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Abstract The Climate Absolute Radiance and Refractivity Observatory will be a cli-
mate benchmarking mission intended to include instruments for measuring Earth’s
atmospheric refractivity by GNSS occultation, high spectral resolution thermal in-
frared spectra emitted from the Earth, and the spectrally resolved reflected short-
wave spectrum. Climate benchmarking is necessary to establish a record that can
be used to test climate models according to their predictive capability. We have in-
vestigated how GNSS occultation measurements and thermal infrared spectra can be
used to test models’ predictive capability. GNSS occultation provides a constraint on
sensitivity of the climate system. Infrared radiance spectra can quantify the individ-
ual longwave feedbacks of the climate system, including cloud-longwave feedbacks
when used in conjunction with GNSS occultation. At present, studies are limited
to clear sky infrared radiation, so the next research steps should include cloudy sky
infrared simulations and reflected shortwave simulations.

1 Introduction

The Decadal Survey of the U.S. National Oceanic and Atmospheric Administration
(NOAA) and the U.S. National Aeronautics and Space Administration (NASA) by
the U.S.National Research Council recommended that NASA deploy a Climate Ab-
solute Radiance and Refractivity Observatory (CLARREO) as one of its four high-
est priorities. This recommendation came in response to a request from NASA and
NOAA to suggest what satellite missions should be flown to form a national climate
research program that is responsive to societal demands (National Research Coun-
cil, Committee on Earth Science and Applications from Space 2007). In the case
of CLARREDQO, a society demands data sets deemed trustworthy for trend detection
and sufficiently accurate to test climate models according to their predictive capa-
bility. In short, society needs tools that usefully predict future climates depending
on its own decisions. Those tools are climate models and, pursuant to the scientific
paradigm, must be tested empirically.
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CLARREDO calls for three instruments: a GNSS (global navigation satellite sys-
tem) occultation instrument, an instrument to measure emitted infrared radiation
with high spectral resolution, and an instrument to measure reflected shortwave ra-
diation with high spectral resolution. In order to ensure their data are absolutely ac-
curate, it is required that they are assured traceable to the international standards that
define the units of their observables on-board with overall uncertainties sufficient to
test climate models (Ohring 2007). It is also required that their sampling patterns be
sufficiently dense and uniform so that mission accuracy requirements are met. The
optimal configuration for monitoring the emitted infrared spectrum has three satel-
lites in perfectly polar orbits (90° inclination) spaced 60° in longitude of ascending
node (Kirk-Davidoff et al. 2005). Such a configuration affords robustness in that the
bias in annual averages induced by the diurnal cycle is minimal should one or two
satellites fail. With all three satellites operational, bias in seasonal averages induced
by the diurnal cycle is also minimized.

The data types called for by CLARREO were selected because their traceability
to international standards is possible. The NRC Decadal Survey’s recommendation
should answer societal demands, which in this case pertain to testing climate mod-
els. In what ways the data types of CLARREO can be used to test climate models
according to their predictive capability remains an open question. In testing cli-
mate models, the scientific assessments of the Intergovernmental Panel on Climate
Change focus much of their efforts in comparing the overall sensitivities of climate
models, which is the surface air temperature increase predicted by a climate model
when subjected to a prescribed forcing by increased carbon dioxide. Certainly, the
sensitivity of the climate system must be modeled correctly, but a trustworthy model
must attain the correct sensitivity for the right physical reasons. There are many
ways to explain the sensitivity of a climate model (and the actual climate system),
and, for the sake of simplicity, we analyze the sensitivity in the language of radiative
feedbacks.

2 Radiative feedbacks

The climate’s greenhouse effect comes about because of the presence of well-mixed
gases that absorb efficiently in the thermal infrared while the same atmosphere is
largely transparent at visible wavelengths where most of the solar forcing occurs.
The shortwave radiative forcing occurs largely at the Earth’s surface, and the surface
cannot easily cool itself by radiating to space in the thermal infrared because of
the greenhouse gases present. As a consequence, the surface has to warm more
to maintain a radiative balance than it would have without the greenhouse gases
present.

It is possible for some elements of the atmosphere to respond to surface temper-
ature change in such a way that radiation from the troposphere is either enhanced
or suppressed. When temperature increases and thermal infrared (longwave) radia-
tion from the troposphere is partially suppressed, the action is considered a positive



Testing Climate Models 3

feedback; when temperature increases and longwave radiation from the troposphere
is enhanced, the action is considered a negative feedback.

An injection of anthropogenic greenhouse gases, before anything else happens,
has the immediate effect of blocking photons from escaping the troposphere. The
amount of radiation flux blocked is called a radiative forcing A F1,q. To first order, the
surface responds by increasing its temperature by an amount A TU), thus increasing
the flux through the tropopause and restoring radiative balance. The statement is
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AT = (1)
in which I' ~ 4e0T? is the gray-body radiation term for the surface, £ a combina-
tion of surface emissivity and the fraction of radiation from the surface that escapes
to space, and o the Stefan-Boltzman constant. The climate system responds dynam-
ically and thermodynamically to such a surface temperature change, and some of
those reactions act to enhance radiation to space and some to suppress it. A con-
tinuum of such feedbacks exists, a geometric series for surface temperature change
results, and the final surface temperature change is
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where the longwave feedback factors yiLW and shortwave feedback factors yiSW are
defined by
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where FMW is the net downward longwave flux at the tropopause, FSV is the net
downward shortwave flux at the tropopause, and x; can be any one of a long list of
meteorological, thermodynamic, or constituent properties that can affect longwave
or shortwave radiation. A positive feedback has y > 0, and a negative feedback
has y < 0. The largest feedbacks are thought to be the water vapor-longwave feed-
back, the cloud-shortwave feedback, the upper tropospheric temperature-longwave
(“lapse rate”) feedback, and the hypothesized aerosol indirect effects in the short-
wave. The most uncertain feedbacks are thought to be the cloud-shortwave feedback
and the aerosol indirect effect. This calculus of feedbacks has been presented else-
where (Cess 1976; Wetherald and Manabe 1988) as have reviews about feedbacks
implicit in climate models (Held and Soden 2000; Colman 2003; Bony et al. 2006;
Soden and Held 2006).
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3 Testing feedbacks with CLARREO

If climate models accurately reproduce climate sensitivity, one way to ascertain
whether they do so for the correct physical reasons is to divide climate response
according to feedbacks. CLARREO should be capable of doing so because individ-
ual feedbacks have distinctive spectral signatures in the thermal infrared and visible
wavelengths. GNSS occultation should play an important role because of its insen-
sitivity to clouds: it might resolve the cloud-surface temperature ambiguity inherent
to sounding in the thermal infrared. We apply optimal fingerprinting techniques to
spectral infrared and microwave refractivity as produced offline by many sophisti-
cated climate models. This should tell us the relative contribution of various data
types to testing various climate feedbacks, what accuracy is needed for each data
type, and how long we should expect to wait before a satisfactory test can be ap-
plied to climate models’ predictions.

A feedback can be determined by trend analysis by dividing the trend in outgoing
radiation due to a specific thermodynamical variable or constituent concentration by
the trend in surface air temperature:

dF™W dT\ -1
LW _ i “-
T T ( dt ) @)

with dFl.LW the change in downward radiation at the tropopause due to a change
in thermodynamic variable or constituent concentration i. In order to estimate the
feedback, one must be able to estimate dF-V /dt observationally as well as dT /dt.
Moreover, observations in the thermal infrared allow one to detect radiative forcing
by anthropogenic greenhouse gases, AF,q. [Presently, an exploration of the pos-
sibility of testing climate models has been done only for longwave radiation and
not yet for shortwave radiation; hence, we restrict our discussion to the longwave
henceforth.]

If a variable perturbs the tropopause radiation field, then it has an associated
feedback, and because changes in variables leads to unique changes in the infrared
spectrum at the tropopause, careful observation of the evolution of the tropopause
radiation field should constrain the feedbacks of the climate system. In fact, in most
cases individual feedbacks have unique fingerprints in the spectra of outgoing long-
wave and shortwave radiation. CLARREQO, in measuring the outgoing longwave
radiation, can uniquely discern the longwave feedbacks because each has a unique
signature in the thermal infrared spectrum. How long a timeseries of CLARREO-
like data is necessary before climate models’ realizations of the climate feedbacks
can be tested remains an open question.

In Fig. 1 we show the spectral infrared signatures of tropospheric temperature
change, stratospheric temperature change, tropospheric water vapor increase, and
carbon dioxide increase. Because water vapor inhibits outgoing longwave radiation
with time, as can be seen by the sign of the integral of its signal over frequency in
Fig. 1, it is associated with a positive longwave feedback. In clear skies, we seek to
model the trend in the emitted infrared spectrum as a linear combination of these
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Fig. 1 Spectral infrared signals corresponding to calculus of feedbacks. The tropospheric temper-
ature signal corresponds shows how the troposphere cools itself; the carbon dioxide signals shows
the spectral fingerprint of radiative forcing by carbon dioxide; the water vapor signal shows the
spectral fingerprint of the water vapor-longwave feedback. The units for the radiative trend for all
plots in this figure is W em =2 (ecm~")~! sr! decade !

four signals while allowing for some uncertainty in the modeled shape of these sig-
nals. The quality of the eventual fit is measured against the natural variability in the
emitted infrared spectrum on interannual time scales. The mathematical technique
is just the same as that used in climate signal detection and attribution studies (Allen
et al. 2006) with an allowance for signal shape uncertainty (Huntingford et al. 2006).
The “model” for the linear trend in the emitted infrared spectrum dd/dt = dF-V /dt

is
dd

where the s; are the spectral shapes given in Fig. 1, the da;/dt are scalar estimators
of the trends of outgoing longwave radiation associated with individual variables,
and the On are realizations of interannual variability in the tropics as they would
appear in the annual average emitted infrared spectrum. The solution for the trend
estimators da; /dt is given by

da _dF-V

dr dt ©)
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where the columns of the matrix F are the components of the contravariant basis
to the fingerprint basis established by the s;. As a consequence, F7S = I where the
columns of S are the s;, and so we call F the set of contravariant fingerprints. Consis-
tent with Bayesian inference (Leroy 1998), optimal methods (Bell 1986; North et al.
1995), and a geometric approach (Hasselmann 1997), the contravariant fingerprints
are given by

F=31§("z"1§)! (7)

where X is a covariance matrix describing the statistics of natural variability and
uncertainty in the shapes s;:
2 =2/t 2s. 3)

The contributions of natural variability and signal uncertainty must be evaluated
differently because of their different natures. Natural variability influences a mea-
sured trend in the emitted infrared spectrum simply because any timeseries of a
random phenomenon yields a nonzero residual trend. If the covariance of natural
variations in the annual average emitted infrared spectrum is X, then for serially
uncorrelated variability then the residual trend has zero expected mean but an un-
certainty of Xy, /4,

127
Zanjdr = W —NGP) Zsn )

where N is the number of years in the continuous timeseries and T = 1 yr for no
serial correlation (Leroy et al. 2007b). The covariance of natural interannual vari-
ability is evaluated using a long control run of a climate model in conjunction with
a forward model for emitted infrared spectrum. On the other hand, the covariance of
signal shape uncertainty must be evaluated using a large ensemble climate models
each of which can be used to determine its own set of signal shapes s;. Because
we are interested in trends of spectrally integrated outgoing longwave radiation, for
each model used to derive s;, the signals are normalized such that the spectral inte-
gral of s; multiplied by = (to account for integration over solid angle) is unity. Then
the signal shape uncertainty covariance is

daj\ da;j
s = 2 (T(SD) sis]) (10)
L]

where the (---) denotes an ensemble average over a large number of models and the
da;/dt are prior estimates of the trend in outgoing longwave radiation associated
with signal i. The contravariant fingerprints are then obtained by substituting the
expressions for 2, /4 and g in Eqs. 9 and 10 into Eq. 8 and in turn into Eq. 7.
When the contravariant fingerprints are multiplied by annual average infrared spec-
tral anomalies, the result will be the outgoing longwave radiation (OLR) anomalies
associated with the prescribed feedbacks.

Ordinary error estimation (for just one signal s instead of multiple signals S)
dictates that the posterior uncertainty covariance for the OLR trends associated with
the feedbacks should be

Oy = (8= 71s) ™! (11)
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Fig. 2 Detection amplitude timeseries for four signals. The solid squares show detection ampli-
tudes for each of four detected signals and the open squares show true OLR anomalies for each of
the four signals. The thin solid line is the best linear fit to the detection amplitudes. The “truth”
data set is taken from the first 20 years of output of an SRES-A1B run of GFDL CM2.1.

but too often prescriptions of natural variability are grossly different from reality.
Consequently, a better estimate of the posterior error should be obtained from the
data alone. This is done by ordinary linear regression on a detector timeseries o (%)
(c.f. Eq. 15 below). With the timeseries a(t), the error is determined first by esti-
mating the natural variability in the detectors which is the variance of the a(7) after
removal of a best linear fit o (¢): 02 = ((ar(t) — aie(¢))?). The uncertainty in the
trend da/dr due to natural variability becomes
2 o4
Oy 4 (natural variability) = Wat)z (12)

where (A7)? is the variance of the coordinate times in the timeseries. The timeseries
a (1) contains only variability related to natural variability and no uncertainty due to
signal shape uncertainty, so the latter must be added separately. By standard error
propagation techniques,

/s (signal shape) = F' Z¢F (13)

and thus the error in the forecast trend is
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o2 . = o2 (natural variability) + o2, . (signal shape) (14)
do/dt do/dt y do/di \S18 pe).

If natural variability were correctly prescribed by that used in composing the con-
travariant fingerprint F, then oja Jdr (natural variability) = F7 X4, Ja:F and the result
becomes exactly that in Eq. 11.

To demonstrate the viability of this approach to linear regression, we have com-
puted the contravariant fingerprints F using the output of several CMIP3 models
subjected to SRES-A1B forcing. We take annual averages of emitted infrared spec-
tra based on monthly average output and average over the tropics. The signals s; are
estimated based on the first 50 years of output. We then computed 20 years of emit-
ted infrared spectra from a climate model independent of those used to construct the
contravariant basis. We multiplied the contravariant fingerprints by tropical average,
annually averaged emitted infrared spectra from that climate model. The result is a
timeseries of detectors a(z):

a(t) =F'd(r). (15)

The result is shown in Fig. 2. In both the “truth” (open squares) and analysis (solid
squares) there is variability from year to year. This variability contributes in large
part to the length of time required to elapse before useful climate model testing can
take place. In the case of greenhouse forcing by carbon dioxide, it is evident from
the small fluctuations associated with interannual variability that direct observation
of anthropogenic radiative forcing of the climate should be detected and strongly
constrained within just a few years. After 5 years of observation, in fact, an estimate
of radiative forcing by carbon dioxide with just 20% uncertainty should be obtained.
Detection of tropospheric temperature trends (climate response) and longwave sup-
pression by water vapor requires more time because of the large fluctuations as-
sociated with interannual variability. After 20 years of observation, an estimate of
the water vapor-longwave feedback in the tropics with ~ 50% uncertainty can be
obtained by trend analysis.

Fig. 2 suggests a different analysis as well. The year to year anomalies of the
tropospheric temperature and water vapor signals are strongly anticorrelated. This
is related to the simple fact that tropical tropospheric water vapor increases and
blocks surface radiation in years when the tropical troposphere is warm following
the Clausius-Clapeyron equation. The slope of this correlation then can be used to
estimate the water vapor-longwave feedback. In fact, such an anomaly correlation
analysis can be used to estimate the water vapor-longwave feedback in the tropics
with 7% uncertainty in ten years. The uncertainty scales as (At)’l/ 2 for anomaly
correlation analysis whereas the uncertainty scales as (At)’3/ 2 for trend analysis.

Actual spectral longwave data, though, is dominated by clouds, and thus the use
of GNSS occultation is likely to be necessary. Leroy et al. (2006) has shown that the
optimal fingerprint of climate change in upper air dry pressure—dry pressure is the
atmospheric pressure derived from GNSS occultation data under the assumption of
a completely dry atmosphere —is poleward migration of the mid-latitude jet streams
in both the Northern and Southern Hemispheres. In Fig. 3 we show the results of the
application of the methodology described by Egs. 6 through 9 when applied to zonal
average, annual average log-dry pressure (instead of infrared spectra F.-W) as might
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Fig. 3 The top plot shows the contravariant fingerprint (F) for log-dry pressure as an indicator
of surface air temperature trends. When convolved onto a timeseries of zonal and annual average
log-dry pressure (d(¢)) as a function of height as derived from GNSS radio occultation data, it
gives a timeseries of detectors a(t) where o(t) = FTd(t). As indicators of an underlying climate
trend of surface air temperature, the detectors have the units of surface air temperature. The lower
plot shows the result of the application of this approach using detectors, with a 20-yr timeseries of
“data” taken from the output of a model not used in the construction of the contravariant fingerprint.
The black curve shows actual global average annual average surface air temperature, and the red
curve shows the detectors a(r). The red-shaded area from years 2020 to 2050 show the forecast
trend of surface air temperature based on the simulated upper air dry pressure data from 2000 to
2020, and the gray curve shows the actual evolution of the surface air temperature. Because the
detectors () are much noisier than the surface air temperature, one can conclude that surface air
temperature change itself is a better indicator of surface climate change than the upper air is.

be obtained from GNSS occultation data normalized by the surface air temperature
trend dT /dt. An estimate of dT /dt is necessary to observational determinations of
the climate feedbacks. As can be seen in Fig. 3, when upper air log-dry pressure is
used as an indicator of trends in surface air temperature, the fingerprint is just the
same as in Leroy et al. (2006). If one wishes to forecast the future trend of global
surface air temperature in upper air data, the most sensitive indicator is poleward
migration of the mid-latitude jet streams. Poleward jet stream migration, though, is
still less sensitive a predictor of surface air temperature trends than the prior history
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of surface air temperature itself. On the other hand, it remains difficult practically to
measure global average surface air temperature accurately using in sifu data alone,
and thus satellite data must remain an important component of climate monitoring.

4 Discussion

We have described how monitoring the emitted infrared spectrum and microwave
refractivity using GNSS occultation can be used to test the forecasting capability of
climate models. The infrared spectrum is rich in information relevant to the long-
wave feedbacks of the climate system and microwave refractivity contains informa-
tion relevant to the response of the upper air and surface air temperature. Leroy et al.
(2007a) showed that a twenty year timeseries of longwave spectral data is expected
to provide a 50% uncertain estimate of the water vapor-longwave feedback of the
climate system and a 20% uncertain estimate of the longwave forcing by carbon
dioxide in 5 years. Anomaly correlation is expected to work well in the tropics on
an annual timescale because temperature and humidity are strongly coupled in the
tropical troposphere by moist convection. Whether it can be expected to work in the
mid- and high latitudes remains an open question, however.

An evaluation of the longwave feedbacks by trend analysis can only be obtained
with a corresponding accurate estimate of the trend in global average surface air
temperature. Accurate estimation of the global average surface air temperature is
expected to be complicated by the evolution of low clouds. Their infrared spectral
signatures are very similar, and a small amount of error that might result from this
ambiguity would significantly influence an evaluation of the longwave feedbacks,
especially a low cloud-longwave feedback. For this reason, microwave refractivity
as obtained by GNSS occultation has a valuable role to play. Microwave refractivity
is mostly insensitive to clouds, and so it can be expected to resolve a low cloud-
temperature ambiguity in trends in the emitted infrared spectrum. Leroy et al. (2006)
showed that the leading indicator of climate change in upper air dry pressure is
poleward migration of the mid-latitude jet streams. Generalized scalar prediction
shows that surface air temperature prediction can be obtained by poleward migration
of the mid-latitude jet streams as well. The resulting analysis for dT /dt is more
uncertain than simple measurements of surface air temperature trends because of
the influence of natural variability in the upper air, but satellite data does not suffer
from the same coverage problems as does in situ data.

The future direction in this line of research quite obviously points toward sim-
ulations using cloudy outgoing longwave spectra. Clouds are acknowledged to be
associated with the most uncertain feedbacks. Only recently have climate models
published output relevant to simulating cloudy longwave radiances. Once clouds
are included in the simulation of emitted infrared spectra, the surface temperature-
low cloud ambiguity is introduced. The surface temperature-low cloud ambiguity
in outgoing longwave spectra and the wet-dry ambiguity in microwave refractivity
might both be resolved by considering outgoing longwave spectra and microwave
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refractivity jointly in climate model testing and optimal fingerprinting. Such a joint
detection should be accomplished by expanding the proposed data vector to include
multiple data types and computing signals and natural variability accordingly.

Finally, the cloud-shortwave feedbacks remain the most uncertain feedbacks im-
plicit in climate models, so an exploration of how climate models can be tested
using reflected shortwave (visible) spectra is mandatory for responding to societal
demands.
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