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Abstract

We present an approach to predicting scalars of the clinyaters on inter-decadal timescales, and we call
that approach generalized scalar prediction. Generaficeldr prediction combines the predictions of an ensem-
ble of models that spans the community’s uncertainty rangdiimate modeling with a timeseries of any data
type, including hybrid data. The scalars can be any variablénear combination of variables of the climate
system, such as mass flux associated with the Hadley ciimulat microscale precipitation. No preference need
be given to any particular model. The resulting equatiormvstinat both natural variability and uncertainty in
models physics must be considered when finding indicatdiseiigiven data type that optimize predicted change
in arbitrary scalars. We demonstrate this approach usm@MIP3 ensemble of global warming simulations and
the output of an independent model serving as a proxy for wapaedict regional surface air temperature and
regional precipitation trends, surface air temperatui @ecipitation representing end members in the physi-
cal certainty in our modeling of them. The approach givesigte results, but the precision of the predictions
depends on the certainty of model physics relevant to thiarsitaquestion. We find a strong relationship be-
tween the mathematical techniques of signal detection tiridudgion and generalized scalar prediction, but some
subtlety is required in the interpretation of results of finener.

1. Introduction can be predicted based on any combination of data sets.
The field of generalized scalar prediction in climate is

The fields of climate signal detection and attributioghe essential focus of the community involved in re-
and regiongl trend prediction are two of the central COional climate prediction. Kharin and Zwiers (2002)
cerns of climate research, the former answering quggsre among the first to point toward the necessity of
tions regarding human influence on climate and the lgking a large ensemble of sophisticated global climate
ter answering questions of how climate can be expecigdqels for use in regional trend prediction. A combina-
to change. A common approach to both of these prafsp of the predictions of many models would average
lems involves scalar estimation. In climate signal detegyt some of the differences between them and give un-
tion and attribution, the scalars involved scale vectatgtainty estimates due to inter-model differences in pre-
describing the shapes with which signals are expectedjigtion. Giorgi and Francisco (2000a) took a step back
emerge. That methodology is optimal detection, or ligy eyajuate the dominant sources of uncertainty in re-
ear multi-pattern regression, and it has been describegighal prediction and found that inter-model differences
length elsewhere (Bell 1986; Hasselmann 1993; Notigminate over naturally occurring inter-annual variabil-
et al. 1995; Hasselmann 1997). In regional trend prig; and biases in model fields as sources of uncertainty.
diction, the scalars are typically the rates at which SYfiorgi and Francisco (2000b) in fact showed that a 3- or
face air temperature and precipitation are predicted 4Qnember ensemble of realizations of transient runs of
increase (Houghton et al. 2001). The two fields thipe climate model is enough to eliminate inter-annual
far, even though both involve scalar prediction, have ng{riability as a significant source of uncertainty in re-
been explicitly related. This paper addresses the relfonal climate prediction. Giorgi et al. (2001) point out
tionship between the two. that correlations between predictions of trends in differ-

We define generalized scalar prediction the field ght regions should contain important information on the
which any linearly formed scalar of the climate system
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robustness of trend prediction for any one region. Atediction. In the fourth we will summarize the results
that point, several studies sought to assign weightsaind discuss a few potential applications and limitations
various models according to their performances in simf this technique.

ulating historical and present climate. This is a natu-

ral conclusion when Bayesian inference is applied, asps Generalized scalar prediction

done by Min and Hense (2006a,b); Min et al. (2007). ) o )

In each of these papers, just as in Raisanen and Palmer! NiS derivation is based on two levels of Bayesian
(2001); Giorgi and Mearns (2002, 2003), each mod@f_erence and a simple model for, trend prediction. We
in an ensemble of models is evaluated on criteria coMfite down the well known Bayes's theorem,

posed by the forecaster, a subjective weight is deduced,

and a linear combination of the model members of the P(a|D) oc P(Dlz) p(x), @)

ensemble is combined to form a forecast. The ThiWherep(x), the prior, is a probability density function
Assessment Report of the Intergovernmental Panel @fithe scalar quantity describing knowledge of be-
Climate Change (Houghton et al. 2001) sought to avGigte data seD is obtained and analyze®(D|z), the
controversy by equally weighting many climate models idence function, is the conditional probability of ob-
in deriving predictions of regional climate trends and aggining dataD should the scalar quantity be and
sociated uncertainties. P(z|D), the posterior, is the probability density func-

Here we also apply Bayesian inference but with diflon for z after analysis of dat@. The normalization
ferent assumptions. We make no attempt to evalug®nstant for the posterior j5( D), the likelihood of the
the relative performance of climate models. Instead, Wata, which turns Bayes's theorem into an equality:
take advantage of the strong relationships between vari-
ables and regions in the predictions of decadal time scale P(x|D) = P(D|z) p(z)/p(D). @

trends by different climate models. This assumption {§,;s i 5 single level of Bayesian inference for the scalar
the same as that made in linear multi-pattern regressign,, climate. a scalae obtained from dataD is typi-

or optimal fingerprinting/detection (Bell 1986; Hasselsy)y optained given the benefit of a model for the data
mann 1993, 1997; North et al. 1995; Leroy 1998; AlleR "\ hich itself is uncertain. As a consequence, there

and Tett 1999), which has been applied to trend detetz generally many models available that relate scalar
tion and attribution to specific causes for a variety Lantity to a data seD. We call that set of models

geophysical variables (Stott et al. 2001; Tett et al. 1999, o members of which ar&/l.. The posterior prob-
2002; Santer et al. 2003; Thorne et al. 2003; Allen et %lbliy density function for the sc;Iar becomes

2006). The central claim is that, while climate mod-

els have different sensitivities to anthropogen!c radéqti_ P(z|D, M) x Z P(D|z, M;) p(z) p(M;)  (3)
forcing, the patterns of change are mostly insensitive M.eM

to these different climate sensitivities. We assume the

same. More recently, the small differences in patternswith p(1/;) being the probability of model/; relative
change have been taken into consideration in the apf@i-ll the other models igM. In the context of scalar
cation of optimal detection (Huntingford et al. 2006), aprediction, this means that future trends can be esti-
application of a methodology described in Bell (1986ated by timeseries analysis of historical data based on
The result of our application of Bayesian inference withiultiple models and then averaging together the results
the above assumptions is a method for using arbitrd&rgsed on subjective weights.

data to arrive at predictions for trends in arbitrary scalar In this section, the equations of generalized scalar
quantities of the climate system in a way that takes derediction are derived from the foundational Eq. 3 and
vantage of physical relationships of varying degrees e method of climate forecast is presented based on
uncertainty within the climate system. The final equ&tandard error analysis.

tions are similar to those in Bell (1986) and Huntingford

et al. (2006) but with the distinction that critical attena. Equations of scalar prediction

tion must be paid to the normalization of signal shapes. 1.5 is similar to the approach taken by Raisanen

In the second section we present a derivation of gearrd Palmer (2001) but with some assumptions of opti-
eralized scalar prediction that considers physical camal detection included. In truth, the relative probabil-
nections in the climate system by applying Bayesian iity of model M; must be conditional on the existence
ference on climate signal detection. A set of equationsdata D and consequently the weightM;) should
will result. In the third section we will present examplebe p(M;| D) and not entirely subjective. These are the
that illustrate various properties of generalized scalaarginal probabilities of the model given dafy and



how this can be deduced based on timeseries data ¥Viléer of the data type represented Hy Here, natural
first presented in Leroy (1998) and thereafter by Miariability refers to all temporal fluctuations of the cli-
et al. (2007). For now we will only consider the submate system not specifically related to treddgdt that
jective probabilityp(M;) in the derivation and discussresult from external forcings of the system. In the most
later how one can refine conclusions by instead usitygical application of signal detectiod,is a longitude-
the marginal probabilities of the models as weights. latitude map of surface air temperatuseis the global

The standard assumption in optimal detection is thatjerage surface air temperature, and the signal pattern
while various models models show different sensitiv; is given by
ties in greenhouse gas forcing, they nonetheless show _ dg
very similar patterns of change. It was noted in Giorgi 5= o M;

)
and Francisco (2000a) that patterns of surface air tev%ereg is a model of the datal that varies with the

perature change, when normalized by sensitivity c’fs%a\Iar guantityv. In one of the examples of section 3,

moglel, are mqle_pendent of greenhouse gas forcm_g A > quantity on the right gives the trend in the longitude-

nario. Thus, it is reasonable to model a timeseries Qlitude map of surface air temperature normalized by

datad(t) as the trend in regional surface air temperature. The most
d(t) = a(t)s; + dn(t) (4 Iike_ly fi_t to the timeseries of datd(¢) will give a tim_e

derivative ofa(t) that represents the secular trend in re-

where the patters; is the derivative of the model for thegional surface air temperature. The realizations of nat-

data in a scalatv. Thedn(t) are realizations of natu-ural variability dn(¢) are normally distributed aén ~

ral variability of the climate system viewed through tha/ (0, 3,,).

We expand Eq. 3 using the trend in the ddt&) as the data and find that

(da | dd
dt ' dt’

l/,dd  dar_, , ,dd  do
((dt_SiE)

M) Z (2m) K/ ‘zdn/dt|_1/2 exp {—5 Edn/dt(a _SiE))} p(M;), (6)
M;eM

wheref is the rank ofS,,, /4, We have assumed an uninformative priorder/dt (p(z)), an implicit assumption
of optimal detection. The natural variability covariariXg, ,4; derives from the normal distribution expected for
a residual trend induced by the natural variabilit,/dt ~ N (0, X4y,/4;), and is related to the natural variability

covariance®,, by
12

b)) =——3,, 7
dn/dt (N3 — N) (yrsg) ( )
with N the number of years in a continuous timeseries of annuahgeedata, for serially uncorrelated natural

variability. At this point we assume a continuum of mod&ls € M such that the distribution of the signals
normal:s ~ N (8, Xs). Under this assumption, Eq. 6 becomes

da | dd _ —1/2 _
PG | 5 M) o 20 [Sanga] [ s (27 ®
1/,dd doayT dd do 1 _ _ _
XeXp{_§((E_SE) dei/dt(g_s%))} Xexp{—Q(s—s)Tﬂsl(s—s)]

Performing the integral ovet*s gives

da | dd k)2 e —1/2 17,dd _dayr_;,dd _da
where
2 = Sin/ar + (da/dt)® . (10)
The most likely estimate for the scalar tresdl/dt is (da/dt)m1, where
(dofdt) = f£7(dd/dt) (11)

1

f = =7's(s"=7"s) . (12)




The vectorf is the contravariant fingerprinto the fin- the less import natural variability becomes, because the
gerprints and is best interpreted as a vector which givegynal physics uncertainty term—the second term on the
an optimal and unbiased most likely estimate for a trenidht of Eq. 10—is independent of the length of the time-
in the climate system. Eqgs. 11 and 12 are the eqs&ries.
tions for generalized scalar trend prediction for a single This form of detection ameliorates the difficulties
scalar. of eigenmode truncation typically associated with sig-
In this derivation, no condition is placed on the dataal detection. When a precise signal shape is prescribed
d or on the scalatv; hence, they are completely generain optimal detection, posterior estimates of trends be-
and any data set can be used to determine trends assmrine highly sensitive to the number of eigenvectors re-
ated with any particular scalar quantity in climate. Datained in the inversion o,,. Allen and Tett (1999)
sets can be anything from in situ surface and upper aglve this problem by demanding that post-fit residuals
measurements to satellite hyperspectral measuremesconsistent with estimates of natural variability and
the scalar can be anything from the mass flux associatiedt eigenmodes be truncated accordingly, but sensitiv-
with the Hadley circulation to microscale precipitatiority to eigenmode truncation remains. The eigenmode
The most standard application in the literature to datencation problem derives from the fact that eigenvec-
has been to define the data detio be gridded maps oftors of 3,, associated with small eigenvalues occupy
surface air temperature and the scalahe global av- subspaces of the signal shape that are significantly more
erage surface air temperature (Huntingford et al. 200@hcertain than the subspaces defined by eigenvectors as-
Generalized scalar prediction is well suited to regionstciated with larger eigenvalues. As noted by Hunt-
climate prediction, though, because the scalar can be ithgiford et al. (2006) and Leroy et al. (2008), introduc-
fined as a regional temperature and the data set chasam of 35 “washes out” the subspaces associated with
so as to minimize the influence of natural variability oemall eigenvalues oE,,, and the sensitivity to eigen-
detection. It is possible that, depending on the scalaode truncation is almost entirely lost. The te¥y in
chosen, there exists a strong correlation in the climdtg. 10 serves that numerical purpose here.
system between trends in the chosen scalar and otherEqgs. 10 and 11 are iterative éfa/dt. In the first it-
seemingly unrelated geophysical variables. Those ceration forda/dt, one should introduce a good estimate
relations are found by using an ensemble of modéls for it into Eq. 10 and solve for a new value in Eq. 11.
that span our subjective uncertainty in climate foreca3the quantityda/dt in Eq. 10 plays the role of a weight-

ing to defineXiy: ing between the influence of natural variability and the
signal physics uncertainty which, in most applications,
s = Y sip(M) (13) strongly weights toward natural variability. After the
M;eM first determination ofdw/dt through Eq. 11, that de-
. = Z (s; —8) (s; —8)T p(M;). (14) termination can be inserted again into Eq. 10 to find a
M;eM new determination ofr/dt, and so on. Because of the

strong weighting toward natural variability, though, con-

When the models in\f show agreement in some diyergence is expected to be rapid. For this reason, in the
mensions of the signal space, the corresponding glémainder of this paper we only apply Egs. 10 and 11
ments of X5 will be small and detection will be di- gpe time with no iteration.
rected preferentially toward those dimensions. Our in- some applications of generalized scalar prediction
terpretation of this effect is that uncertain climate sygequire the detection of multiple scalars simultaneously.
tem physics should be factored into forecasts of regionglgyr example for forecasting trends in regional sur-
trends. When the physics, in the form of relationshiggce air temperature, the regional surface air tempera-
between variables in the climate system, is uncertajlye is expected to rise with increasing greenhouse gases
then a posterior estimate of trends takes only interannggt fall with increasing concentrations of tropospheric
variability into consideration. When it is more certairgy|fate aerosols. Since future trends in these radiative
however, a posterior estimate will begin to take othgdrcings are expected to evolve differently, it makes
elements of the climate System into consideration. sense to Consider them Separate'y When forecasting fu_

The application of Egs. 10 and 11 depends upon thge trends, yet the historical record contains both ra-
length At of the timeseries odl(t) in question. Natu- giative forcings simultaneously. In such instances, the
ral interannual variability in the space of the d&a is model for the data (c.f. Eq. 4) becomes
related to the influence of that variability on trend esti-
matesyn /at BY Xin/ar ~ (At)—3 X, fora continuous d(t) = ay(t) sz(,l) + as(t) 552) + dn(t) (15)
timeseries X /a; ~ (At)~2 3, for a timeseries with
major gaps. In either case, the longer the timeseriew’beresgl) is the trenddg/da in the data expected of
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increasing greenhouse gases with respect to the trémoen error propagation based on the model in EqQ. 4 in
in global surface air temperature agﬁ) is the trend Which error enters through the formulationénd the

df /do in the data expected of increasing sulfate aerosotural variabilitydn. The natural variability is gener-
with respect to the trend in global surface air temperally prescribed by a long control run of a climate model
ture. A derivation following that given above for jusnd is rarely realistic, so a more relevant error analy-
one pattern gives the following equations for scalar prgis should be based on data alone. In the approach, we

diction: multiply the contravariant fingerprinis to each tempo-
ral realization of the climate data vect(t) to arrive at
Y =Sgnsae+ Y p(M) (16) atimeseries of “detectorsi(t):
M;eM
_wT
3 () oy g s o) =¥ do. (20)
k=1 dt dt ' ' The contravariant fingerprintB are derived based on

a prescription of natural variability, but it is possible
T nevertheless to deduce an uncertainty which is semi-
(dev/dt)m Fi(flfd/fl? a1 17) independent of the model-prescribed natural variability.
F = ¥7'8(8'27°S) (18) We do this by linear regression on the timeseries of de-
tectorsa(t) (now working with just one scalar):

in which the arraya is composed of the individual

scalarsy;, the columns oB are the individuas?), and N

55\ is the difference between the realization of sigial m = (Z(ti - 5)2)_1 a(t;) (t —1) (212)
by modelM; from the mean signal over all models in i=1 i=1

M, orsst?) = s —50). The most likely estimate for b = a-mt (22)

the generalized scalar tredde/dt is (da/dt)m1. The

columns of the matriX¥ are the contravariant finger-With ¢ the mean of the;, a the mean of the detectors,
prints to the fingerprint§ because, when multiplied by/N' the number of time intervals (generally years), and
the fingerprints, yield the identity matrix (c.f. Eq. 12)7 andb the slope and intercept of the fit. 4f is the
Egs. 16, 17, and 18 can be applied for, not just two, bfi¢an square po.st-.ﬂt r_e5|dual of the detectprs, then the
any number of signals. These equations should be §guared uncertainties in the slogin?), the intercept
plied following the same methodology as Egs. 10, 180°), and the covariance of their uncertaintiés: 6b)

and 12. are
N
b. Climate prediction (6m?) = (Z(ti _ 52)*103 (23)
With a determination of most likely trendé /dt =1
and an assumption of linear trends in climate, the prob- (0*) = (0m*)* + 05 /N (24)
ability density for the prediction of that scalar on inter- (dm by = —(6m?) L. (25)

decadal time scales becomes
The fitted slopen is exactly the same as the most

a(t) ~ N ((dot/dt)m (t—t0), Baasar(t—t0)*+2n). Jikely estimate of the trendda/dt),, but the uncer-

tainty in the slope is not the same as the uncertainty in
The probability density as a function of the scalar valyge scalar trend. The uncertainty in the slope, given in
shifts linearly in time at the rat@la/dt).m1 beginning gq. 23, only accounts for the uncertainty introduced by
from a nominal timeto. Its width is decided by two natyral variability and not the uncertainty due to uncer-
ter_ms, the first being the uncertainty on the_underlyirﬂgimy in the shape of the emerging signal. Because the
“climate trend”(dat/dt). and the second being an acy gt Jikely estimate of the scalar trend will be in error
counting for the perpetual natural fluctuations of the clin part because of error in the estimation of the signal
mate systendn. Both are accounted as full covariancgngerprints, this latter error must be included. This is

matrices ¥qq /4 andXn. The latter can be determinedyone py adding it to the uncertainty in the slopin?):
by a number of means involving combinations of de-

trended data anq control runs of climate models. The gga/dt — <5m2> +fTy.f (da/dt)2 (26)
former term requires more care.

Standard optimal fingerprinting techniques provideith thed«/dt being a prior estimate of the scalar trend.
a simple estimate for the uncertainty covariance in thteis this expression for uncertainty in trend which en-
most likely trend:X o /a; = (STE‘lg)‘l, obtainable ters into the climate forecast. In the case of a forecast



of a single scalar, the forecast has meaj...s;(t) and signals. Each of these normalized signals is then re-

standard deviatios? ... given by gridded onto a uniforn32 x 64 (latitude by longitude)
reduced-resolution grid (Fig. 2). The mean sighahd
Oforecast(t) = ml+b (27) covariance matrixs (Fig. 3) are computed from these
02 eenst(t) = aﬁa/dt (t—1)%*+0%/N. (28) normalized, regridded signal patterns.

A prescription of natural variability is obtained from
e present-day control run of the NCAR CCSM 3.0
model. The annual mean from each of the 600 model
years of monthly data is found, and the covariance for
this annual average timeseries is computed. This covari-
3. Examples ance matrix is normalized by2 /(N3 — N) as in Eq. 7,

In this section we demonstrate the methodology¥erelN is the number of years of “observations” avail-
predictive capability within a modeling framework. Weble to generate the prediction, to obtain the covariance
utilize an ensemble of different models run with thef the realization of natural variabilit$iay /4; (Fig. 3).
same boundary conditions for the same simulated titi&e signal uncertainty, natural variability is also con-
period to prescribe the trend pattemqsignals). One fined |al’ge|y to h|gh |atitudes, though it extends further
model from this ensemble is withheld and is used to relpto continental regions. The optimization provided by
resent an independent physical realization and assd@f method we present here narrows the uncertainty of
ated set of simulated observations. We study two fde prediction by minimizing the influence of the areas
miliar state variables, surface air temperature and pf-high signal uncertainty and natural variability that do
cipitation. We utilize the World Climate Research Prdot contribute proportionally to the scalar trend of inter-
gramme’s (WCRP’s) Coupled Model Intercomparisd®St:

Project phase 3 (CMIP3) multi-model dataset for the The quantitiess , X5 and X4y,,4; (Egs. 10,12) al-
SRES A1B emissions scenario, which provides a tot@w the computation of, the contravariant fingerprint

of 55 realizations for 24 different models for tempeffor regional prediction. We averaged together the 31
ature and 53 realizations for 24 models for precipit@stimates of resulting from inversions ok (Eg. 10)

tion. We use generalized scalar prediction to make fomith eigenvalue 20 to 50 kept to obtain the value used
casts of area-weighted regional quantities, choosing fee prediction (Fig. 4). In this exercise, we designated
Central United States, Northern Europe, and the SaRgE realization for one model as simulated observations
as representative (Table 1). Temperature and precip'{ﬂaand withheld all realizations for this model from the
tion provide demonstrative examples of the extremes@gfmputation of this contravariant fingerprint. The appli-
application of this type of multi-model ensemble precation off to the timeseriesl; of annual average tem-
diction because the models predict positive, significapgrature observations produces a timeseries of detectors
trends in temperature but the precipitation trends are dis- The prediction ofla/dt is made through linear re-
tributed nearly symmetrically about zero (Fig. 1). Weression analysis of these detectors. For these regional
proceed first with the discussion of temperature fglemonstrations, we choose GISS ModeREas simu-

Thus, the climate prediction for the scalar trent
has the probability density functiona(t)
N(aforecast (t)’ Ulgorecast (t) + 0121)’ as in Eq 19.

lowed by that for precipitation. lated observations because it exhibits regional tempera-
ture changes far from the ensemble mean (c.f. Fig. 1).
a. Temperature From the designated GISS model data, we derive both a

) ) true trend value, from all 50 years, and a simulated mea-
For each of the three regions, the following analysig e ment dataset, limited to 10 or 20 years, from which

procedureis followed. Firstwe compute a signal pattef, nake a forecast. Henceforth these simulated mea-

s; for each model realization by linear regression andly e ment datasets of limited length will be referred to as
ysis of the first 50 years temperature data for the 218hservations.”

century. We calculate an estimate of the scalar trend
da/dt (regional temperature in this case) by finding the
area-weighted average of the atmospheric surface tem-
perature trend at the model gridpoints lying within the In the analysis of the regional forecast for the Cen-
target region. We normalize the global signal pattertral United States, we retain only Northern hemispheric
for each model (Eg. 5) by the corresponding estimadata. The contravariant fingerprirft) (for the Central

of the scalar trend. For models with multiple realizaJnited States shows the importance of both local and
tions, we average the normalized signals obtained frameanic effects for determining regional temperature
all realizations together to compute a single signal patends (Fig. 4). This contravariant fingerprint shows a
tern per model, resulting in a set of 24 normalized globstrong peak in amplitude over the central United States,

1) CENTRAL UNITED STATES
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FiG. 1. Distributions of Central United States temperaturgéspand precipitation (lower) trends from all avail-
able model realizations of SRES-A1B. The left hand plotskaregraphs showing the regional trend predicted
for each model (computed from a simple average for modelsgtibg multiple realizations). The names of the
models are given on the vertical axis, with the correspampdinmber of realizations in parenthesis. The right
hand plots are frequency distributions for the same dataeateft hand plots. The heavy black line shows the
best fit of a normal distribution to the data. Temperature pmetipitation provide a useful set of extremes for
regional prediction because models show relatively goodeagent for temperature change but much variation for
precipitation.

along with a signicant correlation with sea surface terof a 30-yr forecast. The result for 20 years is very close

peratures in the northern central Pacific, offset by an a@n-the true value, obtained by trend analysis of all 50

ticorrelation with north Atlantic temperatures. This finyears of the model output 6f31 + 0.03 K. The 10 year

gerprint also indicates the dependence of the regiotialeseries of “observations” is too short to sufficiently

surface temperature trend on high-latitude temperaturesolve the relationship between the global temperature

strongly affected by sea ice variability off the east coashd regional temperature trends to make an optimized

of Greenland and in the Bering Sea. forecast, but remarkably generalized scalar prediction

recovers a positive trend from these 10 years of observa-

We computed the results fdxt equal to 10 and 20 tions when, in the same time period, the actual regional

years—as if we had 10 or 20 years of data—to study theerage surface air temperature trend over the Central

forecast accuracy gained as longer timeseries of data@rgted States exhibits a net negative trend-f13 K

utilized (Fig. 5). For 10 years, the estimate for the tengr—1,

perature increase resulting from trend analysis of the de-

t_ectors (obtained frqm applicati_on of the c_:ontravariant 2) NORTHERN EUROPE

fingerprint, Eq. 20) is 0.43 K with a one-sigma uncer-

tainty of 0.40 K for the 3t year of the forecast. For20  The case of the contravariant fingerprint for North-

years, the estimate of the increase is 1.19 K and hasra European temperature stands in contrast with that of

substantially reduced uncertainty of 0.30 K for the entle central United States in that it shows very little de-



Target Region Latitude Range Longitude Range
Central United States 35°N—45°N 110°W—-85°W

Northen Europe 48°N—55°N 0°E—18°E
Sahel 23°N—25°N 13°E—33°E
TABLE 1.
CCCMA CGCM 3.1 GISS AOM GISSEH GISS ER

MIROC 3.2 medres MIUB ECHO G

dT,, fdti(da/dt)

FiG. 2. Trends of atmospheric surface air temperature norathliz trend in Central United States temperature
for twelve models. Eleven of the twelve models contributadtiple realizations for the emissions scenario and
thus provide a more robust estimation of the signal pattern.

pendence on the local temperature, indicating the lortgend is also dependent on ocean regions subject to a

term trend is determined mostly by large-scale effectgeat deal of sea ice variability, including the eastern

Like the Central United States, the surface temperatsteore of Greenland, the Bering Sea, and the western por-
tion of Hudson Bay and its environs. For Northern Eu-
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FIG. 3. The variance of natural variabili®,, ,4; and signal uncertainti; for prediction of Central U.S. surface
air temperature trenda/dt. The signal uncertainty is established using signals frarm®dels that contributed
to CMIP3. Those signals were determined by linear regradsimrthern Hemisphere surface air temperature of
the first 50 years of SRES-A1B runs divided by the trend inaefair temperature over the Central U.S. over the
same time interval. Both are dimensionless, the naturabiity 3, 4 having been normalized by the estimated
trend(da/dt)?.

rope, analysis of a ten year timeseries of “observatiorfgigerprint exhibits a subtropical-equatorial dipole that
(At = 10 yrs) yields a predicted warming 6f35+0.43 measures the expansion of the Hadley circulation. The
K, significantly lower than the true value ©26 + 0.03 increase in cold air mass over the central and eastern
K obtained from model output. Increasing the length ¢rfopical Pacific is consistent with decreased subsidence,
the observational timeseries & = 20 yrs provides a a measure of the weakening Walker circulation. The
prediction 0f0.59 + 0.23 K, a substantial improvementanalysis of At = 10 years of “observations” yields a

in qualitative agreement with the true value but quaprediction of1.37 &+ 0.46 K, so that the oner uncer-
titatively it is three-sigma away from truth. This largeéainty envelope encompasses the true value of 1.73 K.
disagreement indicates that fundamental informationfsr At = 20 years, the prediction i5.52 + 0.16 K.

missing from this prediction. Most likely this short-
coming is due to a combination of small areal extept
of the target region, which contains only three model

gridpoints for the reduced grid, and the relative paucity We have argued that this method of scalar predic-

Og quelsl u§ed to prescribe the rr?ean signal _Sﬁa?_d tion is generalizable to arbitrary data types. This prop-
the signal shape uncertaings. The contravariant fin- o, .o e particularly useful when homogeneous, ac-

gerprint reduces th_e natural V"’,‘“a,b"'ty effectively bLHurate measurements of a scalar quantity of interest are
makes only a marginally quantitatively robust tempefiot available, but measurements of a different sort with

ature forecast. a strong physical relationship to the desired scalar ex-
ist. We demonstrate that behavior by utilizing simu-

3) THE SAHEL lated observations of microwave brightness temperature

representative of the mid-troposphere (hereafter abbre-

The contravariant fingerprint for temperature in thagated TMT), as would be measured by channel 2 of
Sahel shows an intermediate sensitivity to local effects Microwave Sounding Unit-type (MSU) satellite sen-
between the sensitivities exhibited by the Central Unitsdr. We compute TMT using a radiative transfer model
States and Northern Europe. On the large scale, #pplied to upper air temperature, specific humidity, sur-

Mixed data types
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FiG. 4. The contravariant fingerprinfsor scalar prediction of (a) Central U.S. surface air terap@e trend, (b)
Northern Europe surface air temperature trend, and (c)lSahface air temperature trend.

face pressure, surface air temperature, and surface ewdse, the TMT observations were treated according to
sion temperature for a subset (14 models, one realizattha same procedure as surface temperature. First a sig-
each) of the same model runs we used in the surfacerst in TMT is found from linear trend analysis of 50
temperature-only exercise above. This calculation ngears of annual average 21st century forecast data. Then
sults in two-dimensional spatial maps of TMT, whicla normalized signal is computed by dividing this TMT
are regridded to the same reduced resolution as the $tgnd map by the trend in the scalar surface air tempera-
face air temperature maps. ture for the region of interest.

We incorporate the TMT data into the analysis in The resulting contravariant fingerprint for the first
three different ways. The first method includes largeiethod, consisting of a map corresponding to TMT ob-
scale maps of both surface air temperature observatisesvations and a map corresponding to contemporane-
and TMT observations to form a joint observationaus surface air temperature observations, in the case of
dataset. The second method includes surface air tehe Central United States, is shown in Fig. 6. The sur-
perature observations drawn from target region alofeze air temperature component of the joint contravari-
together with large-scale spatial maps of TMT. The fant fingerprint preserves the key features of the sur-
nal methods includes TMT observations alone. In eafdte air temperature-only contravariant fingerprint: peak
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FIG. 5. Application of Central U.S. surface air temperaturedpron to “observations” taken from the output of
a forced run of a climate model. The climate model used asraldtafor data was not included in the ensemble
used to compose signal uncertaity. The natural variability was composed from a present dayrobrun of
NCAR CCSM3. The black line and filled squares are the “obs&ma’, defined to be surface air temperature
averaged over the Central U.S. The dashed line and openescai@r the detectofd d(t), the application of the
contravariant fingerprint to Northern Hemisphere surfacéemperature year by year. The gray envelope shows
the forecast for the underlying trend in surface air temjpeesover the Central U.S. computed according to Egs. 27
and 28, and the light gray line shows the future evolutionuface air temperature over the Central U.S. Plot (a)
shows the result for ten years of data and plot (b) for tweery of data. Notice the ability of this technique to
suppress natural variability and produce a forecast thatésirate and four times more precise than would have
been obtained from extrapolating the surface air tempegatver the Central U.S. only.

sensitivity over the central United States and strong seion, should improve the precision of prediction. Be-
sitivity to temperature in Arctic regions correlated witltause the ratio of TMT variability to surface air tem-
areas of ice extent. The most prominent feature in tperature variability realized in the “observations” dif-
TMT fingerprint is a nearly annular pattern centerdér substantially than the same ratio in the prescription
around 76N which corresponds to a prominent warmef natural variability by a different model, a proper un-
ing around 500 hPa that may be seen in zonal croderstanding of information content is not realized and
sections of upper air temperature trends for these mdlde suppression of natural variability is unable to han-
els under consideration here. This feature probably isli@ the two data types appropriately. This is borne out
measure of poleward migration of the polar jet. by an increased in the post-fit residuals of the detectors
Both ten-year and twenty-year prediction see de2 in adding the Northern Hemisphere TMT field to the
graded precision when adding TMT to surface air terhtorthern Hemisphere surface air temperature field. This
perature. Addition of information in generalized scalguoints toward the necessity of having the prescription of
prediction, inasmuch as it is a type of optimal estimaatural variability capturing structures of variabilityat

11
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FiG. 6. Joint surface air temperature-TMT fingerprint for Cahtth.S. surface air temperature prediction. The data
field is taken to be Northern Hemisphere surface air tempexéTAS) and Northern Hemisphere mid-tropospheric
temperature (TMT) as measured by the Microwave Soundings dhoard the NOAA/TOVS satellites. The top
two plots show the fingerprints in surface air temperatuees@nd MSU TMT space. The lower plot follows the
same scheme as in Fig. 5. Notice that inclusion of TMT intodat space adds little information to the forecast
given 20 years of data. This means that long time records ahidm Hemisphere TAS and Northern Hemisphere
mid-tropospheric temperature contain substantially neldunt information.

are useful in optimization. observations. From this we conclude that important ad-
ditional information about the regional trend is embded-
For the first method, utilizing global surface air temded within TMT variable. In the third method, utiliz-
perature and TMT data together, the forecast with= ing just TMT with no surface observations, the forecast
10 years for year 50 i$.12 £ 0.62 K, a substantial im- for year 50 is1.40 & 1.33 K. This uncertainty is still a
provement over the result from the inclusion of surfacibstantial improvement from that obtained from a pure
air temperature observations alone. Bdr= 20 years, extrapolation of the surface observations themselves for
the forecast for year 50 i$.10 £+ 0.35 K, which is a the target region (equal t&-2.96 K), and much more
minor degradation in accuracy and uncertainty over thecurate as well, capturing the correct sign for the trend.
case without TMT. For the second method, which joins
TMT with surface air observations for the just target re- The results for the application of these methods
gion, the forecast for year 501520 &+ 1.26 K, also im- to the target regions of the Central United States and
proved relative to the case with no TMT, but with mucNorthern Europe are summarized in Table 2. The over-
larger uncertainty than for the case with global surfaedl accuracy of the scalar prediction is degraded some-

12



Target Region Data Fields Baseline (years) Prediction ge3@s (K)
+ one-sigma uncertainty

Central United States TAS NH 10 0.43 £0.40
Central United States TAS and TMT NH 10 1.124+0.62
Central United States regional TAS and TMT NH 10 1.20 £ 1.26
Central United States TMT NH only 10 1.40 +£1.33
Central United States TAS NH 20 1.194+0.30
Central United States TAS and TMT NH 20 1.10+0.35
Central United States regional TAS and TMT NH 20 2.40 £ 0.64

truth 1.314+0.03
Northern Europe TAS NH 10 0.354+0.43
Northern Europe TAS and TMT NH 10 0.824+0.43
Northern Europe regional TAS and TMT NH 10 0.88 +0.94
Northern Europe TAS NH 20 0.59 +0.23
Northern Europe TAS and TMT NH 20 0.69 £+ 0.27
Northern Europe regional TAS and TMT NH 20 1.79 £ 0.46

truth 1.26 + 0.03

TABLE 2.

what for the case of Northern Europe, which is limitedhoose two models as “observations” that capture the
to only 3 model gridpoints, as opposed to 8 for the Cestrongest trends, both positive and negative (c.f. Fig. 1).
tral United States. The results for Northern Europe stiffom this exercise we conclude that the formalism does
show great improvement, however, over the results mdt have a substantial difference in predictive perfor-
extrapolation from the observations alone. For both tamance based on sign. The model ensemble distributions
get regions, the prediction is improved by additional olof precipitation for Northern Europe and the Sahel are
servations for the case df¢t = 10 years. For the casenot so nearly symmetric about zero, so we present the
of At = 20 years, the prediction is not substantiallyesults for just a single model as “observations” for these
degraded by additional observations, although it is n@tgions. For these regions, we employ the same model
helped. From this pattern, we conclude that additiortalat provides the large negative trend case for the Cen-
measurements improve the prediction’s uncertainty cdral United States.

tributed by natural variability that is particularly pro-

nounced for a short timeseries of observations. When 1) CENTRAL UNITED STATES

a longer timeseries of observations is available, the in- o
o T . Annual average precipitation contrasts temperature
fluence of natural variability diminishes with respect to

signal uncertainty: thus, TMT contributes less informa, that the models do not predict a consistent sign for
g Y ' e trend for the Central United States (Fig.1). We

tion but nevertheless still does not degrade the predic- . ; .
. . —consider two end members of the corresponding multi-
tion. In the case of the extended observational perig L S

model distribution of precipitation trends as test cases
however, when measurements are removed that cpn-

tain the global spatial details that correctly constra@ th r.scalar predpnon. The IN.M. CM 3.0 model predicts
a linear trend in annual precipitation of abedt3 mm

scalar trend, the predictions including subsidiary Meg: - 4e’ in the Central United States based on a single

surements lose accuracy and precision. This properrF lization. The MIROC 3.2 medium resolution model

serves to inform prediction design based on the avail-_ . . o

- . predicts a linear trend in annual precipitation-et5
ability and quality of measurements. 1 o

mm decade" based on three realizations.

The inconsistency in sign among the model precip-
itation trends manifests itself in the substantially large

For precipitation, we will also consider scalar preatio of signal shape uncertainty to natural variability
diction for the trend in annual average precipitation foelative to temperature. In Fig. 7 we show the natu-
the same three geographical regions: the Central Unitadl variability and signal uncertainty fields associated
States, Northern Europe, and the Sahel, as definedvith prediction of precipitation in the Central United
Table 1. The models do not predict a consistent sign ftates for a 20-yr timeseries. Additionally, the precip-
the trend in Central United States precipitation, so vitation case is distinguished by the dominance of the

c. Precipitation
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FiG. 7. The signal uncertaintis and natural variabilitys ;, /4, associated with the Central United States (see
Table 1 for precise definition) precipitation. The diagoel@ments of the dimensionless covariances are shown.
The same procedures were followed to form these covariascesre used for temperature, and the same CMIP3
models were used (although the number of realizations peemaried slightly). In contrast to temperature, the
signal uncertainty is much larger than the natural varigbiBoth the signal uncertainty and the natural variapilit
are dominated by the Tropics. The signal shape uncertaagignificantly more regional scale spatial structure
than temperature.

Tropics in the case of both natural variability and sigsipitation signal. With an ensemble with as few as 24
nal shape uncertainty, even when considering a precipiembers, one should expect a mottled pattern of uncer-
tation trend at mid-latitudes. These differences betweginty rather than a uniform blanket of uncertainty. With
precipitation and temperature are also strongly evidemt ensemble of hundreds to thousands of runs, only then
in the contravariant fingerprirtt for precipitation pre- should a uniform blanket of uncertainty appear. The
diction (Fig. 8). In the case of the Central United Statdanited size of the CMIP3 ensemble should, then, per-
there is moderate sensitivity to the local precipitationit some suppression of natural variability in the re-
behavior and substantial sensitivity to precipitation arions with relatively certain model physics that would
the Pacific coast of North America centered ne&NL5 be inappropriate to apply to real data.
Beyond these correlations, however, the major predic- As seen in Fig. 9, the 30-yr forecast for INM CM3.0
tors are to be found in the subtropical eastern Pacifig,; 7 + 21 mm, nearly three-sigma from the true value
the tropical western Pacific, and the Indian Ocean basif.+-66 + 1 mm. This statistically improbable occur-
This contravariant fingerprint efficiently suppresses nagnce is likely an indication that both the ensemble lacks
Ural Var|ab|l|ty by a faCtOI‘ Of ﬁVe or more for the case Oénough members to fu"y Span the Space Of possible pre_
both increasing and decreasing precipitation. cipitation patterns, and that important information for
Determination of a contravariant fingerprint for preprecipitation is missing from the analysis, information
cipitation is hindered by the limited size of the CMIP®n changes in the large-scale mid-latitude circulation.
ensemble we use to estimate signal uncertainty. Thiee forecast for the first realization of the MIROC 3.2
mottled pattern of signal uncertainty as it appears imedium resolution model is-3 + 13 mm, which en-
Fig. 7 indicates that the physics of precipitation is highlyompasses the true value-e6.5 £ 0.6 mm. Note that
uncertain in climate modeling. The fact that patches wak arbitrarily chose the first realization which shows a
low uncertainty are intertwined with patches of high ursubstantially reduced drying relative to the mean of the
certainty does not mean that the patches of low uncthrree realization. This prediction is accurate but the pre-
tainty point toward confidence in emergence of a preision is very low compared to the case of the temper-
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FiG. 8. Contravariant fingerprints for regional precipitatjprediction of the Central United States (upper left),
Northern Europe (upper right), and the Sahel (lower).

ature forecasts. This result is a direct consequenceptifude. Overall there are scattered contributions from
models’ extreme uncertainty in the physics of preciphre Gulf of Guinea, southeast Asia, and the western
itation relative to the more certain physics of tempetropical Pacific, but these contributions are much lower
ature change due to anthropogenically induced greém-amplitude relative to the low-latitude dependences

house forcing. in the Central United States fingerprint. The analysis
of 20 years of “observations” generates a prediction of
2) NORTHERN EUROPE +14.8 £ 15.6 mm increase in precipitation (Fig. 10),

compared to a true value 6f13.0 + 0.8 mm.

The precipitation trend in Northern Europe, as re-
vealed by its contravariant fingerprint, is subjectto more 3) THe SAHEL
local influence than the trend in temperature. It is
strongly affected by the precipitation trend over the ma- The contravariant fingerprint for Sahelian precipita-
jority of the European landmass and an eastward shifin shows adjacent areas of increasing and decreasing
in precipitation over the subtropical eastern Pacific indirecipitation in the tropical Indian and Pacific Ocean
cated by adjacent areas of increasing and decreasing basins that is largely the result of inconsistent spatial
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FiG. 9. Two cases of “observations” are presented, followirgsidime scheme as Figs. 5 and 6, but with precipita-
tion in the Central United States as the target scalar. Themypanel shows a model realization of the 21st century
with increasing precipitation over fifty years drawn fromMNINCM 3.0, and the lower panel shows decreasing
precipitation for the same period drawn from MIROC 3.2 (nuadiresolution). The timeseries of regional precip-
itation are significantly more variable than temperatuwg tbe contravariant fingerprint still provides substdntia
reduction in interannual variability.

patterns of precipitation trends among the multi-modgle case of temperature because the agreement among
ensemble. Most of the individual models show a cothe model patterns is good compared with the ampli-
relation between overall decreases in precipitation tide of natural variability (Fig. 3). On the other hand,
the ITCZ and decreases in precipitation in the Sah#&r precipitation, signal shape uncertainty strongly out-
The spatial disparity in the pattern of ITCZ precipitaweighs natural variability, and trend forecasts are sub-
tion change among the models results in the areas ofsikntially more uncertain. A path to potential improve-
ternating sign in precipitation change about the Equatoent for the precipitation forecasts, based on the results
seen in the fingerprint. Application of the contravariamf the inclusion of TMT in the temperature analysis, is
fingerprint forAt = 20 years generates a prediction othe addition of more data types. In particular, recent
+0.8 £ 8.6 mm (c.f. Fig. 10), compared with the truevork has shown that sea surface temperature plays a
value of—8.1 £ 0.2 mm. The true value lies just outsidestrong role in precipitation trends in the Sahel (Yoshioka
the one-sigma uncertainty envelope. et al. 2007), and that upper air wind patterns are highly

The contrast between the performance in tempeF&_rrelated with extreme precipitat.ion event; in North-
ture and precipitation illustrates a key points about off" Europe. Thus a future study incorporating surface
method of scalar prediction. The method relies on tf@mperature and geopotential height into a precipitation
relative robustness of trend patterns, as opposed to @@lysis would be enlightening in this regard.
magnitudes of the trends themselves, in making accu-
rate predictions. The performance is therefore strong in
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Fic. 10. The upper panel follows the same scheme as Figs. 5 antdféri0 years of data on precipitation in
the Sahel. The true change in precipitation at year 56076 mm is consistent with the scalar prediction of
+0.86 £ 8.61 mm. The lower panel shows the same but for precipitation irttdwn Europe. Here the true change
of +13.02 mm is easily consistent with the predicted value-aft.80+ 15.57 mm. For both these cases, the scalar
prediction method strongly reduces uncertainty due torahuriability and represents a qualitative improvement
over extrapolation of local observations.

4) Summary and discussion 17, and 18 are the equations of generalized scalar pre-
diction for multiple scalars. A contravariant fingerprint
We have presented a method for predicting arbitralfydetermined such that, when it is convolved with the
scalars of the climate system given a timeseries of ai#§@, an accurate and precise estimate of the underlying
data type. The equations are derived from the stand8tH!ti-decadal trend in the scalar is found. In optimal
approaches of ensemble prediction of climate charfg@iection, natural variability as determined by a climate
but Subject to the assumption that climate models pf‘@Qdel IS ImpIICItly used to eS.tlmate.the Uncertalnty and
dict patterns of Change better than they predict the m&@nfld.ence bounds on detection. |t.|S frequgntly the case
nitude of change, a fundamental assumption of optin{gft climate models only poorly simulate inter-annual
fingerprinting/linear multi-pattern regression. This aslimate variability, so in Egs. 23 and 26 we present a
sumption is reasonable because there are very few Bithod for deriving scalar trend uncertainty that is only
servable variables whose pattern of change explains fgimally dependent upon a climate model.
physics underlying the transient sensitivity of the cli- Generalized scalar prediction preferentially weights
mate. Consequently, it is safe to assume the transigrdse subspaces of a data type in which there is little
sensitivity of the climate is only weakly constrained bgatural variability and there is strong certainty in the
climate models and quantifiable only from timeseries physics relating the data to the scalar of interest. A long
data. Egs. 10, 11, and 12 are the equations of genecalntrol run of a climate model is used to estimate the
ized scalar prediction for a single scalar, and Eqgs. I@tural variability, and an ensemble of forced runs of

17



a climate model is used to estimate the uncertainty thie new data type becomes less valuable with a longer
the physics of climate change. The ensemble of forceheseries of data because the increase in length of the
runs is generated by either varying the tunable free pismeseries by itself acts to reduce the influence of natural
rameters of the climate model within physically reasorariability in scalar prediction. This is illustrated byeth
able values or incorporating different physically plausaddition of mid-tropopheric microwave brightness tem-
ble parameterizations of sub-gridscale processes. Wipenature (TMT) to the surface air temperature record in
the physics of climate change relevant to a specifipdedicting trends in surface air temperature.

scalar is relatively certain with respect to natural vari- - practical application of generalized scalar prediction
ability, generalized scalar detgctlon se.lects SUbSPdCG%%)ends on a satisfactory prescription of naturally oc-
the data type where the physics relating the scalar afigtring inter-annual variability of the climate system.
the data is strong and the influence of natural variabilighe suppression of natural variability, or optimization,
is minimal. If the data space includes the scalar of igepends on the prescription of natural variability cor-
terest, a significant component of the contravariant flﬂgcﬂy capturing patterns of variability and not necessar-
gerprint strongly considers the past history of that scalgf on the overall amplitude of variability. If patterns of
(surface air temperature of the Central United Stat&giapility, represented by the dominant eigenmodes of
unless that scalar is naturally highly variable (surface 8, are incorrect, spurious optimization will take place,
temperature of Northern Europe). In other cases whejigq addition of new data types to scalar prediction might
the physics of scalar change is less certain, the weiglisgrade scalar prediction. This indeed is what occurred
ing is strongly toward the historical trend in that scalagypen adding the Northern Hemisphere TMT field to the
The relative weighting of physical relationships oNorthern Hemisphere surface air temperature field as
climate system and natural variability in generalizéie data in predicting Central United States surface air
scalar prediction is also a function of the length of tHeémperature trends. The amplitude of natural variability
timeseries of data available. Natural variability is anti€nters only in establishing the relationship between sig-
ipated to be a stationary random process in time, so i uncertainty and natural variability in Egs. 10 and 16,
longer the timeseries, the less important natural varial#ind this is only relevant at the level of order of magni-
ity should be in trend estimation. As a consequencetugle. In most circumstances, either signal uncertainty is
shorter timeseries of data will more strongly weight tdnuch greater than natural variability or vice versa, thus
ward consideration of natural variability in the constru@stablishing dominance in evaluatidwithout regard
tion of the contravariant fingerprint so that the influende the actual amplitude of natural variability. Moreover,
of natural variability can be suppressed in climate préhe amplitude of natural variability plays little role in
diction. Longer timeseries of data will more prefererthe estimate of uncertainty in the scalar trend, because
tially consider uncertainty in model physics, becaug@tural variability’s contribution to the uncertainty isd
uncertainty in model physics is not impacted by lengtBrmined by convolution of the contravariant fingerprint
of the timeseries while natural variability becomes leg$1to the actual data (c.f. Egs. 23 and 26).
significant. Therefore, the timeseries of detectors—the Practical application of generalized scalar prediction
result of multiplying individual timesteps of data byjepends strongly on a complete accounting for the com-
the contravariant fingerprint—for shorter timeseries withunity’s collective uncertainty in the physics of anthro-
show more suppression of natural variability than fgjogenic climate change. In the examples presented in
longer timeseries of data. In the end, longer timeseriggs paper, we used the CMIP3 ensemble of 24 climate
of data always give more precise forecasts of climaigodels which are somewhat but not fully independent.
change than shorter timeseries. As a consequence, not all of our actual uncertainty is ac-

Generalized scalar prediction handles not only mafgunted for in the CMIP3 ensemble: real data might ex-
different types of data, it also handles them jointly. THaPit physics which is notincluded in the physical space
addition of new data types is expected to add new inféRanned by the CMIP3 models. A more appropriate en-
mation to the scalar prediction. Just how much informgémble would include several thousands of forced runs
tion depends on the data type. If the data type revegf& climate model, each run incorporating different yet
new aspects of climate change physics relevant to fﬁ@sonable values for the physical parameters represent-
scalar in question, the data type should contribute si§g Processes that are unresolved by the model’s spatio-
nificantly to the reduction of uncertainty in scalar prdémporal grid.
diction. Also, if the data type is sensitive to components Practical application most likely also depends upon
of the climate system that are less naturally variable pitediction using multiple scalars. Perhaps the most ob-
too should contribute to the reduction of uncertainty wious application is forecasting of inter-decadal climate
scalar prediction. In the latter case, the contribution ttends due to anthropogenic forcing. Anthropogenic
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forcing of the climate system can take many formbution strictly to the domain of interest, though, would
the most prominent of which are increasing well-mixdikely produce less appealing results for prediction of
greenhouse gases, sulfate aerosols, black carbon re$ultiwe trends.

ing from agricultural burning, and changing land use. Finally, we have assumed throughout that the under-
Social policy can influence each of these types of forging trends in climate will be linear in time over the
ing differently, so generalized scalar prediction shoudming decades. This is partially justified by the sim-
incorporate scalars that distinguish between these diffelations of CMIP3. In reality, though, we do not yet
ent types of forcing independently. Then, given varyirghow how the anthropogenic radiative forcings of cli-
scenarios for how these different forcings will evolvenate will evolve in the coming decades. Thus, some re-
over the coming decades, we would have sufficient isearch will be necessary to determine how past trends in
formation to formulate a climate forecast that considfimate translate to prediction if rates of anthropogenic
ers all of these types of forcings. In this applicatiomadiative forcing change in the future.

then, it is essential that, for each prescription of model
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