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Summary. Climate monitoring is of pre-eminent importance in this era of global
change, and GPS occultation is an ideal technique for climate monitoring. We put
climate monitoring in a scientific context, which can be arrived at through careful
implementation of Bayesian inference. What we find is that a good climate moni-
toring tool must help address the physics of a climate model so as to make it better
able to predict future climates. GPS occultation is ideal because it offers sensitivity
to improve the model physics which affects the stratospheric Brewer-Dobson cir-
culation, the tropical tropospheric hydrological cycle, and the poleward migration
of the mid-latitude storm track. Also, GPS occultation is ideal because it can be
readily made into a benchmark measurement provided clock calibration is always
done by double-differencing, and measurements used to determine precise orbits and
information on ionospheric activity are archived as auxiliary information. In doing
so, GPS occultation can be made S.I. traceable.

The promise of radio occultation using the Global Positioning System as a
climate monitoring technique has been recognized for a long time [1, 2, 3], but
exactly how occultation data can be used for this purpose and why it might
be appropriate to use radio occultation for climate monitoring has never been
formalized. Certainly, radio occultation offers advantages over other sounding
techniques which have been used in the past for climate monitoring, namely
calibration using a time standard traceable to atomic clocks through double
differencing (to be discussed later), but does radio occultation offer a guar-
antee of capturing the true state of the atmosphere? If GPS occultation is
needed, what are the actual requirements for making it an essential climate
monitoring tool?

The above questions on climate monitoring by GPS occultation can be
answered by outlining a background to global climate change, describing how
climate change research can be philosophically linked to climate monitoring,
and defining the qualities of a measurement which makes it useful for climate
monitoring. It is not in the scope of this work to discuss in any detail the
background to climate change, and it is left to the reader to consult the



288 Leroy, Dykema, and Anderson

Third Assessment Report of the Intergovernmental Panel for Climate Change
(IPCC2001) [4] for a thorough review of observations used to probe climate
change over the past century. We will, however, discuss a philosophy which
puts climate monitoring in a scientific context and assess the accuracy with
which current GPS occultation must capture the true state of the climate.

1 An Overview of Climate Monitoring

The reason climate monitoring is of current interest is that global warming
and the strong possibility that human activities are at least in part to blame
has become a key scientific debate. In addition, any societal attempt to limit
warming by greenhouse gas emissions in the future must be informed by reli-
able forecasts of climate change in the future.

That the surface air has been warming over the past century is very
likely [5]. The warming has occured primarily in two intervals: one from 1910
through 1940, and the second from 1970 to the present. The temporal pattern
is consistent with an atmospheric greenhouse instigated by increasing carbon
dioxide, methane, nitrous oxide, and chloro-fluorocarbons. The absence of a
trend between 1940 and 1970 is thought to be due to the presence of sulfate
aerosols, which reflect shortwave radiation.

ECHAM4/OPYC3 NCEP Reanalysis

Fig. 1. Trend of 2-meter air temperature in ECHAM4/OPYC3 and the
NCEP Reanalysis, 1970–1989. The left plot shows the temperature trend in
the air temperature at 2 m above the surface as modeled by the ECHAM4/OPYC3
climate model with realistic greenhouse gas, sulfate aerosol, and ozone forcing. The
plot on the right shows the same but taken from the NCEP Reanalysis. Each contour
represents 0.2 K decade−1. Solid (dashed) line contours are for positive (negative)
values, and the thick line is the zero contour.

While it is possible to construct models of warming over the past few cen-
turies that can match the temporal pattern of observed trends, there remain
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substantial difficulties in modeling the spatial pattern of surface air temper-
ature over recent decades. Fig. 1 shows the surface air warming trend in the
climate model ECHAM4/OPYC31 for the period 1970 through 1989 in com-
parison with the NCEP Reanalysis [6]. Bulk features such as the relatively
stronger warming over land versus over ocean are common to both model and
reanalysis. Substantial differences over the ocean, especially the Pacific basin,
however, reveal major difficulties in modeling change of the atmosphere’s cir-
culation. It is difficult to attribute the disagreement in southern high latitudes
to the climate model or reanalysis, there being reasons to distrust both in this
region. Detailed differences in trends over land are a consequence of the sim-
plicity of land surface/biosphere parameterizations. The discrepencies in the
spatial patern of surface air warming point to inadequacies in our ability to
physically model the climate system.
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Fig. 2. Trends in upper air temperature in model and reanalysis due
to increasing greenhouse gases, 1970–2000. The plot on the left shows the
trend in upper air temperature as modeled by ECHAM4/OPYC3 when carbon
dioxide increases at 1% year−1. The plot on right shows the trend in upper air
temperature from the NCEP Reanalysis from 1970 through 2000. Contour intervals
are 0.2 K decade−1. Solid (dashed) lines are for positive (negative) values, and the
thick line is the the zero contour.

To further illustrate the point of difficulties in predicting atmospheric
change, Fig. 2 shows patterns of upper air warming predicted to result from
carbon dioxide increases. Upper air temperature trends predicted by the
ECHAM4/OPYC3 model when it is subjected to a steady 1% yr−1 carbon

1 The 2-m surface air temperature output from ECHAM4/OPYC3 was obtained
from the on-line data gateway for the Third Assessment Report of the Intergov-
ernmental Panel for Climate Change.
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dioxide increase are compared to upper air temperature trends of the NCEP
Reanalysis from 1970 through 2000. The comparison is reasonable because
greenhouse gas increases dominate the tropospheric temperature trend from
1970 through 2000. Because the model forcing is not absolutely realistic in
that it does not contain the right carbon dioxide forcing, ozone forcing, etc.,
we only concern ourselves with the overall patterns of warming exhibited. Of
particular note is the lack of upper tropical tropospheric warming in the re-
analysis in comparison to the model. Moreover, the strong warming lobe at
the tropopause at the southern subtropical front is completely absent in the
model prediction. Such effects are indications of the model’s physics lacking
the ability to adequately predict dynamical trends in the atmosphere. The
consequences for the hydrological cycle are substantial.

The inadequate physics of the climate model is related to the uncertain
model parameterizations pertaining to the hydrological cycle. For example,
the water cycling rate and precipitation efficiency, two key parameters of the
hydrological cycle, exhibit strong control over precipitation patterns in the
tropics [7]. Atmospheric dynamics is governed by the equations of motion,
which are explicitly integrated in an atmospheric model. Atmospheric motion
is ultimately forced by external and internal heating due to radiation and la-
tent heating. Because the dynamical evolution of water and clouds contribute
to these heating effects on scales much smaller than the model resolves, they
are parameterized. Such parameterizations, especially those pertaining to the
hydrological cycle, are notoriously inadequate in simulating a realistic hydro-
logical cycle.

What is needed is a methodology which relates climate monitoring to the
scientific process wherein theories, or models, are tested against empirical
data. By monitoring climate change carefully it is possible to reduce uncer-
tainties in climate models, especially those pertaining to parameterizations,
and thus make them more useful tools in forecasting climate change.

2 Bayesian Inference and Climate Signal Detection

A climate monitoring system must be reliable enough to help refine our capa-
bility of predicting future climate change [8]. This is the result when detecting
climate signals by optimal fingerprinting is put into its Bayesian context [9].

In optimal fingerprinting, one searches for m climate signals with pat-
terns si, columns of S, in an observational data set d with dimension n in
the presence of naturally occuring variability n. A priori, the amplitudes αi

of the signals are considered unknown. The patterns of the climate signals
are expected to uniquely identify, or “fingerprint,” the forcing which causes
them. As such, this technique has been used in climate signal detection and
attribution studies [10]. The model for the data is

d = Sα + n. (1)
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In Bayesian statistics, the posterior knowledge for signal amplitudes given the
data p(α|d) is proportional to the evidence for the data P (d|α) multiplied by
the prior for the signals’ amplitudes p(α). All told,

p(α|d) ∝ P (d|α) p(α)

P (d|α) = (2π)−n/2 |N|−1/2 exp
[

−
1

2
(d − Sα)T

N
−1(d − Sα)

]

. (2)

In optimal fingerprinting, the signal shapes, the interannual variability co-
variance N are considered known, no prior knowledge is considered, and the
result is a probability distribution telling whether the consequences of specific
forcings are detectable in the data.

This technique has been used to investigated the degree to which global
warming can be attributed to human influences. Using models to formulate
a distinctive pattern of temperature change caused by increasing greenhouse
gases, it is possible to distinguish such a pattern from natural variations of the
climate system. If successful, then warming of the surface air can be attributed
to human influence. Significant problems remain with such an interpretation,
though. Primarily, the detection of a human influence on climate is not the
same as an attribution of global warming to human influence. For example,
the overwhelming influence of carbon dioxide on atmospheric temperature is
its cooling of the stratoshere. A complete implementation of optimal finger-
printing would appropriately lead to the conclusion that stratospheric cooling
is the result of a human influence on climate. Although tropospheric warming
may be part of that influence, it is inappropriate to conclude that tropospheric
warming is a reliably detected result of human influence. The reason such a
conclusion cannot be drawn is that the physics of stratospheric cooling differs
radically from the physics of tropospheric warming.

A better way to implement Bayesian statistics is to recognize that neither
the signal patterns nor their amplitudes are known a priori. These unknowns
can be bundled into a package of uncertain parameters of a climate model, the
source of our uncertainties in predicting climate change. (We assume strong
knowledge of all external forcing of the atmosphere.) The coefficients of the
model are µ, and the data d is modeled as

d = f(µ) + δµ ·∇µf(µ) + n (3)

where f is a kernel for how a signal is simulated by a model with parameters
µ. For example, if the data represent the signal of the greenhouse effect as ob-
served in radiosondes in the form of a trend, then f(µ) is how a model predicts
that trend would look given parameter values µ. The Jacobian ∇µf(µ) tells
how the trend would change by changing the parameters µ. If the prior for the
model parameters is µ0 with uncertainty covariance Σµ, i.e. µ ∼ N (µ0,Σµ),2

2 A normal distribution can be written as y ∼ N (y0,Y) where the
probability distribution for the n-dimensional vector y is p(y) =
(2π)−n/2 |Y|−1/2 exp

[

− 1

2
(y − y0)T Y−1(y − y0)

]

.
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then the Bayesian solution is µ ∼ N (µmp,Σµ,mp) where the “most probable”
model parameters µmp and their error covariance Σµ,mp are given by

µmp = µ0 +
(

(∇µf)T
N

−1(∇µf) + Σ
−1
µ

)

−1

(∇µf)T
N

−1(d− f(µ0))

Σµ,mp =
(

(∇µf)T
N

−1(∇µf) + Σ
−1
µ

)

−1

. (4)

The Jacobian ∇µf is evaluated with parameters µ = µ0 using several runs
of a climate model, at least two runs for every parameter in µ. (Should a
climate adjoint be constructed, only two runs of the climate model would be
necessary.)

Eqs. 4 show how to improve a model using Bayesian inference. Using a
climate data set which contains information on how highly uncertain com-
ponents of the climate system respond to a known forcing over the duration
of the data, one can tune the parameters of the model so that it responds
in the same way as observed. This type of analysis has been implemented
using surface air temperature data over the past century to estimate oceanic
parameters but with limited success [11].

3 Climate Model Uncertainties and How They are
Realized in Microwave Refractivity

So what are the implications for GPS radio occultation? That GPS occulta-
tion can be used for climate monitoring has been mentioned elsewhere, but the
requirements that entails have never been formalized. Climate model improve-
ment by detecting the emergence of responses to external forcing provides the
theoretical framework for deducing requirements for climate monitoring.

To implement Bayesian inference as described above, one must assess the
influence on climatic trends as produced by changing each of a model’s least
constrained parameters. This is an expensive proposition (but one that has
been undertaken by climateprediction.net). A simple way around this
computational expense is to assume instead that the world’s premier climate
models differ in their responses to a prescribed forcing in ways that reflect
what happens when the parameters within any given model are adjusted
within reason. By examining the differences between different models’ pre-
dictions of future climatic trends given a prescribed forcing, we can deduce
what information GPS occultation provides in improving model predictive
capability.

We use the ensemble of climate models which contributed to the Coupled
Model Intercomparison Project (CMIP2+) [12]. We chose to work with output
of the models which provided temperature, humidity, and height on pressure
surfaces, namely the German MPI Hamburg model (ECHAM4/OPYC3); the
British Hadley Centre models (HadCM2, HadCM3); the Australian CSIRO
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Fig. 3. Difference in zonal average temperature trends in five CMIP2+
models. These plots show the difference in zonal average temperature trends as
simulated by five CMIP2+ models when subjected to increasing carbon dioxide at
1% yr−1. The reference model is ECHAM4/OPYC3. The other models are those
of GFDL (upper left), MRI (upper right), HadCM3 (lower left), and CCCM (lower
right). Contour intervals are 0.05 K decade−1. Solid (dashed) line contours are for
positive (negative) values, and the thick line is the zero contour.

model (CSIR Mk2); the Japanese Meteorological Research Institute (MRI,
CGCM 2.3); the American Geophysical Fluid Dynamics Laboratory model
(GFDL, version R30 c), NCAR’s Climate System Model (CSM, version 1),
and Parallel Computing Model (PCM, run B04.30); and Canadian Climate
Centre Model (CCCM, version 2). Each of these models was subjected to
increasing carbon dioxide at 1% yr−1, about twice the rate of recent history.

The models of CMIP2+ show considerable disagreement in their predic-
tions of atmospheric trends when subjected to the same forcing. Fig. 3 shows
the zonal average difference of temperature trends of four models in compari-
son and that of ECHAM4/OPYC3. In all models, the stratosphere cools but
with different patterns and in different amounts. The best agreement is be-
tween ECHAM4/OPYC3 and MRI, but even this comparison has interesting
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differences. While the amount of stratospheric cooling integrated over area is
the same for these two models, the pattern shows enhanced cooling in MRI
relative to ECHAM4/OPYC3 in the tropics and vice versa in the extratropics.
This is the signature of the stratospheric Brewer-Dobson circulation increasing
in strength more rapidly in the MRI model than in ECHAM4/OPYC3: up-
ward (downward) motion in the tropics causes adiabatic expansion (compres-
sion) and cooling (warming) when the Brewer-Dobson circulation is strength-
ened. The GFDL model shows similar trends in the stratosphere with respect
to ECHAM4/OPYC3 as does MRI but with a much greater difference in the
Brewer-Dobson circulation strength. Both HadCM3 and CCCM show sub-
stantially less stratospheric cooling in an increasing carbon dioxide experiment
than ECHAM4/OPYC3.

The Brewer-Dobson circulation is a residual mean circulation induced by
the deposition of vertically propagating planetary waves originating in the
troposphere [13]. If the Brewer-Dobson increases in strength, it necessarily
means that more planetary waves propagate vertically from the troposphere
into the stratosphere. In turn, these planetary waves are generated by flow
over topography and baroclinic and barotropic instability in the troposphere.
The stratospheric tropical-extratropical temperature patterns in Fig. 3 gives
information on the efficiency with which planetary waves are generated in the
troposphere.

The difference in temperature trends in Fig. 3 also reveals fundamental
tropospheric differences. The tropical tropospheric pattern of temperature
trends of MRI less ECHAM4/OPYC3 reveals a Hadley circulation grow-
ing stronger with time in MRI than in ECHAM4/OPYC3. In the CCCM-
ECHAM4/OPYC3 comparison, CCCM shows evidence of the tropopause in-
creasing more rapidly in time than does ECHAM4/OPYC3. These differences
can be related to the models’ different mechanisms pertaining to the hydro-
logical cycle.

The CMIP2+ models contributed output of temperature, geopotential
height, and specific humidity, making it possible to simulate trends in mi-
crowave refractivity in a 1% yr−1 carbon dioxide experiment. Recall that
microwave refractivity N is empirically determined to be

N = (n − 1) × 106 = a (
p

T
) + b (

pW

T 2
) (5)

where n is the microwave index of refraction, p, T , and pW are atmospheric
pressure, temperature, and water vapor pressure, and the coefficients a and
b are 77.6 K hPa−1 and 373.0 × 103 K2 hPa−1. Microwave refractivity inte-
grated vertically as a function of height is an ideal observeable for climate
monitoring [14]. It can be thought of as a “dry” pressure: above the mid-
troposphere, increasing dry pressure can be interpreted as thermal expansion
of the underlying atmosphere, and below the mid-troposphere increasing dry
pressure can be interpreted as a combination of thermal expansion of the un-
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derlying atmosphere and increasing precipitable water vapor in the overlying
atmosphere.
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Fig. 4. Trends in microwave refractivity as simulated by the
ECHAM4/OPYC3 and MRI climate models. The trends in zonal average
microwave refractivity as a function of latitude and geopotential height as com-
puted by 1% yr−1 carbon dioxide forced runs of the ECHAM4/OPYC3 and MRI
climate models. Contour intervals are 0.1%. Solid (dashed) line contours are for
positive (negative) trend values, and the thick line is the zero contour.

First, Fig. 4 shows the trends in microwave refractivity as produced by
forced runs of two of the CMIP2+ climate models. Except for the tropical
lower troposphere, much of the troposphere shows little trend in microwave
refractivity despite the presence of tropospheric warming. This is explained
by the fact that, while temperatures are increasing, pressure as a function of
geopotential height is also increasing. The overall effect on density is one of
cancellation, and since the “dry” component of refractivity is proportional to
density, only a trend of less than 0.1% decade−1 is seen throughout much of
the troposphere.

The trend in integrated microwave refractivity conveys the notion of tro-
pospheric warming better than trends in refractivity alone (see Fig. 5). As
mentioned before, integrated refractivity is the same as pressure in the strato-
sphere and upper troposphere. A fractional change in pressure at a fixed height
multiplied by a scaleheight is the same as the change in height of a constant
pressure surface. For example, the maximum trend in integrated refractivity
according to the MRI model is 0.6% decade−1, which corresponds to an in-
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Fig. 5. Trends in microwave integrated refractivity as simulated by the
ECHAM4/OPYC3 and MRI climate models. The trends in zonal average
integrated microwave refractivity as computed by 1% yr−1 carbon dioxide forced
runs of the ECHAM4/OPYC3 and MRI climate models are contoured as a function
of latitude and geopotential height . Contour intervals are 0.1%. Solid (dashed)
line contours are for positive (negative) trend values, and the thick line is the zero
contour.

crease of the 100-hPa surface of 0.6% of a scaleheight per decade, or ≈ 30 m.
The noisy output of the MRI model in the lowest layers of the troposphere is
a reflection of the MRI model having an overly variable surface pressure field.
The decrease of the integrated refractivity trend with increasing height above
the tropopause is the signature of stratospheric cooling.

The relationship between water vapor increase and tropical tropospheric
warming can be used to estimate the strength of the water vapor-longwave
radiation feedback. If this feedback controls tropical tropospheric warming,
then the rate of tropospheric expansion and lower tropospheric water vapor
ought to be related by a constant factor. Tropospheric expansion can be es-
timated by the trend in integrated refractivity near the 16-km height level in
the tropics, and water vapor from the refractivity trend in the tropical lower
tropospheric refractivity trend. The constant factor can be deduced from a
feedback analysis wherein the longwave radiation is made independent of wa-
ter vapor anomalies [15, 16].

Observing trends in integrated microwave refractivity will strongly con-
strain the responses of the Brewer-Dobson circulation, the tropical hydro-
logical cycle, and the poleward migration of the midlatitude storm track
to increasing greenhouse gases (see Fig. 6). The MRI climate model shows
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Fig. 6. Difference between model-forecast trends of integrated microwave
refractivity. These plots show the difference between the forecast trends of inte-
grated microwave refractivity from different models when each is forced by carbon
dioxide increasing at 1% yr−1. The plot on the left shows the difference between
MRI and ECHAM4/OPYC3 model trends, and the plot on the right shows the dif-
ference between the CCCM and ECHAM4/OPYC3 model trends. The scale below
the plots shows the contours used in plotting.

integrated refractivity (approximately pressure at constant height/height at
constant pressure) increasing slower than ECHAM4/OPYC3 at low latitudes
and faster at high latitudes in the stratosphere. This is the signature of the
Brewer-Dobson circulation increasing faster according to MRI than according
to ECHAM4/OPYC3. Temperature trends and integrated refractivity reveal
this because an accelerated Brewer-Dobson circulation implies warming of
the stratosphere at high latitudes and cooling at low latitudes, which means
heights of constant pressure surfaces increase at high latitudes and decrease
at low latitudes. In the tropical troposphere, the difference in humidity trends
between models that climate monitoring with GPS occultation yields infor-
mation on the hydrological cycle which can be used to improve our forecasting
ability of it. Finally, the ridges in integrated refractivity/pressure trends seen
at 50◦N and S in the troposphere indicate sensitivity to the midlatitude storm
track position. Such a ridge comes about because the storm track migrates
northward in response to forcing by increasing carbon dioxide. In this exam-
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ple, the MRI model shows much more rapid poleward migration of the storm
track than ECHAM4/OPYC3 as does CCCM, yet CCCM less so.

Table 1. Science requirements for climate monitoring with GPS occulta-
tion. GPS occultation has clear sensitivity useful for improving forecasting ability
of the phenomena listed below. The accuracy is given in units of a percentage of
microwave refractivity. The temporal resolution required for each phenomenon is
seasonal. The ITCZ is the intertropical convergence zone.

Phenomenon Accuracy Spatial resolution

Brewer-Dobson circulation 0.2% in stratosphere hemispherical, scaleheight
Hydrological cycle 0.01% in troposphere ITCZ, ∼ 4 km
Storm track 0.01% in troposphere meridionally 5◦, scaleheight

In order to deduce requirements for climate monitoring, one needs to know
how long before a signal, such as that seen in Fig. 6, emerges above the back-
ground noise of natural interannual fluctuations of the climate. The calculation
which needs to be performed is that described in the previous section wherein
one defines the data d to be the Jacobian ∇µf and finding the amount of
time required before |Σµ,mp| ' |Σµ|. This is the requirement for Bayesian
learning, i.e. when significant improvements can be made in our estimates of
the model’s parameters. If we assume that a strong test can be performed
in two decades, corresponding to a growth in carbon dioxide concentration
of approximately 10%, we can derive approximate requirements for climate
monitoring using GPS occultation. Those numbers correspond to the decadal
response of the climate models forced by 1% yr−1 in the CMIP2+ perturbed
runs. They are enumerated in Table 1.

4 Benchmarking GPS Occultation

We have arrived at scientific requirements for monitoring climate using GPS
occultation predicated on the assumption that we must learn something about
the climate in the process of monitoring it. But what do these requirements
mean in practice? What kind of monitoring system is needed? How must the
data be processed? The solution must satisfy the needs of a future user who
will difference data sets widely separated in time to detect meaningful trends
in the climate system over that time. The solution is to make GPS occulta-
tion a benchmark measurement. A key component of making a benchmark
measurement lies in the methodology of making climate monitoring traceable
to the international system of units, otherwise known as “S.I. traceability.”

GPS occultation has claimed absolute accuracy for years, but it is not
really absolutely accurate. But how accurate can it be made? The Système
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International d’Unités (International System of Units, international abbrevi-
ation S.I.) provides a recommended system of metrological units with well-
determined uncertainties ideally suited to assessing the accuracy of physical
measurements. The primary realizations of the S.I. base units provide the
most accurate foundation possible for measurements made in the most fa-
miliar physical units: the second, the meter, the kilogram, the ampere, the
kelvin, the candela and the mole. For example, if one wants to measure the
mass of an object, the most accurately it can ever be done is by use of the
S.I. prototype kilogram as a counterweight and collecting enough information
on the balance system to remove as many potential systematic errors as pos-
sible. This technique of calibration, which has a clear relationship between
the S.I. foundation and the presented measurement, has demonstrable “S.I.
traceability” [17].

In the case of GPS occultation, much of the work in guaranteeing S.I. trace-
ability has already been done. The Doppler delay of the GPS signal induced
by the atmosphere is the basic measurement in a GPS occultation (which
can be turned into refractivity profiles in retrieval), and, hence, GPS occul-
tation is a timing measurement. Guaranteeing S.I. traceability means tying
the atmospheric Doppler delay to the international standard for the second.
This is done through the double-difference methodology of processing GPS
occultation [18, 19], wherein the atmospheric path delays can be calibrated
by Cs-133 atomic clocks [20] by measuring phase to a reference GPS satellite
during an occultation event and observing both the occulting and reference
GPS satellites with an atomic clock on the ground. Even if the atomic clock
on the ground is not directly traceable to a Cs-133 clock, S.I. traceability is
maintained as long as the ground atomic clock has been calibrated against
the Cs-133 clocks with accuracy sufficient for radio occultation.

Even with double-differencing, hurdles remain in tracing a GPS occulta-
tion to the international definition of the second. These hurdles include (but
are not limited to) unusual ionospheric activity and uncertainties in GPS and
receiver spacecraft orbits. While GPS ordinarily provides two frequencies for
the removal of ionospheric effects, it is possible for the ionosphere to become
so active that its effects on occultation cannot be completely removed using
the two GPS frequencies. To maintain S.I. traceability, it becomes necessary
to collect information on the ionosphere sufficient to compensate for this un-
wanted noise or sufficient to know when an occultation cannot be used. In
addition, bending angles in GPS occultation can only be found with pre-
cise information on the orbits of the GPS and receiver satellites. The orbits
themselves are determined only after assumptions are made on the impact of
the exosphere on the satellites’ orbits, making the orbit solutions untraceable
to S.I. standards. To maintain S.I. traceability, it is necessary to not only
archive the satellites’ precise orbit solutions, but also the occultation receiver
measurements of phase to overhead GPS satellites and the measurements of
GPS phase by reference ground networks used in the determination of precise
orbits.
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Creation of a benchmark measurement requires an archive of the S.I. trace-
able observations and external information on physical properties of potential
error, but not a perfectly accurate retrieval algorithm. As long as an archive
of the S.I. traceable components exists for all time, any potential future user
will have enough information to implement his own retrieval algorithm. The
investigator would use the same retrieval algorithm for every occultation data
set, and this guarantees the consistency required for evaluating trends in the
climate system over long time baselines. In GPS occultation, the data required
to make it a benchmark measurement are

• atmospheric phase delay as a function of time as calibrated by the double-
differencing methodology,

• the Keplerian orbital elements as a function of time used to deduce the
bending of the occultation signal by the atmosphere,

• the ground station and receiver satellite phase measurements used in the
calculation of orbits, and

• data on the activity of the ionosphere in the vicinity of the occultation,
especially activity related to ionospheric turbulence.

The platforms exist to collect and archive the information of the first three
items, but not the fourth item. This points to the necessity of tracking global
scale ionospheric activity in the form of a scalar as a function of time and pos-
sibly deploying an ionospheric monitoring system which can map ionsopheric
activity as a function of space and time in the lower ionsophere.
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