal & Information Systems Laboratory

BANCAR &

CMake build system ad
many build/testing iss

Build system is robust and flexible
* Design provides a balance: automation and flexibility
* Extensibility for future

Multiple compile time variables (NP, PLEV) require care in
executable

* Previously handled by compile -> run -> recompile -> run
* Alot of interaction to run the tests
Correctly handling hard and soft dependencies of HOMME
Previous shell script tests ran configure, make and the test
* Can’t/shouldn’t do this through the queue
* Separate the configure and build from running the test

* Express previous tests with bare minimum of info
» test/reg test/ind_tests/barola.sh -> barola.in (10 line

* Easy to add a new test
Tests are easy to run
Continue stdout differencing...

Dependencies fully resolve
robust building

The autotools dependencies were incorrect
e got lucky on Yellowstone etc. because of the use of
e shouldn’t work in general, ORNL saw this on Titan

Netcdf builds can depend upon HDF5, CURL, ZLIB, SZI

The CMake build system now takes care of these soft
* increased portability
* CMake searches system
 user can specify these dependencies
* more work, but correct

'/ CoIpSthal & Information Systems Laboratory

'/ ColpStbal & Information Systems Laboratory

Test specific executables
correctness

Each HOMME test gets mapped to one CMake “test execut
* Separately/independently “configured” — different config
* Ensures that the correct exec. is used for each test

* not guaranteed with the previous system

One independently configurable “non-test executable” for
* pregx,sweqgx,swdgx,swim
* Use these for development

Parallel compilation of all execs
* fast: make —j 8 <1 min on my mac

Ex: baroC

NP=4

PLEV=26

PIO=FALSE - SWECA swtc-dgA

Tests: baro2{a..d} -> baroC J
ol
(5] [

=
Q
>
70
2

S S e S T

'/ ‘Co’pSthal & Information Systems Laboratory

Test specific executable
correctness

Each HOMME test gets mapped to one CMake “test exec
» Separately/independently “configured” — different co
* Ensures that the correct exec. is used for each test

* not guaranteed with the previous system

One independently configurable “non-test executable” f
* pregx,sweqgx,swdgx,swim
* Use these for development

Parallel compilation of all execs
» fast: make —j 8 <1 min on my mac

Ex: baroC
NP=4
PLEV=26
PIO=FALSE
Tests: baro2{a..d} -> baroC

<
0
>
70
2

'/ ColpStbal & Information Systems Laboratory

Two levels of testing provi
of use and thoroughr

Differencing ASCII output (stdout) has been the de facto sta
* Not very portable (ASCIl can vary from machines)
* Relative tolerances previously not well handled
Two methods of testing:
* relative and bitwise differencing of parsed ASCII output (
* relative and bitwise differencing of Netcdf output (CPRN
ASCII differencing (users - default)
e Parse ASCII output from run
e Designator “=“ - lines with this get checked
* Loop through lines, if they are different check if they are
* |If numbers check relative difference, |
* report max over all lines
* Result: identical, similar (within specified tolerance 1.e-1
Netcdf differencing (maintainer - nightly)
* Requires CPRNC (Netcdf differencing tool)
* Requires saved Netcdf reference data (0.5 GB)

e saved on yellowstone

NCAR &

How to use the CMak
testing syste

Pay attention her

’ ‘ColpStbal & Information Systems Laboratory

Z
2
o

configure (cmake), maﬁ,
check

Out of place builds: |
* One copy of source
* Multiple build locations for different builds
* Source doesn’t get corrupted (svn st is clean)
configure:
* run the “cmake” command
» Specify dependencies
e Other configure options
make:
* Highly parallel builds (make —j 8)
e compiles everything
make check:
* On yellowstone this submits the jobs through the qh
e This is the first test !
* Then the results are diffed (subsequent tests)

L
|
.,
%

‘ColpStbal & Information Systems Laboratory

BANCAR &

'/ ColpStbal & Information Systems Laboratory

Configure provides autom
flexibility

User only needs to specify compilers and the location
* Machine dependencies

Test executables always compiled correctly
e Cannot change the compile time variables

Default values for non-test executables allow further
* E.g. preqgx default: NP=8,PLEV=20,NC=4, etc.
* Can be changed with configure option

Create config.sh in any build dir. with the following

cmake \
-DCMAKE_Fortran_COMPILER=ftn \
-DCMAKE_C_COMPILER=cc \
-DCMAKE_CXX_COMPILER=CC \
-DNETCDF_DIR=/path/to/netcdf \
-DHDF5_DIR=/path/to/hdf5 \
/path/to/source

NCAR &

ColpStbal & Information Systems Laboratory

BANCAR &

Building is easy, fast, a

Compiles blas, lapack, pio, timing, and all executables

make:
* Highly parallel builds (“make —j 8”)
* CMake provides cool colored output and % compleﬂ

Building C object test_execs/swtc-dgA/CMakeFiles/swtc-dgA.dir/__/__/src/jrio.c.o
[100%] [100%] Building C object test_execs/swtc-dgA/CMakeFiles/swtc—dgA.dir/__/__/utils/csm_share/shr_vmath_fwrap.c.o
Building Fortran object test_execs/swtc-dgA/CMakeFiles/swtc-dgA.dir/__/__/src/dg_main.F90.0
Linking Fortran executable swtc-dgA
[100%] [100%] [100%] [100%] Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/src/netcdf_io_mod.F90.0
[100%] Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/src/ref_state_mod.F90.0
[100%] Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/src/shal_movie_mod.F90.0
[100%] Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/utils/csm_share/shr_file_mod.F90.0
Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/utils/csm_share/shr_vmath_mod.F90.0
Building C object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/src/jrio.c.o
Building Fortran object test_execs/swtcC/CMakeFiles/swtcC.dir/__/__/src/main.F90@.0
[100%] Built target swtc-dgA

Linking Fortran executable swtcC

[100%] Built taraet swtcC

make options:
* “make VERBOSE=1"
* shows the compile and link lines
» useful for debugging build (say when you add a fi
* “make help” '
* shows all possible targets
* make baroA

Tutorial: Configure

’ ‘Colpstbal & Information Systems Laboratory

Running the tests is easy,
for not running th

Most users can simply run the ASCII differencing (default)
“make check”
* Ensures that all of the executables are up to date
* Runs the first test (submission/running of all cases)
* Runs the differencing
Individual tests - “make test-barola”
* Ensures that the executable for this test is up to date
* The testis run and the output if differenced
* Note the difference in the queue handling
* Would be run when one test is not passing
Nightly tests will diff the Netcdf files (same machine/co
* Determine bit for bitness or relative difference
* Alittle different style
* “make test”
* CTest wrapper scripts for dashboard submission

'/ ColpStLlal & Information Systems Laboratory

NCAR &

Tutorial: Running

’ ‘Col;StL‘nal & Information Systems Laboratory

CTest dashboard organizes k
test results for easy inspe

Logs previous results (past 90 days)
Easily determine when the tests were last passed

* No more svn bisecting...
Have coffee and click on results
* don’t have to ssh to machine to see error messages

® e °CDash - SimpleTest x W \ e
€& = C [my.cdash.org/index.php?project=SimpleTest&date=20130313# i? © =

A CMake/Tutorials/H¢ A CMake Cross Comp cmake file - Google A CMake - Cross Plat! m Commerce Children =% Oak Ridge Leadersh » ﬁ Other Bookmarks

My CDash All Dashboards Log Out Buy Wednesday, March 13 2013 13:04:26 EDT R

o SimpleTest
Dashboard Calendar Previous Current Project Settings

No file changed as of Wednesday, March 13 2013 - 01:00 EDT Show Filters ~ Simple View Auto-refresh Help

Nightly
Update Configure Build Test
Site Build Name Not
Files | Time |Eror| Wam | Time |Error| Wam | Time | o | Fail | Pass | Time Time
. A 6m 1 hour
yellowstone Q intel &/ 6s 24s 50 18s _ 6m 6s ago
= 7 hours
yellowstone A gnul@ 6s 30s 50 | 6m o
. ~ im 2m
titan A gnul@ 6s 18s = 48s
Experimental
Update Configure Build

Build
Time

-

22
fg; minutes

'/ ‘ColpStbal & Information Systems Laboratory

Site Build Name
Files | Time |Error| Warn| Time |Error|Wamn| Time
yellowstone A intel 6s 18s 50 gg;
N(yellowstone A intel &7 6s 18s 50 30";

Tutorial: CDash wel

’ ‘Colpstbal & Information Systems Laboratory

CoIpSthal & Information Systems Laboratory

BANCAR &

Conclusion: CMake build a
system is ready for

Presented a well designed flexible build system
e Currently building and testing on Yellowstone, Mac, and
Testing is easy to use and extensible
* No excuse not to run the tests before committing (esp. to
* Nightly testing an additional check (does not replace pre-
Instructions online for configuring, building, running tests
* See the HOMME wiki for more info https://wiki.ucar.edu
* Let me know if you have any trouble

Future extensions

Expect continual, incremental changes
* Feature requests
* One off dependency issues

Setting up Netcdf results on other machines, Sandia, Titan
* Results pushed to Dashboard

Adding more tests (Cristoph and Robert)

Additional sl

AlOojel0qe] SWIISAS uonewaIojul _mrﬂuﬁouv h

@
m

Creating a test is si

Specify a test executable in a CMake file
execName execFlavor srcs NP NC PLEV USE_PIO

createTestExec(baroC pregx srcs 4 4 26 FALSE

Specify the test specific information (baro2a.in)
The name of this test (should be the basename of this file)
test_name=baro2a
The specifically compiled executable that this test uses
exec_name=baroC
The type of executable (pregx,sweqx,swdgx,etc.)
exec_flavor=preqx
Files
namelist_files=S{HOMME_ROOT}/test/reg_test/S{namelist_dir}/S{test
vcoord_files=S{HOMME_ROOT}/test/vcoord/*26* ‘
refsoln_files=S{HOMME_ROOT}/test/reg_test/ref sol/T340ref.nc
nc_output_files=asp_baroclinicl.nc asp_baroclinic2.nc

Add the filename baro2a.in to test-list.in

CMake processes everything else for you
» Creates a run-script for your system ‘
* copies files and creates directories (input.nl,movies,restart) =

'/ ColpStEal & Information Systems Laboratory

NCAR &

ColpStLlal & Information Systems Laboratory

BANCAR &

Configure options suppor
flexibility

Build only one (class of) executable
-DBUILD_ONLY_SWEQX=TRUE \

Change default options of any non-test executable
-DPREQX_NP=5\
-DPREQX_PLEV=23 \
-DPREQX_USE_PIO=TRUE \
-DPREQX_USE_ENERGY=FALSE \
-DPREQX_NC=4 \

Compiler independent OpenMP
-DHOMME_ENABLE_OPENMP=TRUE \ {

Y

CPRNC to diff Netcdf files

-DTEST_USING_CPRNC=TRUE \
-DCPRNC_DIR=/path/to/cprnc/executable \
-DHOMME_NC_RESULTS_DIR=/path/to/netcdf/results

Configure output gives a summary 8
Be sure to keep the config.sh script if it is complicated \\5\\\
' SN

Tests use bash, python, an
but are driven by CM

Want clean separation of some testing procedures from CM
* Don’t want developers to have to do much with CMake
e Shouldn’t have to be an expert in CMake to extend the
* CMake not a scripting language (configuration and ma
Choose the best tool for the job
* bash is the natural choice for managing jobs in the queu
* python is the natural choice for diffing stdout with tolera
* CPRNC is the natural choice for diffing Netcdf files
CMake glues all of this together
* CMake “prepares” bash script files which call python and
» Sets paths and variables in these scripts at configure
* Each component of the testing system is modular
* Easy to debug (bash uses functions)
* Running of bash, python, and CPRNC is all automated
* Don’t have to run this yourself

'/ ColpStbal & Information Systems Laboratory

=
Q
>
70
2

