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Eecutive Summary

This is the Final Report of the Icing Hazard Level (IHL) activities performed by NCAR for MIT Lincoln
Laboratory. The task is to develop an Icing Hazard Level Algorithm (IHLA) that utilizes dual-polarization
radar data and the temperature (T) and relative humidity (RH) fields from the RUC (Rapid Update Cycle)
model. This work has been motivated the upcoming dual-polarization of the NEXRAD network. The
starting point of this effort was informed by existing algorithms:

1. freezing level detection;

2. freezing drizzle detection;

3. Hydrometeor Classification Algorithm (HCA) and Particle Identification (PID)algorithm;

4. and general knowledge base at NCAR acquired from the development of the CIP (Current Icing
Product; Berstein et al. (2005)) algorithm.

This knowledge base is used to fashion an initial IHLA. Experimental data sets from CP2, S-Pol and CSU-
CHILL are used to test and illustrate some of the subcomponents of the proposed IHL algorithm. Though
far from an operational algorithm, this preliminary design shows promise. More dual-polarization data
sets of icing condition environments need to be collected. Such data will be vital to creating, refining and
tuning a more robust and verifiable IHLA.
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1 Introduction

The initial IHLA reported here is based on existing principles, knowledge and several prior developed
algorithms. Here we give a brief description of this foundation. The existing algorithms and knowledge
used are freezing (melting) layer detection, freezing drizzle detection and hydrometeor classification al-
gorithms.

Identification of supercooled liquid water using dual polarimetric radar has been investigated before
by researchers who developed the PID (Particle Identification) fuzzy logic algorithm (Vivekanandan et al.
1999). They found that the polarimetric membership functions for supercooled liquid water completely
overlapped with irregular-shaped ice, i.e., ice that is characterized by zero average Zdr (differential re-
flectivity) and zero average Kdp (specific differential phase). The fuzzy logic used by PID, however, to
distinguish these particle classes is base on the radar variables at one gate or resolution volume. Recently,
Ikeda et al. (2009) have developed a freezing drizzle detection algorithm for the WSR-88D radars that is
based in large part on various metrics of spatial texture of reflectivity. They found that drizzle exhibited
smoother reflectivity textures than ice particles and thus they were able to discriminate between these two
particle classes at least for 70% of their observed drizzle cases. Plummer et al. (2010) have recently made
similar type observations from comparisons of aircraft observations (particle probes) and S-Pol data from
the field campaign MAP in northern Italy. They examined histograms of Zdr and Kdp and concluded that
1) the mean values of Kdp and Zdr were greater in regions of ice-only as compared to mixed-phase and
2) the texture of Zdr and Kdp were also greater in regions of ice-only as compared to mixed-phase. Thus,
these new studies indicate that radar data, and in particular dual-polarization radar data, can offer skill in
identifying aircraft icing conditions.

2 Freezing Level Detection

There are several existing techniques for estimating freezing level of hydrometeors, for example Brandes
and Ikeda (2004). This algorithm, however, uses vertical profiles of radar data. Since WSR-88D only
gathers PPI data, it is desirable to identify the freezing level directly from PPI data rather than recon-
structed vertical cuts. Later we describe a freezing level detection technique developed at NCAR for this
project that utilizes PPI data.

As ice particles descend through the 0◦C isotherm, they begin to melt, can aggregate, and finally turn
into liquid drops. This process typically produces enhances radar signatures and distinct vertical profiles
of radar data. The vertical profiles of radar parameters of the melting layer are shown in Fig. 1 (borrowed
from Brandes and Ikeda (2004)). Melting level detection routines capitalize on this information.

3 Freezing Drizzle (FZDZ) Detection

The central principle in detecting FZDZ in Ikeda et al. (2009) is that mixed-phase precipitation and snow
(ice crystals) produce higher spatial variability of reflectivity signatures than drizzle. This spatial variabil-
ity is cause by 1) vertical gradients in reflectivity and 2) the presence of larger variable-sized ice particles
(compared to drizzle). The vertical gradient in reflectivity (Z) is cause by the onset of the formation of
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Figure 1: Vertical polarimetric radar profiles of the melting level (from Brandes and Ikeda (2004)).

ice (snow) which creates larger particles than found in pure drizzle (Fabry and Zawadski 1995). Colder
(cooling of) cloud tops likely drives the ice nucleation process. The larger particle cause both larger Z
(due to D6) and greater Z variance (speckle). The vertical gradient will also increase texture estimates
such as the standard deviation of Z. Texture estimates, such as the one used in Ikeda et al. (2009)

ZT =

m∑
j=1

n∑
i=1

(Zi,j − Zi−1,j)2

n×m− 1
, (1)

are less influenced by the vertical gradient increase as compared to the standard deviation. The vertical
gradient noted in Ikeda et al. (2009) is below 2.5 km MSL or about 0.9 km AGL in the Front Range. The
standard deviation is defined in usual fashion as

σz,local =

√√√√√ m∑
j=1

n∑
i=1

(
Zi,j − Z̄

)2
n×m− 1

(2)

where Z̄ is the mean reflectivity. m and n define the grid over which the ZT and σz,local are calculated.

Ikeda et al. (2009) divide the area around the radar into two regions: R1 : r ≤ 15 km; R2 : r ≤
100 km. The elevation angle versus range is used as a vertical profile proxy for the 100-km region.
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In short, drizzle is characterized by:

1. weak median reflectivity (0-5 dBz)

2. spatially-uniform reflectivity field

3. relatively small vertical gradient of reflectivity compared to mixed-phase/snow

4. small vertical extent (less than a few kilometers)

The radar parameters used in Ikeda et al. (2009) are

1. median radar reflectivity over entire 15 km and 100 km domains (Zm dBZ)

2. global standard deviation of reflectivity over entire 15 km and 100 km domains (σz,global dBZ)

3. median local standard deviation (median σz,local dBZ).

4. standard variation of the local standard deviation ( standard deviation of σz,local) dBZ

5. median reflectivity texture within circular areas of 15- and 100-km radii centered at the radar site
(median ZT ).

The membership functions are given in Fig. 2 (from Ikeda et al. (2009)). Thus, the algorithm calculates
numerous statistical measures and uses fuzzy logic to convert these measures into scores; the individual
scores are then combined into a single final score. If the final score is above a threshold, freezing drizzle
is inferred to be present in the scan. While this algorithm will not suffice for aircraft icing detection, it
does provide a reasonable starting point.

4 Plummer: Aircraft Data Compared to Radar Observations

Plummer et al. (2010) report polarimetric signatures of mixed-phase and ice-only regions of storms from
the field campaign MAP in the Italian Alps (1999). Measurements of particle probes mounted onto the
ELECTRA research aircraft are compared to S-Pol data. The frequency histograms shown in Fig. 3 are for
mixed-phased (left column) and ice-only (IO; right column) regions. Mixed-phase areas are considered
indicative of SLW (supercooled liquid water).

Of particular interest are the histograms ofZdr (c),(d) andKdp (e),(f). The histograms for the mixed-phase
region are narrower than the histograms for the ice-only region. This suggests that such histograms from
experimental radar data could discriminate the two classes. They also suggest that spatial texture of Zdr

andKdp will be higher in ice-only regions as compared to mixed-phase regions. Possible texture estimates
are 1) mean reflectivity difference (e.g., Eq.(1)), 2) standard deviation and 3) the standard deviation of (1)
and (2).
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echoes more than 60% of the time (Fig. 15; FZDZ/
-FZDZSN and FZDZ only categories) with less than
20% false alarms.More than 80% of the observed drizzle
cases would be detected using sZ,local, STD(sZ,local), Zm,
or ZT alone. However, these parameters also yield rela-

tively high false-alarm rates. The current detection
scheme weighs all feature parameters equally, providing
a more skillful freezing drizzle detection than either pa-
rameter alone. The weights may be tuned as more ex-
perience is gained from real-time operations.

FIG. 14. Membership functions for radar echo feature parameters corresponding to areas
inside the (a)–(e) 15-km and (f)–(j) 100-km range marks.

54 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 48

Figure 2: Membership functions for radar echo feature parameters corresponding to areas inside the
(a)(e) 15-km and (f)(j) 100-km range marks. (from Ikeda et al., 2009).
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5 An Algorithm to Find Freezing Level from Dual-Polarized Radar Data

a Introduction

As discussed and shown above, when hydrometeors transition from frozen or solid particles to a liquid
state, vertical profiles of radar variables typically display distinct features. Using these features, a freezing
level detection algorithm was designed that uses PPI data. When viewing PPI scans of radar data (rather
than vertical cuts or RHI data) the freezing level is typically seen as a “ring” of values that are different
than the values above or below (nearer and farther) the freezing level range. The following algorithm
finds these rings on a PPI-to-PPI basis, and from them estimates a freezing level as a height Z above the
radar.

b Ring Filter

The human eye can easily see a ring of distinct values in the following ρhv images shown in Fig. 4. Each
image represents a PPI scan of the radar at a different elevation angle. These rings mark the freezing level
and typically occur at a constant height above the radar at least for typical stratiform-type precipitation.
The ring, therefore, is seen closer to the image center and becomes less deep as the elevation angle
increases. The ring filter algorithm attempts to identify the ring-like pattern in the same way that the
eye does. This is done using a moving two-dimensional spatial template that defines a set of points over
which to perform a calculation. The set of points is defined by the template, and it changes based on the
center-point of the template. The template consists of three regions: center, inner and outer. The data
values in each of these regions are used to compute a “ring interest” in the range 0 to 1 with 1 being
extremely ring-like and 0 being not at all ring-like. The diagram in Fig. 5 shows an example of the ring
template centered at a particular point (r,a) with r and a denoting range and azimuth respectively.

The data difference between the center (green) region and the non-center (blue and red) regions are
computed, and a derived value Ring(r,a) is computed for that point. For the previous ρhv images in Fig. 4,
the ring filter yields the interest images shown in Fig. 6. The template that was used is shown in the
images at top right of center (pink and brown curved bars).

The actual rings seen in the previous ρhv images of Fig. 4 can be seen in the filtered images marked
by high interest values while other points are typically significantly lower. However, some areas manifest
a local ring-like feature even though they are not part of the actual ring.

Because the ring finding algorithm leads to spurious local false high values which tend to be non-
contiguous whereas the actual ring high values are more contiguous, as seen above, a second ring filter is
applied to the first filtered images, to bring out contiguous rings. The resulting double filtered ρhv images
are shown in Fig. 7. It can be seen that the second filter preserved the high values where appropriate,
whereas in other areas, the values tended to be decreased.

i Ring Filter Example for Reflectivity The same approach can be used on other radar fields that po-
tentially show the ring-like patterns. Only the templates and parameters change. Shown in Fig. 8 is PPI
dBZ (denoting reflectivity) data corresponding to the 9.1◦ elevation angle ρhv data of Fig. 4. The left
hand image is dBZ while the right hand image is the dBZ data processed by the ring filter.
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ii Ring Filter Example for Zdr In a similar fashion, Zdr PPI data corresponding to the above ρhv and
dBZ data is processed by the ring filter. Figures 10 and 11 similarly show Zdr, Zdr processed by the ring
filter (in Fig. 10) and Zdr processed twice by the ring filter (Fig. 11).

iii Combining the Ring Filter Results When the fields of ρhv, dBZ and Zdr are processed from the
same radar scan with the double ring filter, skill is seen, but gaps do show up, with different gaps and
weaknesses depending on the input data field. For the 9.1◦ scan example, the ρhv, dBZ and Zdr double
ring filter data from Figs. 7, 9, and 11, respectively, are combined. The combine filter selects the maximum
at each grid-point from a set of inputs to fill in the fields. The result of combining these three fields is
shown in Fig. 12. As can be seen, the ring feature that marks the region of the freezing layer is identified
without gaps that were apparent in the individual ρhv, dBZ and Zdr images. In the maximum filtered
image of Fig. 12, there is a small area to the lower left that has high interest. Applying an average filter
can reduce smaller areas of high interest, and retain larger areas of high interest, depending on the filter
size. We next apply a simple averaging filter to reduce small isolated high-interest areas and this is shown
in Fig. 13.

c Clumping Filter

Within the image of Fig. 13, the eye easily picks out a contiguous region with high interest, and in this case
forms an almost perfect circular ring. A clumping algorithm builds contiguous clumps above a threshold,
and each resultant clump is evaluated for quality. Quality is a fuzzy measure based on various size, shape
and data value factors.

The result of clumping of the example is shown in Fig. 14 with each clump displayed with its quality
value (0 to 1). Two clumps with quality in the upper 0.6’s, and a small clump with lower quality (0.5) are
seen. Note that both big clumps are at a similar radius (freezing level).
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Figure 3: Frequency histograms of observed values of radar reflectivity factor (dBZ) for (a) SLW and (b)
IO (ice-only); differential reflectivity (dB) for (c) SLW and (d) IO; specific differential phase (◦km−1) for
(e) SLW and (f) IO; correlation coefficient for (g) SLW and (h) IO (from Plummer et al., 2010).
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Figure 4: PPI ρhv data from the CP2 radar located in Brisbane, Australia, operated by the The Centre
for Australian Weather and Climate Research. Left: 9.1◦ elevation. Right: 17.8◦elevation

Figure 5: A diagram illustrating the ring filter used to detect the freezing level.
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Figure 6: PPI ρhv data from Fig. 4 that has been processd by the ring filter.

Figure 7: PPI ρhv data from Fig. 6 that has been processed by the ring filter a second time.
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Figure 8: PPI dBZ data corresponding to Fig. 4. The left image is dBZ and the right image is the dBZ
data processed by the ring filter.

Figure 9: PPI dBZ data corresponding to Fig. 8. The image is the dBZ data processed twice by the ring
filter.
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Figure 10: PPI dBZ data corresponding to Fig. 8. The left image is Zdr and the right image is the Zdr

data processed by the ring filter.

Figure 11: PPI Zdr data corresponding to Fig. 8. The image is the Zdr data processed twice by the ring
filter.
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Figure 12: PPI ring feature data generated from a combination of the double ring filtered ρhv, dBZ and
Zdr data from Figs. 7 (9.1◦ elevation), 9, and 11, respectively.

Figure 13: PPI ring feature data corresponding to Fig. 12 except that the data have been smoothed.
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Figure 14: PPI data quality ring feature generated from a combination of the double ring filtered ρhv,
dBZ and Zdr data from Figs. 7 (9.1◦ elevation), 9, and 11, respectively. The color scale indicates the
“quality” or “strength” of the ring feature.
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The approach outlined so far is applied to all elevation angle scans within each radar volume, resulting
in a clump quality image for each elevation angle. In summary, for each elevation angle, these processes
are applied:

1. double ring filter of ρhv;

2. double ring filter of dBZ;

3. double ring filter of Zdr;

4. combine (1), (2), and (3) (maximum);

5. smooth; and

6. clump.

d Histogram Decomposition

Using the set of clump images (one for each elevation angle scan), a two dimensional histogram P (z, φ)
is created where z is a histogram bin center specifying a range of heights from z−dz/2 to z+dz/2, with
z taking on a discrete set of values:

z0, z0 + dz, z0 + 2dz, ...., z0 + ndz (3)

and φ is one of the radar elevation angles that were scanned. The histogram is defined as:

P (z, φ) = percent of points in range z − dz/2 to z + dz/2 at radar elevation φ that are part of some
clump.

i Quality Adjustment to Histogram Values Each clump has an assigned quality value. The higher the
quality value, the more likely the clump location is a proxy for the freezing level. The histogram values
are adjusted so as to give higher results in histogram bins in which the quality of the clumps is high. The
adjusted histogram values are:

A(z, φ) = P (z, φ) ∗ Fq(Q(z, φ)) (4)

where P is from above,Q(z, φ) is the maximum quality value in the (z, φ) bin, and Fq is a fuzzy function.
Including Fq provides more flexibility to the freezing level identification algorithm.

ii Scan Consistency Adjustments to Histogram If one bin zi dominates a particular elevation angle φ,
i.e., A(zi, φ) � A(zj , φ) for all other zj , then based on this one elevation angle, the bin zi is very likely
to be the best choice of z as an estimate of melting level. If, however, more than one bin has similar A
value, the confidence in any one choice of z-bin as an estimate of freezing level goes down. In such cases,
the A values are modified (normalized) into rescaled (R) values:

R(z, φ) = A(z, φ)Fs(A(z, φ)/S(φ)) (5)
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Bar Color Value Meaning
blue P (z, φ) Simple percent clump values
green A(z, φ) Quality adjusted
red R(z, φ) Scan consistency rescale

Table 1: Definition table.

where S(φ) is the sum of all bin values for the elevation φ:

S(φ) = A(z0, φ) +A(z0 + dz, φ) + . . .+A(z0 + ndz, φ) (6)

and Fs is another fuzzy function. Including the fuzzy function Fs provides more flexibility to the freezing
level identification algorithm. Both Fs and Fq can be considered “tuning” parameters that are under
development.

iii Visualizing the Histograms To visually represent the results of this three-step histogram construc-
tion, histograms are plotted with elevation angles vertically and the bins z horizontally. This gives an
intuitive, visual and practical way to estimate the freezing level. Three bars are drawn in each bin, with
color of bar indicating which of the three steps is being displayed: The highest elevation scan (17.82◦) is
at the bottom and lowest (0.44◦) is at the top.

Show in Fig. 15 is a histogram plot for the example used thus far, with low resolution bins (0.5 km) on
the horizontal axis. Looking at the 17.82◦ elevation, nearly all the points fall into z = 3 km bin. Smaller
values show up at z=6-7km. As we move down in elevation angle scanned, high percentages appear in
the histogram fairly consistently between z = 2.5 and z = 3 km, with no clumps present at the lowest
3 elevation angles. A close-up of the 17.82◦ elevation histogram is shown in Fig 16. The green (A or
adjusted) values were boosted due to the medium to high quality of the clumps. The z = 3.0 km bin was
boosted all the way to 1.0. As can be seen, this bin dominates the scan.

The red (R or rescaled) values show the dominating bin unchanged, and the remaining bins removed
altogether based on the fuzzy function Fs, except for the z = 6.5 km bin, which was reduced almost to
zero. The final histogram of R (red bars) shows that the 3.0 km bin is by far the most likely one as seen
by the 17.82◦ scan.

e Estimating the Freezing Level from the Histograms

The final step is to compare histogram results from all the radar elevation angles to determine which bin
(height) is the most likely freezing level, and what the quality estimate is for this bin, using consistency
at different radar elevations and histogram values.

The best case would be if every radar elevation angle had one dominant bin with a large R histogram
value, and all elevations angles had the same dominant bin. In an intermediate case the bins would drift
a little bit but not too much as a function of elevation angle. In a bad case the bins would show large
inconsistency at different elevations and/or would have low quality.

The approach is to select a start bin identified by that bin with the largest overall R(z, φ) value (for
all φ and z). Next, contiguous elevation angles (both higher and lower elevation angles, if present) are
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Figure 15: Histograms of P , A and R values. Histogram arranged vertically by elevation angle and
horizontal axis is height in kilometers MSL. 19



Figure 16: Histogram of P , A and R values for the 17.8◦ elevation angle from Fig. 15.

examined for high R values. Bins (heights) that are closer in distance to the previously selected bin are
given higher weight (probability). Quality is initially given by the R value at the starting point, and it is
adjusted based on what is seen at subsequent elevations. Higher quality values are assigned if there is a
high R value bin with z unchanged or changing only slightly. Lower quality values are assigned if there
are no high values of R at or nearby the previously selected z. A final step is to penalize if only a small
number of elevations were included in the ridge.

In the histogram in Fig. 17, the ridge finding output has been added to the histogram of Fig. 15 as
color-coded boxes with quality values and lines connecting them. In this example, the ridge is built
starting at the maximum bin (z = 3.0 km, φ = 17.82◦), which is the histogram at the bottom of the
figure. The starting point R value is shown within the green box close to the histogram. As we move up
in the figure (down in elevation angle), the Q values are again shown in boxes drawn near the bin that was
chosen. When the algorithm concludes, a red box is drawn with the final Q value within.

For this example, Table 2 gives the contents at each radar elevation, and a description of the action
taken.

20



Figure 17: Histograms of P , A and R values. Histograms are ordered vertically by elevation angle and
horizontal axis is height (z) in kilometers MSL. 21



φ (deg.) height (z) Q Comments
17.82 3 1 Initial top quality from the entire histogram Zmax=3km R(3,17.82) = 1.0
12.81 3 1.06 Boosted, because it is the same bin as Zmax
9.1 2.5 1.09 Boosted because bin changed only 0.5 km
6.51 3 1.11 Boosted, same bin as Zmax
4.7 3 1.13 Boosted, same bin as Zmax
3.21 2.5 1.13 Boosted because bin changed by 0.5km, small because max at this elevation is small.
2.41 2.5 1.14 Boosted, bin change 0.5, and max value at this elev. is bigger.
1.69 2.5 1.11 Stopped here, quality reduced because still 3 elevations not in ridge.
1.01 2 – Never evaluated, stopped above.
0.44 – – Never evaluated, stopped above.

Table 2: Histogram values and the actions taken.

f Summary of Freezing Level Detection Algorithm

The entire processing sequence goes as follows:

For each radar volume

For each elevation angle scan

double ring filter of ρhv

double ring filter of dBZ

double ring filter of Zdr

max combine

smooth

clump

build a two-dimensional Histogram of percent clumped

adjust for quality

adjust for scan related consistency

determine z, Q for this volume by doing ridge-finding

end

A data flow diagram is shown in Fig. 18.
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Figure 18: Flow diagram for the freezing level detection algorithm.
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g A Second Data Example

The previous example used radar data from a widespread stratiform precipitation case which exhibited
a well defined bright band. The following case shows a fairly strong signal for more than one height Z.
The dBZ and Zdr PPIs are shown in Fig. 19 for the 6.51◦ elevation scan. Figure 20 shows results after
the clumping process. Note the large number of clumps at a variety of radii. Similar behavior is seen at a
number of elevation angles. The result is that the ridge-finding algorithm is not consistent and the quality
is therefore slightly reduced, as can be seen in the histogram with ridge shown in Fig. 21.

i Time Series of Quality As radar volumes are processed, a time series plot of height Z and quality Q is
possible. Figure 22 shows Z (blue) and Q (green) as a function of time. One can see a tendency to have
higher quality during intervals with consistent Z values, and also that the time series indicates Z = 2.5
to 3km with a few estimates at 0.5 to1.0 km.

ii Lag-Domain Statistical Representation A “lag-domain” approach can be used to identify consistent
estimated freezing heights by plotting a 2-D histogram where the horizontal bin is given by Z(t) and the
vertical bin is given by Z(t+ 1) for a specified time interval t. If the Z value is consistent through time,
a cluster (large count) will occur in the histogram at the particular Z. Figure 23 shows the the lag-domain
histogram of the above time series.

As can be seen the time series shows clusters (large counts in red and orange) at 2.5 km and 3 km and a
smaller cluster at (1km, 1km). The 1km data is seen early and late in the time series. The remaining areas
with counts greater than zero are where the time series values are not constant. Based on this lag-domain
representation, the freezing level is estimated to be in the 2.5 to 3-km height range.

The estimated data quality factor can be used as a threshold to sharpen the image. For example, if low
quality threshold of 0.5 is used, the histogram values are almost entirely limited to (2.5km, 2.5km) and
(3km, 3km). This is shown in Fig. 24.
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Figure 19: Reflectivity and Zdr for the second example case.

Figure 20: Final results from the clumping process for the data in Fig. 19.
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Figure 21: Histograms of P , A and R values for the second data example. Histograms are ordered
vertically by elevation angle and horizontal axis is height in kilometers.
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Figure 22: A time series of selected possible freezing levels (blue curve) and associated quality factor Q
(green curve). Vertical axis is height in km and and horizontal axis is time.

Figure 23: A two-dimensional histogram of lag-domain values from the time series in Fig. 22.
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Figure 24: The two-dimensional histogram of lag-domain values similar to Fig. 23 but with the calculated
quality factor used to sharpen the image.
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h Further Development

Many areas can be explored using the techniques developed thus far.

1. Algorithm tuning: The various parameters have been initialized to reasonable values, but only a few
cases have been processed, and the effect of parameter change is an area for additional research.
Processing on a variety of data cases should be included in this research.

2. Real time output: The algorithm produces the time series output seen above, and also an accumu-
lated Z value in the lag-domain. Use of these results is an area still to be determined.

3. Additional inputs: Any other fields that show ring like patterns can be added.

4. Differences between fields: It might be that some fields have different heights with the ring pattern
for the same scan. The ability to handle this has not been included in the algorithm thus far.

5. Additional measures of freezing height: Ring patterns are only one approach. Other attributes of
particular fields might show up in the freezing layer. Any technique that leads to an interest image
with skill can be easily added. One example is texture, which may show different characteristics in
the freezing layer.

6 Putting It All Together

The information and algorithms discussed thus far are now integrated to create an initial IHLA. The
FLDA described above is used to make an initial estimate of the freezing level. An adjusted freezing level
is estimated by combining this estimate with the temperature profile from a sounding (or the RUC). This
new freezing level is used as in input to the PID. The PID is used to discriminate precipitation regions
from non-meteorological data. Various spatial textures are calculated over the the areas occupied by
hydrometeors. The information from the PID, RUC and the new texture variables are then combined in a
fuzzy logic algorithm and indicates the icing condition likelihood.

7 Using Texture Features

Texture-related computations can be used to produce a freezing drizzle estimate by way of combining
the results of the NEXRAD Drizzle Detection algorithm (NDDA) that takes advantage of previously
developed algorithms FLDA, SndFzAdjust (an algorithm that modifies the freezing level calculated by
the above describe freezing level detection algorithm), and PID.

The FLDA described previously ultimately produces a time series of freezing heights with associated
confidence values. A time series example is shown in Fig. 25 for a case from CSU-CHILL radar data
gathered on 27-28 October 2009. The blue line is the freezing height (km MSL), the green line is confi-
dence and the red line marks ground level. As the confidence becomes very low near the end of the time
series, the estimated freezing height becomes variable, which indicates weak and non-distinct freezing
level signatures. For example, there are some ring-type features at heights near 5 km MSL. At least for
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Figure 25: A time series of CSU-CHILL data showing the freezing level estimates in blue. Vertical axis
shows kilometers above MSL. The red line shows the ground level.

the Front Range of Colorado, such estimates of freezing level can be discarded as extremely unlikely
(unless inside a convective cell). Such high altitude ring signatures may be indicative of some type of
precipitation layer, such as ice crystals, which could be of value in an IHLA. The majority of the case,
though, shows a freezing height near 2 km MSL (CSU-CHILL is at 1.43 km MSL).

A good radar data example from this time period (i.e., high quality ring estimate) from CSU-CHILL
data gathered at 02:29:42 28 October 2009 at 8.14◦ elevation angle is shown in Figs. 26 and 27. The final
ring estimate is seen close in by the radar location.

We next examine data from the end of the time series in Fig. 25 where the freezing level estimate was
about 5 km MSL. Shown in Figs. 28 and 29 is data from 04:51:37 at 8.14◦ elevation. Now there is no
ring signature found close to the radar and there is only a small portion of a ring in the lower left quadrant
(Fig. 27). At this time snow was observed falling at the surface and thus the freezing level had descended
to ground level. The small ring signature seen at this time likely is due to oriented ice particles. This is
further supported by the positive Zdr values in this area in Fig. 28.

8 Prototype IHLA

We now begin to put some of the pieces of the puzzle together for an IHLA. As a first step the technology
developed thus far is combined with the NDDA.

An important input to the PID is the local sounding data and the correct 0◦ level. Soundings are in-
frequent and may not be accurate. An initial sounding adjustment algorithm, the SndFzAdjust algorithm,
was made that uses the freezing level estimate to adjust the sounding data. The adjusted sounding is
then fed into the PID algorithm, which categorizes all the radar echoes. The PID output is used to mask
portions of the radar data. The masked radar data is then used as input to the NDDA algorithm, which has
many intermediate derivations leading to one final number: the estimate of freezing drizzle likelihood. A
block diagram of these steps is given in Fig. 30.

We now show an example of each step of this process for elevation angle = 2.71◦ for the data shown
above at time 02:29:42. The ring pattern for elevation 2.71◦ is shown in Fig. 31 and the accompanying
histogram plot is given in Fig. 32. This yields a freezing height estimate of approximately 2 km MSL.
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Figure 26: dBZ and Zdr from CSU-CHILL data gathered at 02:29:42 28 October 2009 at 8.14◦ elevation
angle.
.

Figure 27: ρhv and the final ring estimate accompanying the data of Fig. 26.
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Figure 28: dBZ and Zdr from CSU-CHILL data gathered at 04:51:37, 28 October 2009 at 8.14◦ elevation
angle.

Figure 29: ρhv and the final ring estimate accompanying the data of Fig. 28.
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Figure 30: Block diagram of of the data processing that occurs before radar data is fed to NDDA.
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Figure 31: The final estimate from the ring filter process for CSU-CHILL gathered at 02:29:42
.

This freezing height is used by SndFzAdjust to adjust the sounding data. The sounding data is used by
PID to produce its output. The results of PID with and without using the SndFzAdjust adjustment is
shown in Fig. 33.

The PID categories considered for investigating the presence of freezing drizzle are SLW, Irreg-ice,
ice, and dry snow. All other types are masked out. For the present case we show dBZ without and with
this masking applied in Fig. 34.

The masked dBZ field is then fed to the NDDA which calculates a freezing drizzle likelihood esti-
mate. The mean and median fields are computed for use in NDDA over small two-dimensional averaging
windows and are shown in Fig. 35. The remaining fields are all single numbers, so a time series is a nicer
way to represent what happens to produce the final value.

The NEXRAD Drizzle Detection Algorithm (NDDA) was developed by Ikeda et al. (2009) to detect
freezing drizzle using NEXRAD data. A detailed description of the algorithm, results and scientific
motivation can be found in the paper. The following discussion is a synopsis of the algorithm described
in the Ikeda et al. (2009).

The algorithm calculates numerous statistical measures and uses fuzzy logic to convert these measures
into scores; the individual scores are then combined into a single final score. If the final score is above
a threshold freezing drizzle is inferred to be present in the scan. The statistical measures calculated are
the median reflectivity, the global standard deviation of the reflectivity, the median of the local standard
deviation of the reflectivity, the standard variation of the local standard deviation of the reflectivity, and
the median reflectivity of the local texture. Notice the statistical measures are single values calculated
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Figure 32: Histograms of P , A and R values. The histograms are vertically arranged by elevation angle
and horizontal axis is height (z) in kilometers (MSL). The red line is ground level.
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Figure 33: An example of PID output for without the sounding adjustment (above) and with the sounding
adjustment (below). 36



Figure 34: Reflectivity from 02:29:42: Left, without PID masking. Right, with PID masking.

over a domain. For the purposes of the algorithm, there are two domains, a near domain (15 km) and a
far domain (100 km). Consequently, there are a total of tenscores that are combined to determine the final
score.

To implement the algorithm one needs to calculate the median and standard deviation of a 2-D field
over a specified range and azimuth domain, calculate a standard deviation over a local range and azimuth
region, calculate a texture over a local range and azimuth region. Finally, code is needed to remap the
output statistics into scores using piecewise linear functions (fuzzy membership functions).

The local texture and standard deviation are calculated by Eqs.(1) and (2), respectively. Figure 35
illustrates the local standard deviation (left panel) and the local texture (right panel).

Figure 37 shows a block diagram of the processing needed to calculate the final NDDA score (as-
suming the PID has already been calculated and applied to the input reflectivity data). The output of the
remap functions is shown as a time series in the Fig. 38. The fuzzy membership functions are shown in
Figure 2.
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Figure 35: The mean and median dBZ fields computed for use in NDDA.

Figure 36: Standard deviation and texture of dBZ.
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Figure 37: Block diagram of NDDA.
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Figure 38: Time series of NDDA parameters.
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9 Preliminary Fuzzy Logic Icing Detection

a Introduction

In the previous section, a preliminary IHLA was constructed by simply using the freezing drizzle detection
algorithm (NDDA) from Ikeda et al. (2009). The NDDA is shown in the flow chart in Fig. 30. Obviously,
detecting freezing drizzle at ground level is substantially different from detecting aircraft icing conditions
aloft. In this section we begin to expand the NDDA into an algorithm more appropriate for aircraft icing
condition detection aloft.

The data set used in this part of the study was observed with the CSU-CHILL radar near Greeley
Colorado on 28 October, 2009. On this day there were several pilot reports of icing in the Front Range
Colorado region including Denver International Airport (DEN), Greeley Airport (GXY) and the Front
Range Airport in Broomfield (BJC). The pilot icing reports ranged from light to moderate-severe at flight
levels between 9000 to 15000 ft above MSL. Taking into account normal atmospheric propagation using
the 4/3 Earth radius approximation (Rinehart 2004), the elevation of CHILL (1.43 km), and converting to
km, the flight level range of the icing reports corresponds to the range of about 1.3 to 3.1 km above the
CHILL radar. Therefore this is a good case to test the radar variables and a preliminary algorithm.

The 28 October data are from an upslope stratiform case. The reflectivity (dBZ, top panel), differential
reflectivity (Zdr, middle panel) and specific differential phase (Kdp, bottom panel) at 02:29 UTC at an
elevation angle of 1.53 are shown in Fig. 39. The time was chosen because it is central to the pilot icing
reports and therefore most likely to manifest icing conditions. The data have been masked as described
above (note that the wedge of missing data extending to the northwest of the radar were missing from the
original data set and not edited by the algorithm). Widespread echo can be seen with distinct features in
the dBZ, Zdr and Kdp fields. There is a band of higher dBZ oriented in the north-south direction and is
near collocated locally with high Zdr and Kdp. At 1.53◦ elevation the ranges that correspond to the span
of heights of the pilot icing reports are from 40 km to 95 km.

Two studies found in the literature were utilized to produce fuzzy logic icing potential product. The
first study is from Ikeda et al. (2009) which utilizes fields derived from reflectivity (dBZ) to determine
if there is freezing drizzle at ground level. The algorithm is modified here to identify supercooled large
drops (SLD) above the ground. The second study by Plummer et al. (2010) examines the utility of dual-
polarization variables to discriminate mixed-phase from ice-only conditions. Although Plummer et al.
(2010) do not propose an algorithm, their findings are adapted into a preliminary algorithm and applied
to the CHILL data.

Therefore we are developing separate algorithms to detect icing in different conditions. The results of
the algorithms will need to be combined and the icing information displayed in a manner that is useful to
the end users. The algorithms discussed here would replace the light blue oval labeled NDDA in the block
diagram shown in Fig. 30. The combined output of these algorithms would replace the green rectangle
labeled NDDA value. Determining the most effective representation of the icing detection results needs
to be defined in the context of end users.

It is important to keep in mind that there may be vastly different cloud processes resulting in icing and
with different radar signatures than those reported by Ikeda et al. (2009) and Plummer et al. (2010). A
radar-based icing detection algorithm needs to have the flexibility to incorporate different radar signatures
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Figure 39: Reflectivity (top), differential reflectivity (middle) and specific differential phase (bottom) from
CHILL on 28 October at 02:29 UTC. The data have been masked using the algorithm described above.
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of different phenomena. This is an important goal of this work and the two studies utilized to date are
considered a good starting place.

b Identifying Supercooled Water

The algorithm of Ikeda et al. (2009) was designed and tested to detect freezing drizzle at the ground.
Therefore if the principles shown by Ikeda et al. (2009) are to be used for detection of in-flight icing
conditions, the algorithm must be modified and extended to be applicable at altitudes above the ground.
Ikeda et al. (2009) used the region within 15-km radar range ring to compute the characteristics of the
measurements in the layer closest to the ground using the 1.5◦ elevation angle scan. Here, this idea has
been extended to 15-km width bands at successively farther ranges and thus higher elevation layers. For
example the lowest layer is from 0 to 15 km radar range, the next layer is from 15 to 30 km radar range
and then from 30 to 45 km and so on, similar to the suggestion by Ikeda et al (2009). Each 15-km radar
range band at 1.53◦ elevation angle spans about 0.4 km in vertical height. This allows us to utilize the
large region spatial variables of Ikeda et al. (2009) at various heights above the radar. Figure 40 shows
examples of the standard deviation (top) and median (bottom) of the local standard deviation of dBZ
computed over the 15-km width bands at 1.53◦ elevation angle. It can be seen that the lowest values,
corresponding to higher likelihood of icing, occur within a range of about 75 km of the radar or 2.3 km
above the radar. This is in general agreement with the pilot icing reports between 1.3 and 3.1 km above
CHILL.

Another modification to the algorithm of Ikeda et al. (2009) in this preliminary study, is that we
use directly as feature-fields the locally computed quantities that Ikeda et al. (2009) use to compute the
feature fields in the large regions within the 15 and 100-km radar range rings. Ikeda et al. (2009) show
that freezing drizzle has lower values of the locally-computed standard deviation and texture of the dBZ
(sdevDBZ and TDBZ, respectively). They also show that the mean reflectivity value itself can have some
information about the presence of freezing drizzle. Therefore these fields are tested to determine whether
or not they can provide information concerning the spatial distributions of icing likelihood. Figure 41
shows the values of the local sdevDBZ (top panel) and TDBZ (middle panel) and the mean dBZ (bottom
panel) computed following Ikeda et al. (2009). It can be seen that there are relatively low values of both
sdevDBZ and TDBZ to the north of CHILL at ranges from roughly 50 to over 100 km and to the south
of CHILL at about 50 to 75 km range. Again this is in qualitative agreement with the pilot icing reports
around the time of the radar observations. The lower values (indicative of icing) of local sdevDBZ and
TDBZ do not occur in regions with the largest values of the mean dBZ, but occur farther in range, and
thus higher in altitude, to the largest dBZ values.

The five feature-fields described here seem consistent with the findings of Ikeda et al. (2009) con-
sidering the pilot icing reports. They are sdev(sdevDBZ), median(sdevDBZ), MeanDBZ, sdevDBZ, and
TDBZ, where sdev(sdevDBZ) and median(sdevDBZ) refer to the layer-based standard deviation and me-
dian of the local standard deviation of dBZ described above. Therefore membership functions were
designed to estimate the degree to which supercooled drops belonged to each feature-field based on the
results from Ikeda et al. (2009). The result of applying the membership function to a feature-field is a
number between 0 and 1, referred to as the interest value. An interest value of 1(0) indicating high(low)
likelihood of SLD as indicated by the particular feature-field. The membership functions for MeanDBZ,
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Figure 40: Standard deviation (top), and median (bottom) of the local standard deviation of dBZ computed
over 15-km width bands.
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Figure 41: Local standard deviation (top), texture (middle), and mean (bottom) of dBZ.
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Figure 42: Membership functions for sdevDBZ and TDBZ.

sdev(sdevDBZ), and median(sdevDBZ) are defined by Fig. 14a, c and d, respectively, in Ikeda et al
(2009). The membership functions used for sdevDBZ and TDBZ are shown in Fig. 42. The next step in
the fuzzy logic process is to multiply the interest values by weights. Generally speaking the weights can
be static or dependent on the input. Currently we are using a weight of 1 for each feature-field.

Figure 43 shows the interest values at an elevation angle of 1.53◦ resulting from the application
of the membership functions for MeanDBZ (top panel), sdevDBZ (middle panel), and TDBZ (bottom
panel). The interest field for MeanDBZ is 0 for nearly all of the domain, while the interest for TDBZ and
sdevDBZ show maxima in the regions to the north and south of CHILL corresponding to the lowest values
of TDBZ and sdevDBZ. Figure 44 shows the interest values of sdev(sdevDBZ) and median(sdevDBZ),
which indicate the degree to which each layer ( 0.4 km) resemble the signature of freezing drizzle as
defined by Ikeda et al. (2009). Both sdev(sdevDBZ) and median(sdevDBZ) show interest values of 1 at
ranges closer than about 80 km.

The final step in this initial, simple fuzzy logic algorithm developed here is to compute the sum of
the weighted interest values and normalize by the sum of the weights. The result is a combined output
from 0 to 1 with values below 0.5 indicating low probability of icing and values close to 1.0 indicating a
higher probability of icing conditions. Figure 45 shows the combined output at elevation angles of 1.53◦

(top) and 2.71◦ (bottom) for the present case. The results show regions of icing potential centered at
about 50 km for both scans. This is again consistent with the pilot reports. There is high icing potential
identified at the farthest ranges at 1.53◦ that is not present at 2.71◦ This discrepancy should be investigated
in the future.
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Figure 43: Interest values of the local standard deviation (top), texture (middle), and mean (bottom) of
dBZ.
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Figure 44: Interest values of the standard deviation (top), and median (bottom) of the local standard
deviation of dBZ computed over 15-km width bands.
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Figure 45: Output of the fuzzy logic algorithm to SLD indicating the relative likelihood of icing conditions
due to SLD.

49



c Identifying Mixed-Phase

Plummer et al. (2010) document the dual-polarimetric signatures of mixed-phase icing conditions and
ice-only conditions. They found that although the measurements at individual radar range gates have
significant overlap, there are distinguishable differences in the characteristics of the overall populations
of mixed-phase and ice-only. These distinguishing characteristics include the mean and standard deviation
of Zdr and Kdp computed over a local area. Plummer et al. (2010), found the mean of the Zdr in mixed-
phase conditions to be 0.01 dB compared to 0.20 for ice-only. For Kdp the mixed-phase conditions had
a mean value of 0.01◦/km compared to 0.06◦/km in ice-only. Plummer et al. (2010) also show that the
distributions of both Zdr and Kdp have larger standard deviations for the ice-only population.

Figure 46 shows a plot at 1.53◦ elevation of the mean Zdr and Kdp computed over the same local area
defined by Ikeda et al. (2009). Figure 47 shows a plot at 1.53◦ elevation of the standard deviation of Zdr

and Kdp computed again over the same local area defined by Ikeda et al. (2009). The lower values in
Figs. 46 and 47 indicate a higher likelihood of mixed-phase icing conditions.

Based on the results of Plummer et al. (2010), membership functions were designed and applied to
the data to produce interest values and are shown in Fig. 48. Fig. 49 shows the interest values for the
mean of Zdr (top) and Kdp (bottom) and Fig. 50 shows the interest values for the standard deviation of
Zdr (top) and Kdp (bottom).

Next the four interest value fields were combined into a weighted sum and normalized to obtain an
output from 0 to 1 with values below 0.5 indicating low probability of icing and values close to 1.0
indicating a higher probability of icing conditions. Figure 51 shows the mixed-phase identification output
based on Plummer et al. (2010) for elevation angles of 1.53◦ (top) and 2.71◦ (bottom). The mixed-phase
identification from this simple algorithm indicates a high possibility of icing in similar regions as the
SLD results in Section b. These results are generally consistent with the pilot reports of icing at heights
between about 1.3 to 3.1 km above the CHILL radar.
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Figure 46: Plots of local mean of Zdr (top) and Kdp (bottom) at 1.53◦ elevation.
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Figure 47: Plots of local standard deviations of Zdr (top) and Kdp (bottom) at 1.53◦ elevation.
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Figure 48: Membership functions for the mean of Zdr, mean of Kdp, sdevZDR and sdevKDP.
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Figure 49: Plots of the interest values for the local mean ofZdr (top) and KDP (bottom) at 1.53◦ elevation.
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Figure 50: Plots of the interest values for the local standard deviations of ZDR (top) and Kdp (bottom) at
1.53◦ elevation.
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Figure 51: Plots of the combined output for mixed-phase icing conditions at 1.53◦ (top) and 2.71◦ (bot-
tom) elevation angles.
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10 Summary and Discussion

In this initial study, the results of two publications describing the radar signatures of two different types
of icing conditions, namely supercooled drops and mixed-phase, were utilized to examine possibility of
radar icing detection. The feature-fields described by Ikeda et al. (2009) to identify freezing drizzle
were extended in order to test SLD detection above the ground. Also, dual-polarization feature-fields for
detection of mixed-phase were computed following Plummer et al. (2010). It was found that the feature-
fields described by Ikeda et al. (2009) and Plummer et al. (2010) both indicated an increased likelihood
of icing at heights consistent with pilot reports near the time of the radar observations. Furthermore,
the feature-fields for supercooled liquid and mixed-phase were combined in separate, simple fuzzy logic
identification algorithms and produced results that indicated icing in similar regions, both qualitatively
consistent with pilot reports.

The fact that the two algorithms searching for two different types of icing conditions (SLD and mixed-
phase) yield similar results may at first be confusing. It can be explained because the radar signatures
described by Ikeda et al. (2009) and Plummer et al. (2010) have similar characteristics, i.e., low variance
of radar variables. For example, the SLD detection is looking for widespread spherical drops that will
result in low variation in dBZ while the mixed-phase detection is looking for spherical riming particles
that will result in low variation of Zdr and Kdp. Therefore it is not surprising that the regions detected by
the two algorithms are similar. In the case presented here, the icing conditions were most likely marked
by mixed-phase conditions evidenced by the high dBZ values (recall the interest value of the mean dBZ
field for SLD was 0 through most of the domain). In the future we will explore to what extent these two
sets of feature fields and fuzzy logic algorithms can be combined.

The initial results are encouraging and may indicate that dual-polarimetric radar measurements have
value in detecting icing conditions. However, more case studies using data with icing verification are
required to validate the radar signatures (feature-fields) and fuzzy logic algorithms. Analysis of known
icing cases and known non-icing cases is required to estimate the performance of the feature fields and
algorithms.

Also, there are numerous ways to combine the radar feature-fields shown in this report and many
experiments should be performed to maximize icing detection and minimize false alarms. Further analysis
should be performed with the goal of optimizing the membership functions and weights. New feature-
fields also should be investigated that could lead to increased skill. The algorithm needs to incorporate the
detection of icing arising for different microphysical processes that may have different radar signatures.
Performance of targeted field measurements including high quality dual-polarization radar measurements
in combination with icing ground truth is highly desirable to this investigation.

The combined resources of the CSU-CHILL and NCAR S-PolKa radars (known as the Front Range
Observational Testbed, FRONT) provides an excellent opportunity for field measurements that would be
invaluable to this study. It is planned to collect more data with S-PolKa and CHILL this upcoming Fall
and Winter seasons. Comparison to pilot reports from the various Front Range airports can be used as
verification. There is a possibility of obtaining the NASA/GLEN NIRSS system to support S-PolKa and
CSU-CHILL measurements.
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