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Abstract

We present an approach to predicting scalars of the climate system on inter-decadal timescales, and we call
that approach generalized scalar prediction. Generalizedscalar prediction combines the predictions of an ensem-
ble of models that spans the community’s uncertainty range in climate modeling with a timeseries of any data
type, including hybrid data. The scalars can be any variableor linear combination of variables of the climate
system, such as mass flux associated with the Hadley circulation or microscale precipitation. No preference need
be given to any particular model. The resulting equations show that both natural variability and uncertainty in
models physics must be considered when finding indicators inthe given data type that optimize predicted change
in arbitrary scalars. We demonstrate this approach using the CMIP3 ensemble of global warming simulations and
the output of an independent model serving as a proxy for datato predict regional surface air temperature and
regional precipitation trends, surface air temperature and precipitation representing end members in the physi-
cal certainty in our modeling of them. The approach gives accurate results, but the precision of the predictions
depends on the certainty of model physics relevant to the scalar in question. We find a strong relationship be-
tween the mathematical techniques of signal detection and attribution and generalized scalar prediction, but some
subtlety is required in the interpretation of results of theformer.

1. Introduction

The fields of climate signal detection and attribution
and regional trend prediction are two of the central con-
cerns of climate research, the former answering ques-
tions regarding human influence on climate and the lat-
ter answering questions of how climate can be expected
to change. A common approach to both of these prob-
lems involves scalar estimation. In climate signal detec-
tion and attribution, the scalars involved scale vectors
describing the shapes with which signals are expected to
emerge. That methodology is optimal detection, or lin-
ear multi-pattern regression, and it has been described at
length elsewhere (Bell 1986; Hasselmann 1993; North
et al. 1995; Hasselmann 1997). In regional trend pre-
diction, the scalars are typically the rates at which sur-
face air temperature and precipitation are predicted to
increase (Houghton et al. 2001). The two fields thus
far, even though both involve scalar prediction, have not
been explicitly related. This paper addresses the rela-
tionship between the two.

We define generalized scalar prediction the field in
which any linearly formed scalar of the climate system

can be predicted based on any combination of data sets.
The field of generalized scalar prediction in climate is
the essential focus of the community involved in re-
gional climate prediction. Kharin and Zwiers (2002)
were among the first to point toward the necessity of
using a large ensemble of sophisticated global climate
models for use in regional trend prediction. A combina-
tion of the predictions of many models would average
out some of the differences between them and give un-
certainty estimates due to inter-model differences in pre-
diction. Giorgi and Francisco (2000a) took a step back
to evaluate the dominant sources of uncertainty in re-
gional prediction and found that inter-model differences
dominate over naturally occurring inter-annual variabil-
ity and biases in model fields as sources of uncertainty.
Giorgi and Francisco (2000b) in fact showed that a 3- or
4-member ensemble of realizations of transient runs of
one climate model is enough to eliminate inter-annual
variability as a significant source of uncertainty in re-
gional climate prediction. Giorgi et al. (2001) point out
that correlations between predictions of trends in differ-
ent regions should contain important information on the
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robustness of trend prediction for any one region. At
that point, several studies sought to assign weights to
various models according to their performances in sim-
ulating historical and present climate. This is a natu-
ral conclusion when Bayesian inference is applied, as is
done by Min and Hense (2006a,b); Min et al. (2007).
In each of these papers, just as in Räisänen and Palmer
(2001); Giorgi and Mearns (2002, 2003), each model
in an ensemble of models is evaluated on criteria com-
posed by the forecaster, a subjective weight is deduced,
and a linear combination of the model members of the
ensemble is combined to form a forecast. The Third
Assessment Report of the Intergovernmental Panel on
Climate Change (Houghton et al. 2001) sought to avoid
controversy by equally weighting many climate models
in deriving predictions of regional climate trends and as-
sociated uncertainties.

Here we also apply Bayesian inference but with dif-
ferent assumptions. We make no attempt to evaluate
the relative performance of climate models. Instead, we
take advantage of the strong relationships between vari-
ables and regions in the predictions of decadal time scale
trends by different climate models. This assumption is
the same as that made in linear multi-pattern regression,
or optimal fingerprinting/detection (Bell 1986; Hassel-
mann 1993, 1997; North et al. 1995; Leroy 1998; Allen
and Tett 1999), which has been applied to trend detec-
tion and attribution to specific causes for a variety of
geophysical variables (Stott et al. 2001; Tett et al. 1999,
2002; Santer et al. 2003; Thorne et al. 2003; Allen et al.
2006). The central claim is that, while climate mod-
els have different sensitivities to anthropogenic radiative
forcing, the patterns of change are mostly insensitive
to these different climate sensitivities. We assume the
same. More recently, the small differences in patterns of
change have been taken into consideration in the appli-
cation of optimal detection (Huntingford et al. 2006), an
application of a methodology described in Bell (1986).
The result of our application of Bayesian inference with
the above assumptions is a method for using arbitrary
data to arrive at predictions for trends in arbitrary scalar
quantities of the climate system in a way that takes ad-
vantage of physical relationships of varying degrees of
uncertainty within the climate system. The final equa-
tions are similar to those in Bell (1986) and Huntingford
et al. (2006) but with the distinction that critical atten-
tion must be paid to the normalization of signal shapes.

In the second section we present a derivation of gen-
eralized scalar prediction that considers physical con-
nections in the climate system by applying Bayesian in-
ference on climate signal detection. A set of equations
will result. In the third section we will present examples
that illustrate various properties of generalized scalar

prediction. In the fourth we will summarize the results
and discuss a few potential applications and limitations
of this technique.

2. Generalized scalar prediction

This derivation is based on two levels of Bayesian
inference and a simple model for trend prediction. We
write down the well known Bayes’s theorem,

P (x|D) ∝ P (D|x) p(x), (1)

wherep(x), the prior, is a probability density function
on the scalar quantityx describing knowledge ofx be-
fore data setD is obtained and analyzed;P (D|x), the
evidence function, is the conditional probability of ob-
taining dataD should the scalar quantity bex; and
P (x|D), the posterior, is the probability density func-
tion for x after analysis of dataD. The normalization
constant for the posterior isp(D), the likelihood of the
data, which turns Bayes’s theorem into an equality:

P (x|D) = P (D|x) p(x)/p(D). (2)

This is a single level of Bayesian inference for the scalar
x. In climate, a scalarx obtained from dataD is typi-
cally obtained given the benefit of a model for the data
M , which itself is uncertain. As a consequence, there
are generally many models available that relate scalar
quantityx to a data setD. We call that set of models
M, the members of which areMi. The posterior prob-
ably density function for the scalar becomes

P (x|D,M) ∝
∑

Mi∈M

P (D|x, Mi) p(x) p(Mi) (3)

with p(Mi) being the probability of modelMi relative
to all the other models inM. In the context of scalar
prediction, this means that future trends can be esti-
mated by timeseries analysis of historical data based on
multiple models and then averaging together the results
based on subjective weights.

In this section, the equations of generalized scalar
prediction are derived from the foundational Eq. 3 and
the method of climate forecast is presented based on
standard error analysis.

a. Equations of scalar prediction

This is similar to the approach taken by Räisänen
and Palmer (2001) but with some assumptions of opti-
mal detection included. In truth, the relative probabil-
ity of model Mi must be conditional on the existence
of dataD and consequently the weightp(Mi) should
bep(Mi|D) and not entirely subjective. These are the
marginal probabilities of the model given dataD, and
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how this can be deduced based on timeseries data was
first presented in Leroy (1998) and thereafter by Min
et al. (2007). For now we will only consider the sub-
jective probabilityp(Mi) in the derivation and discuss
later how one can refine conclusions by instead using
the marginal probabilities of the models as weights.

The standard assumption in optimal detection is that,
while various models models show different sensitivi-
ties in greenhouse gas forcing, they nonetheless show
very similar patterns of change. It was noted in Giorgi
and Francisco (2000a) that patterns of surface air tem-
perature change, when normalized by sensitivity of a
model, are independent of greenhouse gas forcing sce-
nario. Thus, it is reasonable to model a timeseries of
datad(t) as

d(t) = α(t) si + dn(t) (4)

where the patternsi is the derivative of the model for the
data in a scalarα. Thedn(t) are realizations of natu-
ral variability of the climate system viewed through the

filter of the data type represented byd. Here, natural
variability refers to all temporal fluctuations of the cli-
mate system not specifically related to trendsdα/dt that
result from external forcings of the system. In the most
typical application of signal detection,d is a longitude-
latitude map of surface air temperature,α is the global
average surface air temperature, and the signal pattern
si is given by

si =
dg

dα

∣

∣

∣

Mi

(5)

whereg is a model of the datad that varies with the
scalar quantityα. In one of the examples of section 3,
the quantity on the right gives the trend in the longitude-
latitude map of surface air temperature normalized by
the trend in regional surface air temperature. The most
likely fit to the timeseries of datad(t) will give a time
derivative ofα(t) that represents the secular trend in re-
gional surface air temperature. The realizations of nat-
ural variabilitydn(t) are normally distributed asdn ∼
N (0,Σn).

We expand Eq. 3 using the trend in the datad(t) as the data and find that

P
(dα

dt

∣

∣

dd

dt
,M

)

∝
∑

Mi∈M

(2π)−k/2
∣

∣Σdn/dt

∣

∣

−1/2
exp

[

−
1

2

(

(dd

dt
− si

dα

dt

)T
Σ−1

dn/dt

(dd

dt
− si

dα

dt

)

)]

p(Mi), (6)

wherek is the rank ofΣdn/dt. We have assumed an uninformative prior fordα/dt (p(x)), an implicit assumption
of optimal detection. The natural variability covarianceΣdn/dt derives from the normal distribution expected for
a residual trend induced by the natural variability,dn/dt ∼ N (0,Σdn/dt), and is related to the natural variability
covarianceΣn by

Σdn/dt =
12

(N3 − N) (yrs2)
Σn, (7)

with N the number of years in a continuous timeseries of annual average data, for serially uncorrelated natural
variability. At this point we assume a continuum of modelsMi ∈ M such that the distribution of the signals is
normal:s ∼ N (s̄,Σs). Under this assumption, Eq. 6 becomes

P
(dα

dt

∣

∣

dd

dt
,M

)

∝ (2π)−k
∣

∣Σdn/dt

∣

∣

−1/2
∫

dks |Σs|
−1/2 (8)

× exp
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−
1

2

(

(dd
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− s
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dt
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dn/dt

(dd
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− s
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)]

× exp
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−
1

2
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s
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]

.

Performing the integral overdks gives

P
(dα

dt

∣

∣

dd

dt
,M

)

∝ (2π)−k/2 |Σ|−1/2 exp
[

−
1

2

(

(dd

dt
− s̄

dα

dt
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(dd

dt
− s̄

dα
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)]

(9)

where
Σ = Σdn/dt + (dα/dt)2 Σs. (10)

The most likely estimate for the scalar trenddα/dt is (dα/dt)ml, where

(dα/dt)ml = fT (dd/dt) (11)

f = Σ−1s̄
(

s̄TΣ−1s̄
)−1

. (12)
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The vectorf is thecontravariant fingerprintto the fin-
gerprint̄s and is best interpreted as a vector which gives
an optimal and unbiased most likely estimate for a trend
in the climate system. Eqs. 11 and 12 are the equa-
tions for generalized scalar trend prediction for a single
scalar.

In this derivation, no condition is placed on the data
d or on the scalarα; hence, they are completely general,
and any data set can be used to determine trends associ-
ated with any particular scalar quantity in climate. Data
sets can be anything from in situ surface and upper air
measurements to satellite hyperspectral measurements;
the scalar can be anything from the mass flux associated
with the Hadley circulation to microscale precipitation.
The most standard application in the literature to date
has been to define the data setd to be gridded maps of
surface air temperature and the scalarα the global av-
erage surface air temperature (Huntingford et al. 2006).
Generalized scalar prediction is well suited to regional
climate prediction, though, because the scalar can be de-
fined as a regional temperature and the data set chosen
so as to minimize the influence of natural variability on
detection. It is possible that, depending on the scalar
chosen, there exists a strong correlation in the climate
system between trends in the chosen scalar and other
seemingly unrelated geophysical variables. Those cor-
relations are found by using an ensemble of modelsM
that span our subjective uncertainty in climate forecast-
ing to defineΣs:

s̄ =
∑

Mi∈M

si p(Mi) (13)

Σs =
∑

Mi∈M

(si − s̄) (si − s̄)T p(Mi). (14)

When the models inM show agreement in some di-
mensions of the signal space, the corresponding ele-
ments ofΣs will be small and detection will be di-
rected preferentially toward those dimensions. Our in-
terpretation of this effect is that uncertain climate sys-
tem physics should be factored into forecasts of regional
trends. When the physics, in the form of relationships
between variables in the climate system, is uncertain,
then a posterior estimate of trends takes only interannual
variability into consideration. When it is more certain,
however, a posterior estimate will begin to take other
elements of the climate system into consideration.

The application of Eqs. 10 and 11 depends upon the
length∆t of the timeseries ofd(t) in question. Natu-
ral interannual variability in the space of the dataΣn is
related to the influence of that variability on trend esti-
matesΣdn/dt byΣdn/dt ≈ (∆t)−3 Σn for a continuous
timeseries,Σdn/dt ≈ (∆t)−2 Σn for a timeseries with
major gaps. In either case, the longer the timeseries is

the less import natural variability becomes, because the
signal physics uncertainty term—the second term on the
right of Eq. 10—is independent of the length of the time-
series.

This form of detection ameliorates the difficulties
of eigenmode truncation typically associated with sig-
nal detection. When a precise signal shape is prescribed
in optimal detection, posterior estimates of trends be-
come highly sensitive to the number of eigenvectors re-
tained in the inversion ofΣn. Allen and Tett (1999)
solve this problem by demanding that post-fit residuals
be consistent with estimates of natural variability and
that eigenmodes be truncated accordingly, but sensitiv-
ity to eigenmode truncation remains. The eigenmode
truncation problem derives from the fact that eigenvec-
tors of Σn associated with small eigenvalues occupy
subspaces of the signal shape that are significantly more
uncertain than the subspaces defined by eigenvectors as-
sociated with larger eigenvalues. As noted by Hunt-
ingford et al. (2006) and Leroy et al. (2008), introduc-
tion of Σs “washes out” the subspaces associated with
small eigenvalues ofΣn, and the sensitivity to eigen-
mode truncation is almost entirely lost. The termΣs in
Eq. 10 serves that numerical purpose here.

Eqs. 10 and 11 are iterative indα/dt. In the first it-
eration fordα/dt, one should introduce a good estimate
for it into Eq. 10 and solve for a new value in Eq. 11.
The quantitydα/dt in Eq. 10 plays the role of a weight-
ing between the influence of natural variability and the
signal physics uncertainty which, in most applications,
strongly weights toward natural variability. After the
first determination ofdα/dt through Eq. 11, that de-
termination can be inserted again into Eq. 10 to find a
new determination ofdα/dt, and so on. Because of the
strong weighting toward natural variability, though, con-
vergence is expected to be rapid. For this reason, in the
remainder of this paper we only apply Eqs. 10 and 11
one time with no iteration.

Some applications of generalized scalar prediction
require the detection of multiple scalars simultaneously.
In our example for forecasting trends in regional sur-
face air temperature, the regional surface air tempera-
ture is expected to rise with increasing greenhouse gases
but fall with increasing concentrations of tropospheric
sulfate aerosols. Since future trends in these radiative
forcings are expected to evolve differently, it makes
sense to consider them separately when forecasting fu-
ture trends, yet the historical record contains both ra-
diative forcings simultaneously. In such instances, the
model for the data (c.f. Eq. 4) becomes

d(t) = α1(t) s
(1)
i + α2(t) s

(2)
i + dn(t) (15)

wheres
(1)
i is the trenddg/dα in the data expected of
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increasing greenhouse gases with respect to the trend
in global surface air temperature ands(2)

i is the trend
df/dα in the data expected of increasing sulfate aerosols
with respect to the trend in global surface air tempera-
ture. A derivation following that given above for just
one pattern gives the following equations for scalar pre-
diction:

Σ = Σdn/dt +
∑

Mi∈M

p(Mi) (16)

×
2

∑

j,k=1

(dαj

dt

)(dαk

dt

)

δs
(j)
i δs

(k)
i

T

(dα/dt)ml = FT (dd/dt) (17)

F = Σ−1S̄ (S̄TΣ−1S̄)−1 (18)

in which the arrayα is composed of the individual
scalarsαj , the columns of̄S are the individual̄s(j), and

δs
(j)
i is the difference between the realization of signalj

by modelMi from the mean signalj over all models in
M, or δs

(j)
i = s

(j)
i − s̄(j). The most likely estimate for

the generalized scalar trenddα/dt is (dα/dt)ml. The
columns of the matrixF are the contravariant finger-
prints to the fingerprints̄S because, when multiplied by
the fingerprints, yield the identity matrix (c.f. Eq. 12).
Eqs. 16, 17, and 18 can be applied for, not just two, but
any number of signals. These equations should be ap-
plied following the same methodology as Eqs. 10, 11,
and 12.

b. Climate prediction

With a determination of most likely trendsdα/dt
and an assumption of linear trends in climate, the prob-
ability density for the prediction of that scalar on inter-
decadal time scales becomes

α(t) ∼ N
(

(dα/dt)ml (t−t0), Σdα/dt(t−t0)
2+Σn

)

.
(19)

The probability density as a function of the scalar value
shifts linearly in time at the rate(dα/dt)ml beginning
from a nominal timet0. Its width is decided by two
terms, the first being the uncertainty on the underlying
“climate trend”(dα/dt)ml and the second being an ac-
counting for the perpetual natural fluctuations of the cli-
mate systemδn. Both are accounted as full covariance
matrices,Σdα/dt andΣn. The latter can be determined
by a number of means involving combinations of de-
trended data and control runs of climate models. The
former term requires more care.

Standard optimal fingerprinting techniques provide
a simple estimate for the uncertainty covariance in the
most likely trend:Σdα/dt = (S̄T Σ−1S̄)−1, obtainable

from error propagation based on the model in Eq. 4 in
which error enters through the formulation ofs̄ and the
natural variabilitydn. The natural variability is gener-
ally prescribed by a long control run of a climate model
and is rarely realistic, so a more relevant error analy-
sis should be based on data alone. In the approach, we
multiply the contravariant fingerprintsF to each tempo-
ral realization of the climate data vectord(t) to arrive at
a timeseries of “detectors”α(t):

α(t) = FT d(t). (20)

The contravariant fingerprintsF are derived based on
a prescription of natural variability, but it is possible
nevertheless to deduce an uncertainty which is semi-
independent of the model-prescribed natural variability.
We do this by linear regression on the timeseries of de-
tectorsα(t) (now working with just one scalar):

m =
(

N
∑

i=1

(ti − t̄)2
)−1

N
∑

i=1

α(ti) (ti − t̄) (21)

b = ᾱ − mt̄ (22)

with t̄ the mean of theti, ᾱ the mean of the detectors,
N the number of time intervals (generally years), and
m andb the slope and intercept of the fit. Ifσ2

α is the
mean square post-fit residual of the detectors, then the
squared uncertainties in the slope〈δm2〉, the intercept
〈δb2〉, and the covariance of their uncertainties〈δm δb〉
are

〈δm2〉 =
(

N
∑

i=1

(ti − t̄)2
)−1

σ2
α (23)

〈δb2〉 = 〈δm2〉 t̄2 + σ2
α/N (24)

〈δm δb〉 = −〈δm2〉 t̄. (25)

The fitted slopem is exactly the same as the most
likely estimate of the trend(dα/dt)ml, but the uncer-
tainty in the slope is not the same as the uncertainty in
the scalar trend. The uncertainty in the slope, given in
Eq. 23, only accounts for the uncertainty introduced by
natural variability and not the uncertainty due to uncer-
tainty in the shape of the emerging signal. Because the
most likely estimate of the scalar trend will be in error
in part because of error in the estimation of the signal
fingerprints̄, this latter error must be included. This is
done by adding it to the uncertainty in the slope,〈δm2〉:

σ2
dα/dt = 〈δm2〉 + fTΣsf (dα/dt)2 (26)

with thedα/dt being a prior estimate of the scalar trend.
It is this expression for uncertainty in trend which en-
ters into the climate forecast. In the case of a forecast
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of a single scalar, the forecast has meanαforecast(t) and
standard deviationσ2

forecast given by

αforecast(t) = mt + b (27)

σ2
forecast(t) = σ2

dα/dt (t − t̄)2 + σ2
α/N. (28)

Thus, the climate prediction for the scalar trend
has the probability density functionα(t) ∼
N

(

αforecast(t), σ
2
forecast(t) + σ2

n

)

, as in Eq. 19.

3. Examples

In this section we demonstrate the methodology’s
predictive capability within a modeling framework. We
utilize an ensemble of different models run with the
same boundary conditions for the same simulated time
period to prescribe the trend patternssi (signals). One
model from this ensemble is withheld and is used to rep-
resent an independent physical realization and associ-
ated set of simulated observations. We study two fa-
miliar state variables, surface air temperature and pre-
cipitation. We utilize the World Climate Research Pro-
gramme’s (WCRP’s) Coupled Model Intercomparison
Project phase 3 (CMIP3) multi-model dataset for the
SRES A1B emissions scenario, which provides a total
of 55 realizations for 24 different models for temper-
ature and 53 realizations for 24 models for precipita-
tion. We use generalized scalar prediction to make fore-
casts of area-weighted regional quantities, choosing the
Central United States, Northern Europe, and the Sahel
as representative (Table 1). Temperature and precipita-
tion provide demonstrative examples of the extremes of
application of this type of multi-model ensemble pre-
diction because the models predict positive, significant
trends in temperature but the precipitation trends are dis-
tributed nearly symmetrically about zero (Fig. 1). We
proceed first with the discussion of temperature fol-
lowed by that for precipitation.

a. Temperature

For each of the three regions, the following analysis
procedure is followed. First we compute a signal pattern
si for each model realization by linear regression anal-
ysis of the first 50 years temperature data for the 21st
century. We calculate an estimate of the scalar trend
dα/dt (regional temperature in this case) by finding the
area-weighted average of the atmospheric surface tem-
perature trend at the model gridpoints lying within the
target region. We normalize the global signal patterns
for each model (Eq. 5) by the corresponding estimate
of the scalar trend. For models with multiple realiza-
tions, we average the normalized signals obtained from
all realizations together to compute a single signal pat-
tern per model, resulting in a set of 24 normalized global

signals. Each of these normalized signals is then re-
gridded onto a uniform32 × 64 (latitude by longitude)
reduced-resolution grid (Fig. 2). The mean signals̄ and
covariance matrixΣs (Fig. 3) are computed from these
normalized, regridded signal patterns.

A prescription of natural variability is obtained from
the present-day control run of the NCAR CCSM 3.0
model. The annual mean from each of the 600 model
years of monthly data is found, and the covariance for
this annual average timeseries is computed. This covari-
ance matrix is normalized by12/(N3 −N) as in Eq. 7,
whereN is the number of years of “observations” avail-
able to generate the prediction, to obtain the covariance
of the realization of natural variability,Σdn/dt (Fig. 3).
Like signal uncertainty, natural variability is also con-
fined largely to high latitudes, though it extends further
into continental regions. The optimization provided by
the method we present here narrows the uncertainty of
the prediction by minimizing the influence of the areas
of high signal uncertainty and natural variability that do
not contribute proportionally to the scalar trend of inter-
est.

The quantities̄s , Σs andΣdn/dt (Eqs. 10,12) al-
low the computation off , the contravariant fingerprint
for regional prediction. We averaged together the 31
estimates off resulting from inversions ofΣ (Eq. 10)
with eigenvalue 20 to 50 kept to obtain the value used
for prediction (Fig. 4). In this exercise, we designated
one realization for one model as simulated observations
d and withheld all realizations for this model from the
computation of this contravariant fingerprint. The appli-
cation off to the timeseriesdi of annual average tem-
perature observations produces a timeseries of detectors
α. The prediction ofdα/dt is made through linear re-
gression analysis of these detectors. For these regional
demonstrations, we choose GISS Model ER as simu-
lated observations because it exhibits regional tempera-
ture changes far from the ensemble mean (c.f. Fig. 1).
From the designated GISS model data, we derive both a
true trend value, from all 50 years, and a simulated mea-
surement dataset, limited to 10 or 20 years, from which
we make a forecast. Henceforth these simulated mea-
surement datasets of limited length will be referred to as
“observations.”

1) CENTRAL UNITED STATES

In the analysis of the regional forecast for the Cen-
tral United States, we retain only Northern hemispheric
data. The contravariant fingerprint (f ) for the Central
United States shows the importance of both local and
oceanic effects for determining regional temperature
trends (Fig. 4). This contravariant fingerprint shows a
strong peak in amplitude over the central United States,
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FIG. 1. Distributions of Central United States temperature (upper) and precipitation (lower) trends from all avail-
able model realizations of SRES-A1B. The left hand plots arebar graphs showing the regional trend predicted
for each model (computed from a simple average for models submitting multiple realizations). The names of the
models are given on the vertical axis, with the corresponding number of realizations in parenthesis. The right
hand plots are frequency distributions for the same data as the left hand plots. The heavy black line shows the
best fit of a normal distribution to the data. Temperature andprecipitation provide a useful set of extremes for
regional prediction because models show relatively good agreement for temperature change but much variation for
precipitation.

along with a signicant correlation with sea surface tem-
peratures in the northern central Pacific, offset by an an-
ticorrelation with north Atlantic temperatures. This fin-
gerprint also indicates the dependence of the regional
surface temperature trend on high-latitude temperatures
strongly affected by sea ice variability off the east coast
of Greenland and in the Bering Sea.

We computed the results for∆t equal to 10 and 20
years—as if we had 10 or 20 years of data—to study the
forecast accuracy gained as longer timeseries of data are
utilized (Fig. 5). For 10 years, the estimate for the tem-
perature increase resulting from trend analysis of the de-
tectors (obtained from application of the contravariant
fingerprint, Eq. 20) is 0.43 K with a one-sigma uncer-
tainty of 0.40 K for the 30th year of the forecast. For 20
years, the estimate of the increase is 1.19 K and has a
substantially reduced uncertainty of 0.30 K for the end

of a 30-yr forecast. The result for 20 years is very close
to the true value, obtained by trend analysis of all 50
years of the model output of1.31± 0.03 K. The 10 year
timeseries of “observations” is too short to sufficiently
resolve the relationship between the global temperature
and regional temperature trends to make an optimized
forecast, but remarkably generalized scalar prediction
recovers a positive trend from these 10 years of observa-
tions when, in the same time period, the actual regional
average surface air temperature trend over the Central
United States exhibits a net negative trend of−0.13 K
yr−1.

2) NORTHERN EUROPE

The case of the contravariant fingerprint for North-
ern European temperature stands in contrast with that of
the central United States in that it shows very little de-
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Target Region Latitude Range Longitude Range
Central United States 35◦N−45◦N 110◦W−85◦W
Northen Europe 48◦N−55◦N 0◦E−18◦E
Sahel 23◦N−25◦N 13◦E−33◦E

TABLE 1.

FIG. 2. Trends of atmospheric surface air temperature normalized by trend in Central United States temperature
for twelve models. Eleven of the twelve models contributed multiple realizations for the emissions scenario and
thus provide a more robust estimation of the signal pattern.

pendence on the local temperature, indicating the long-
term trend is determined mostly by large-scale effects.
Like the Central United States, the surface temperature

trend is also dependent on ocean regions subject to a
great deal of sea ice variability, including the eastern
shore of Greenland, the Bering Sea, and the western por-
tion of Hudson Bay and its environs. For Northern Eu-
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FIG. 3. The variance of natural variabilityΣdn/dt and signal uncertaintyΣs for prediction of Central U.S. surface
air temperature trenddα/dt. The signal uncertainty is established using signals from 21 models that contributed
to CMIP3. Those signals were determined by linear regression Northern Hemisphere surface air temperature of
the first 50 years of SRES-A1B runs divided by the trend in surface air temperature over the Central U.S. over the
same time interval. Both are dimensionless, the natural variability Σdn/dt having been normalized by the estimated
trend(dα/dt)2.

rope, analysis of a ten year timeseries of “observations”
(∆t = 10 yrs) yields a predicted warming of0.35±0.43
K, significantly lower than the true value of1.26± 0.03
K obtained from model output. Increasing the length of
the observational timeseries to∆t = 20 yrs provides a
prediction of0.59 ± 0.23 K, a substantial improvement
in qualitative agreement with the true value but quan-
titatively it is three-sigma away from truth. This large
disagreement indicates that fundamental information is
missing from this prediction. Most likely this short-
coming is due to a combination of small areal extent
of the target region, which contains only three model
gridpoints for the reduced grid, and the relative paucity
of models used to prescribe the mean signal shapes̄and
the signal shape uncertaintyΣs. The contravariant fin-
gerprint reduces the natural variability effectively but
makes only a marginally quantitatively robust temper-
ature forecast.

3) THE SAHEL

The contravariant fingerprint for temperature in the
Sahel shows an intermediate sensitivity to local effects,
between the sensitivities exhibited by the Central United
States and Northern Europe. On the large scale, the

fingerprint exhibits a subtropical-equatorial dipole that
measures the expansion of the Hadley circulation. The
increase in cold air mass over the central and eastern
tropical Pacific is consistent with decreased subsidence,
a measure of the weakening Walker circulation. The
analysis of∆t = 10 years of “observations” yields a
prediction of1.37 ± 0.46 K, so that the one-σ uncer-
tainty envelope encompasses the true value of 1.73 K.
For∆t = 20 years, the prediction is1.52 ± 0.16 K.

b. Mixed data types

We have argued that this method of scalar predic-
tion is generalizable to arbitrary data types. This prop-
erty can be particularly useful when homogeneous, ac-
curate measurements of a scalar quantity of interest are
not available, but measurements of a different sort with
a strong physical relationship to the desired scalar ex-
ist. We demonstrate that behavior by utilizing simu-
lated observations of microwave brightness temperature
representative of the mid-troposphere (hereafter abbre-
viated TMT), as would be measured by channel 2 of
a Microwave Sounding Unit-type (MSU) satellite sen-
sor. We compute TMT using a radiative transfer model
applied to upper air temperature, specific humidity, sur-
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FIG. 4. The contravariant fingerprintsf for scalar prediction of (a) Central U.S. surface air temperature trend, (b)
Northern Europe surface air temperature trend, and (c) Sahel surface air temperature trend.

face pressure, surface air temperature, and surface emis-
sion temperature for a subset (14 models, one realization
each) of the same model runs we used in the surface air
temperature-only exercise above. This calculation re-
sults in two-dimensional spatial maps of TMT, which
are regridded to the same reduced resolution as the sur-
face air temperature maps.

We incorporate the TMT data into the analysis in
three different ways. The first method includes large-
scale maps of both surface air temperature observations
and TMT observations to form a joint observational
dataset. The second method includes surface air tem-
perature observations drawn from target region alone
together with large-scale spatial maps of TMT. The fi-
nal methods includes TMT observations alone. In each

case, the TMT observations were treated according to
the same procedure as surface temperature. First a sig-
nal in TMT is found from linear trend analysis of 50
years of annual average 21st century forecast data. Then
a normalized signal is computed by dividing this TMT
trend map by the trend in the scalar surface air tempera-
ture for the region of interest.

The resulting contravariant fingerprint for the first
method, consisting of a map corresponding to TMT ob-
servations and a map corresponding to contemporane-
ous surface air temperature observations, in the case of
the Central United States, is shown in Fig. 6. The sur-
face air temperature component of the joint contravari-
ant fingerprint preserves the key features of the sur-
face air temperature-only contravariant fingerprint: peak
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FIG. 5. Application of Central U.S. surface air temperature prediction to “observations” taken from the output of
a forced run of a climate model. The climate model used as a stand-in for data was not included in the ensemble
used to compose signal uncertaintyΣs. The natural variability was composed from a present day control run of
NCAR CCSM3. The black line and filled squares are the “observations”, defined to be surface air temperature
averaged over the Central U.S. The dashed line and open squares are the detectorsfT d(t), the application of the
contravariant fingerprint to Northern Hemisphere surface air temperature year by year. The gray envelope shows
the forecast for the underlying trend in surface air temperature over the Central U.S. computed according to Eqs. 27
and 28, and the light gray line shows the future evolution of surface air temperature over the Central U.S. Plot (a)
shows the result for ten years of data and plot (b) for twenty years of data. Notice the ability of this technique to
suppress natural variability and produce a forecast that isaccurate and four times more precise than would have
been obtained from extrapolating the surface air temperature over the Central U.S. only.

sensitivity over the central United States and strong sen-
sitivity to temperature in Arctic regions correlated with
areas of ice extent. The most prominent feature in the
TMT fingerprint is a nearly annular pattern centered
around 70◦N which corresponds to a prominent warm-
ing around 500 hPa that may be seen in zonal cross-
sections of upper air temperature trends for these mod-
els under consideration here. This feature probably is a
measure of poleward migration of the polar jet.

Both ten-year and twenty-year prediction see de-
graded precision when adding TMT to surface air tem-
perature. Addition of information in generalized scalar
prediction, inasmuch as it is a type of optimal estima-

tion, should improve the precision of prediction. Be-
cause the ratio of TMT variability to surface air tem-
perature variability realized in the “observations” dif-
fer substantially than the same ratio in the prescription
of natural variability by a different model, a proper un-
derstanding of information content is not realized and
the suppression of natural variability is unable to han-
dle the two data types appropriately. This is borne out
by an increased in the post-fit residuals of the detectors
σ2

α in adding the Northern Hemisphere TMT field to the
Northern Hemisphere surface air temperature field. This
points toward the necessity of having the prescription of
natural variability capturing structures of variability that
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FIG. 6. Joint surface air temperature-TMT fingerprint for Central U.S. surface air temperature prediction. The data
field is taken to be Northern Hemisphere surface air temperature (TAS) and Northern Hemisphere mid-tropospheric
temperature (TMT) as measured by the Microwave Soundings Units aboard the NOAA/TOVS satellites. The top
two plots show the fingerprints in surface air temperature space and MSU TMT space. The lower plot follows the
same scheme as in Fig. 5. Notice that inclusion of TMT into thedata space adds little information to the forecast
given 20 years of data. This means that long time records of Northern Hemisphere TAS and Northern Hemisphere
mid-tropospheric temperature contain substantially redundant information.

are useful in optimization.

For the first method, utilizing global surface air tem-
perature and TMT data together, the forecast with∆t =
10 years for year 50 is1.12 ± 0.62 K, a substantial im-
provement over the result from the inclusion of surface
air temperature observations alone. For∆t = 20 years,
the forecast for year 50 is1.10 ± 0.35 K, which is a
minor degradation in accuracy and uncertainty over the
case without TMT. For the second method, which joins
TMT with surface air observations for the just target re-
gion, the forecast for year 50 is1.20 ± 1.26 K, also im-
proved relative to the case with no TMT, but with much
larger uncertainty than for the case with global surface

observations. From this we conclude that important ad-
ditional information about the regional trend is embded-
ded within TMT variable. In the third method, utiliz-
ing just TMT with no surface observations, the forecast
for year 50 is1.40 ± 1.33 K. This uncertainty is still a
substantial improvement from that obtained from a pure
extrapolation of the surface observations themselves for
the target region (equal to±2.96 K), and much more
accurate as well, capturing the correct sign for the trend.

The results for the application of these methods
to the target regions of the Central United States and
Northern Europe are summarized in Table 2. The over-
all accuracy of the scalar prediction is degraded some-
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Target Region Data Fields Baseline (years) Prediction at 50years (K)
± one-sigma uncertainty

Central United States TAS NH 10 0.43 ± 0.40
Central United States TAS and TMT NH 10 1.12 ± 0.62
Central United States regional TAS and TMT NH 10 1.20 ± 1.26
Central United States TMT NH only 10 1.40 ± 1.33
Central United States TAS NH 20 1.19 ± 0.30
Central United States TAS and TMT NH 20 1.10 ± 0.35
Central United States regional TAS and TMT NH 20 2.40 ± 0.64

truth 1.31 ± 0.03
Northern Europe TAS NH 10 0.35 ± 0.43
Northern Europe TAS and TMT NH 10 0.82 ± 0.43
Northern Europe regional TAS and TMT NH 10 0.88 ± 0.94
Northern Europe TAS NH 20 0.59 ± 0.23
Northern Europe TAS and TMT NH 20 0.69 ± 0.27
Northern Europe regional TAS and TMT NH 20 1.79 ± 0.46

truth 1.26 ± 0.03

TABLE 2.

what for the case of Northern Europe, which is limited
to only 3 model gridpoints, as opposed to 8 for the Cen-
tral United States. The results for Northern Europe still
show great improvement, however, over the results of
extrapolation from the observations alone. For both tar-
get regions, the prediction is improved by additional ob-
servations for the case of∆t = 10 years. For the case
of ∆t = 20 years, the prediction is not substantially
degraded by additional observations, although it is not
helped. From this pattern, we conclude that additional
measurements improve the prediction’s uncertainty con-
tributed by natural variability that is particularly pro-
nounced for a short timeseries of observations. When
a longer timeseries of observations is available, the in-
fluence of natural variability diminishes with respect to
signal uncertainty; thus, TMT contributes less informa-
tion but nevertheless still does not degrade the predic-
tion. In the case of the extended observational period,
however, when measurements are removed that con-
tain the global spatial details that correctly constrain the
scalar trend, the predictions including subsidiary mea-
surements lose accuracy and precision. This property
serves to inform prediction design based on the avail-
ability and quality of measurements.

c. Precipitation

For precipitation, we will also consider scalar pre-
diction for the trend in annual average precipitation for
the same three geographical regions: the Central United
States, Northern Europe, and the Sahel, as defined in
Table 1. The models do not predict a consistent sign for
the trend in Central United States precipitation, so we

choose two models as “observations” that capture the
strongest trends, both positive and negative (c.f. Fig. 1).
From this exercise we conclude that the formalism does
not have a substantial difference in predictive perfor-
mance based on sign. The model ensemble distributions
of precipitation for Northern Europe and the Sahel are
not so nearly symmetric about zero, so we present the
results for just a single model as “observations” for these
regions. For these regions, we employ the same model
that provides the large negative trend case for the Cen-
tral United States.

1) CENTRAL UNITED STATES

Annual average precipitation contrasts temperature
in that the models do not predict a consistent sign for
the trend for the Central United States (Fig.1). We
consider two end members of the corresponding multi-
model distribution of precipitation trends as test cases
for scalar prediction. The INM CM 3.0 model predicts
a linear trend in annual precipitation of about+13 mm
decade−1 in the Central United States based on a single
realization. The MIROC 3.2 medium resolution model
predicts a linear trend in annual precipitation of−15
mm decade−1 based on three realizations.

The inconsistency in sign among the model precip-
itation trends manifests itself in the substantially larger
ratio of signal shape uncertainty to natural variability
relative to temperature. In Fig. 7 we show the natu-
ral variability and signal uncertainty fields associated
with prediction of precipitation in the Central United
States for a 20-yr timeseries. Additionally, the precip-
itation case is distinguished by the dominance of the
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FIG. 7. The signal uncertaintyΣs and natural variabilityΣdn/dt associated with the Central United States (see
Table 1 for precise definition) precipitation. The diagonalelements of the dimensionless covariances are shown.
The same procedures were followed to form these covariancesas were used for temperature, and the same CMIP3
models were used (although the number of realizations per model varied slightly). In contrast to temperature, the
signal uncertainty is much larger than the natural variability. Both the signal uncertainty and the natural variability
are dominated by the Tropics. The signal shape uncertainty has significantly more regional scale spatial structure
than temperature.

Tropics in the case of both natural variability and sig-
nal shape uncertainty, even when considering a precipi-
tation trend at mid-latitudes. These differences between
precipitation and temperature are also strongly evident
in the contravariant fingerprintf for precipitation pre-
diction (Fig. 8). In the case of the Central United States,
there is moderate sensitivity to the local precipitation
behavior and substantial sensitivity to precipitation on
the Pacific coast of North America centered near 45◦N.
Beyond these correlations, however, the major predic-
tors are to be found in the subtropical eastern Pacific,
the tropical western Pacific, and the Indian Ocean basin.
This contravariant fingerprint efficiently suppresses nat-
ural variability by a factor of five or more for the case of
both increasing and decreasing precipitation.

Determination of a contravariant fingerprint for pre-
cipitation is hindered by the limited size of the CMIP3
ensemble we use to estimate signal uncertainty. The
mottled pattern of signal uncertainty as it appears in
Fig. 7 indicates that the physics of precipitation is highly
uncertain in climate modeling. The fact that patches of
low uncertainty are intertwined with patches of high un-
certainty does not mean that the patches of low uncer-
tainty point toward confidence in emergence of a pre-

cipitation signal. With an ensemble with as few as 24
members, one should expect a mottled pattern of uncer-
tainty rather than a uniform blanket of uncertainty. With
an ensemble of hundreds to thousands of runs, only then
should a uniform blanket of uncertainty appear. The
limited size of the CMIP3 ensemble should, then, per-
mit some suppression of natural variability in the re-
gions with relatively certain model physics that would
be inappropriate to apply to real data.

As seen in Fig. 9, the 30-yr forecast for INM CM3.0
is +7 ± 21 mm, nearly three-sigma from the true value
of +66 ± 1 mm. This statistically improbable occur-
rence is likely an indication that both the ensemble lacks
enough members to fully span the space of possible pre-
cipitation patterns, and that important information for
precipitation is missing from the analysis, information
on changes in the large-scale mid-latitude circulation.
The forecast for the first realization of the MIROC 3.2
medium resolution model is−3 ± 13 mm, which en-
compasses the true value of−5.5 ± 0.6 mm. Note that
we arbitrarily chose the first realization which shows a
substantially reduced drying relative to the mean of the
three realization. This prediction is accurate but the pre-
cision is very low compared to the case of the temper-
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FIG. 8. Contravariant fingerprints for regional precipitationprediction of the Central United States (upper left),
Northern Europe (upper right), and the Sahel (lower).

ature forecasts. This result is a direct consequence of
models’ extreme uncertainty in the physics of precip-
itation relative to the more certain physics of temper-
ature change due to anthropogenically induced green-
house forcing.

2) NORTHERNEUROPE

The precipitation trend in Northern Europe, as re-
vealed by its contravariant fingerprint, is subject to more
local influence than the trend in temperature. It is
strongly affected by the precipitation trend over the ma-
jority of the European landmass and an eastward shift
in precipitation over the subtropical eastern Pacific indi-
cated by adjacent areas of increasing and decreasing am-

plitude. Overall there are scattered contributions from
the Gulf of Guinea, southeast Asia, and the western
tropical Pacific, but these contributions are much lower
in amplitude relative to the low-latitude dependences
in the Central United States fingerprint. The analysis
of 20 years of “observations” generates a prediction of
+14.8 ± 15.6 mm increase in precipitation (Fig. 10),
compared to a true value of+13.0± 0.8 mm.

3) THE SAHEL

The contravariant fingerprint for Sahelian precipita-
tion shows adjacent areas of increasing and decreasing
precipitation in the tropical Indian and Pacific Ocean
basins that is largely the result of inconsistent spatial
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FIG. 9. Two cases of “observations” are presented, following the same scheme as Figs. 5 and 6, but with precipita-
tion in the Central United States as the target scalar. The upper panel shows a model realization of the 21st century
with increasing precipitation over fifty years drawn from INM CM 3.0, and the lower panel shows decreasing
precipitation for the same period drawn from MIROC 3.2 (medium resolution). The timeseries of regional precip-
itation are significantly more variable than temperature, but the contravariant fingerprint still provides substantial
reduction in interannual variability.

patterns of precipitation trends among the multi-model
ensemble. Most of the individual models show a cor-
relation between overall decreases in precipitation in
the ITCZ and decreases in precipitation in the Sahel.
The spatial disparity in the pattern of ITCZ precipita-
tion change among the models results in the areas of al-
ternating sign in precipitation change about the Equator
seen in the fingerprint. Application of the contravariant
fingerprint for∆t = 20 years generates a prediction of
+0.8 ± 8.6 mm (c.f. Fig. 10), compared with the true
value of−8.1±0.2 mm. The true value lies just outside
the one-sigma uncertainty envelope.

The contrast between the performance in tempera-
ture and precipitation illustrates a key points about our
method of scalar prediction. The method relies on the
relative robustness of trend patterns, as opposed to the
magnitudes of the trends themselves, in making accu-
rate predictions. The performance is therefore strong in

the case of temperature because the agreement among
the model patterns is good compared with the ampli-
tude of natural variability (Fig. 3). On the other hand,
for precipitation, signal shape uncertainty strongly out-
weighs natural variability, and trend forecasts are sub-
stantially more uncertain. A path to potential improve-
ment for the precipitation forecasts, based on the results
of the inclusion of TMT in the temperature analysis, is
the addition of more data types. In particular, recent
work has shown that sea surface temperature plays a
strong role in precipitation trends in the Sahel (Yoshioka
et al. 2007), and that upper air wind patterns are highly
correlated with extreme precipitation events in North-
ern Europe. Thus a future study incorporating surface
temperature and geopotential height into a precipitation
analysis would be enlightening in this regard.
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FIG. 10. The upper panel follows the same scheme as Figs. 5 and 6 but for 20 years of data on precipitation in
the Sahel. The true change in precipitation at year 50 of−7.76 mm is consistent with the scalar prediction of
+0.86±8.61 mm. The lower panel shows the same but for precipitation in Northern Europe. Here the true change
of +13.02 mm is easily consistent with the predicted value of+14.80±15.57 mm. For both these cases, the scalar
prediction method strongly reduces uncertainty due to nautral variability and represents a qualitative improvement
over extrapolation of local observations.

4) Summary and discussion

We have presented a method for predicting arbitrary
scalars of the climate system given a timeseries of any
data type. The equations are derived from the standard
approaches of ensemble prediction of climate change
but subject to the assumption that climate models pre-
dict patterns of change better than they predict the mag-
nitude of change, a fundamental assumption of optimal
fingerprinting/linear multi-pattern regression. This as-
sumption is reasonable because there are very few ob-
servable variables whose pattern of change explains the
physics underlying the transient sensitivity of the cli-
mate. Consequently, it is safe to assume the transient
sensitivity of the climate is only weakly constrained by
climate models and quantifiable only from timeseries of
data. Eqs. 10, 11, and 12 are the equations of general-
ized scalar prediction for a single scalar, and Eqs. 16,

17, and 18 are the equations of generalized scalar pre-
diction for multiple scalars. A contravariant fingerprint
is determined such that, when it is convolved with the
data, an accurate and precise estimate of the underlying
multi-decadal trend in the scalar is found. In optimal
detection, natural variability as determined by a climate
model is implicitly used to estimate the uncertainty and
confidence bounds on detection. It is frequently the case
that climate models only poorly simulate inter-annual
climate variability, so in Eqs. 23 and 26 we present a
method for deriving scalar trend uncertainty that is only
minimally dependent upon a climate model.

Generalized scalar prediction preferentially weights
those subspaces of a data type in which there is little
natural variability and there is strong certainty in the
physics relating the data to the scalar of interest. A long
control run of a climate model is used to estimate the
natural variability, and an ensemble of forced runs of
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a climate model is used to estimate the uncertainty of
the physics of climate change. The ensemble of forced
runs is generated by either varying the tunable free pa-
rameters of the climate model within physically reason-
able values or incorporating different physically plausi-
ble parameterizations of sub-gridscale processes. When
the physics of climate change relevant to a specified
scalar is relatively certain with respect to natural vari-
ability, generalized scalar detection selects subspaces of
the data type where the physics relating the scalar and
the data is strong and the influence of natural variability
is minimal. If the data space includes the scalar of in-
terest, a significant component of the contravariant fin-
gerprint strongly considers the past history of that scalar
(surface air temperature of the Central United States)
unless that scalar is naturally highly variable (surface air
temperature of Northern Europe). In other cases where
the physics of scalar change is less certain, the weight-
ing is strongly toward the historical trend in that scalar.

The relative weighting of physical relationships of
climate system and natural variability in generalized
scalar prediction is also a function of the length of the
timeseries of data available. Natural variability is antic-
ipated to be a stationary random process in time, so the
longer the timeseries, the less important natural variabil-
ity should be in trend estimation. As a consequence, a
shorter timeseries of data will more strongly weight to-
ward consideration of natural variability in the construc-
tion of the contravariant fingerprint so that the influence
of natural variability can be suppressed in climate pre-
diction. Longer timeseries of data will more preferen-
tially consider uncertainty in model physics, because
uncertainty in model physics is not impacted by length
of the timeseries while natural variability becomes less
significant. Therefore, the timeseries of detectors—the
result of multiplying individual timesteps of data by
the contravariant fingerprint—for shorter timeseries will
show more suppression of natural variability than for
longer timeseries of data. In the end, longer timeseries
of data always give more precise forecasts of climate
change than shorter timeseries.

Generalized scalar prediction handles not only many
different types of data, it also handles them jointly. The
addition of new data types is expected to add new infor-
mation to the scalar prediction. Just how much informa-
tion depends on the data type. If the data type reveals
new aspects of climate change physics relevant to the
scalar in question, the data type should contribute sig-
nificantly to the reduction of uncertainty in scalar pre-
diction. Also, if the data type is sensitive to components
of the climate system that are less naturally variable, it
too should contribute to the reduction of uncertainty in
scalar prediction. In the latter case, the contribution of

the new data type becomes less valuable with a longer
timeseries of data because the increase in length of the
timeseries by itself acts to reduce the influence of natural
variability in scalar prediction. This is illustrated by the
addition of mid-tropopheric microwave brightness tem-
perature (TMT) to the surface air temperature record in
predicting trends in surface air temperature.

Practical application of generalized scalar prediction
depends on a satisfactory prescription of naturally oc-
curring inter-annual variability of the climate system.
The suppression of natural variability, or optimization,
depends on the prescription of natural variability cor-
rectly capturing patterns of variability and not necessar-
ily on the overall amplitude of variability. If patterns of
variability, represented by the dominant eigenmodes of
Σn, are incorrect, spurious optimization will take place,
and addition of new data types to scalar prediction might
degrade scalar prediction. This indeed is what occurred
when adding the Northern Hemisphere TMT field to the
Northern Hemisphere surface air temperature field as
the data in predicting Central United States surface air
temperature trends. The amplitude of natural variability
enters only in establishing the relationship between sig-
nal uncertainty and natural variability in Eqs. 10 and 16,
and this is only relevant at the level of order of magni-
tude. In most circumstances, either signal uncertainty is
much greater than natural variability or vice versa, thus
establishing dominance in evaluatingΣ without regard
to the actual amplitude of natural variability. Moreover,
the amplitude of natural variability plays little role in
the estimate of uncertainty in the scalar trend, because
natural variability’s contribution to the uncertainty is de-
termined by convolution of the contravariant fingerprint
onto the actual data (c.f. Eqs. 23 and 26).

Practical application of generalized scalar prediction
depends strongly on a complete accounting for the com-
munity’s collective uncertainty in the physics of anthro-
pogenic climate change. In the examples presented in
this paper, we used the CMIP3 ensemble of 24 climate
models which are somewhat but not fully independent.
As a consequence, not all of our actual uncertainty is ac-
counted for in the CMIP3 ensemble: real data might ex-
hibit physics which is not included in the physical space
spanned by the CMIP3 models. A more appropriate en-
semble would include several thousands of forced runs
of a climate model, each run incorporating different yet
reasonable values for the physical parameters represent-
ing processes that are unresolved by the model’s spatio-
temporal grid.

Practical application most likely also depends upon
prediction using multiple scalars. Perhaps the most ob-
vious application is forecasting of inter-decadal climate
trends due to anthropogenic forcing. Anthropogenic
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forcing of the climate system can take many forms,
the most prominent of which are increasing well-mixed
greenhouse gases, sulfate aerosols, black carbon result-
ing from agricultural burning, and changing land use.
Social policy can influence each of these types of forc-
ing differently, so generalized scalar prediction should
incorporate scalars that distinguish between these differ-
ent types of forcing independently. Then, given varying
scenarios for how these different forcings will evolve
over the coming decades, we would have sufficient in-
formation to formulate a climate forecast that consid-
ers all of these types of forcings. In this application,
then, it is essential that, for each prescription of model
physics, individual runs be executed for radiative forc-
ing by increasing well-mixed greenhouse gases alone,
increasing sulfate aerosols alone, increasing black car-
bon alone, and changing land use alone.

The equations of generalized scalar detection are
nearly the same as those of signal detection and attri-
bution (Bell 1986; Huntingford et al. 2006). Both signal
detection and attribution and generalized scalar predic-
tion assume a model of a slow secular trend underlying
a timeseries of data with large naturally occurring inter-
annual variability superimposed. Mathematically, there
is nothing inherent to signal detection and attribution
that dictates how signals should be normalized before
the signal uncertainty matrixΣs is evaluated. General-
ized scalar detection shows that normalization depends
on the application, namely that the normalization should
be by the scalar for which apredictionis desired.

Results of the application of generalized scalar pre-
diction, then, can be interpreted in the light of both sig-
nal detection and attribution and scalar prediction. In
the context of signal detection and attribution, for in-
stance, trends in data relevant to regional scale can be
attributed to anthropogenic greenhouse warming with
an interesting paradox. It is possible that a region ex-
hibits a cooling trend in a timeseries of regional data yet
have generalized scalar detection find a positive trend,
as in the example of surface air temperature in the Cen-
tral United States and just ten years of data (Fig. 5, top).
While it might seem odd to declare that global warm-
ing is occurring in this region even though it has cooled,
nonetheless, the technique has not only considered the
regional data but also physically reliable indicators ex-
ternal to the region that are useful in tying trends to the
physics of global warming. The individual researcher
who is uncomfortable attributing regional cooling to an
anthropogenically enhanced greenhouse when regional
warming is expected may feel more comfortable apply-
ing signal detection and attribution with the data domain
restricted to just the region of interest, as in Kharin and
Zwiers (2002). Restricting signal detection and attri-

bution strictly to the domain of interest, though, would
likely produce less appealing results for prediction of
future trends.

Finally, we have assumed throughout that the under-
lying trends in climate will be linear in time over the
coming decades. This is partially justified by the sim-
ulations of CMIP3. In reality, though, we do not yet
know how the anthropogenic radiative forcings of cli-
mate will evolve in the coming decades. Thus, some re-
search will be necessary to determine how past trends in
climate translate to prediction if rates of anthropogenic
radiative forcing change in the future.
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