
Optical Techniques FTS Profile Retrieval Processing

Eric Nussbaumer1, James Hannigan ∗1 and Ivan Ortega1

1National Center for Atmospheric Research, Boulder, CO, USA

July 2016

Abstract

This document outlines the creation of the spectral database
as well as the profiles for pressure, temperature, and water va-
por.

∗corresponding author: jamesw@ucar.edu

CONTENTS CONTENTS

Contents
1 Introduction 2

2 Pre-Processing 2
2.1 Pulling Data . 2
2.2 Initial Quality Check . 3

3 Spectral Database 3
3.1 Initial Spectral Database . 3
3.2 House Data . 4
3.3 External Station Data . 4
3.4 Append Spectral Database File . 5
3.5 Coadd Spectral Database File . 5

4 ZPTW Profiles 6
4.1 Pressure & Temperature Profiles . 6
4.2 NCEP I & ERA Interim Water Profiles . 7
4.3 Retrieved Water Profiles . 7
4.4 Steps for Pre-Processing . 8

5 Processing 8
5.1 Layer0 . 8
5.2 Layer1 . 8

6 Post-Processing 10
6.1 Plotting . 10
6.2 HDF Creation . 10

7 Program List 13
7.1 Pre-Processing . 13
7.2 Spectral Database . 13
7.3 Reference Profiles . 16
7.4 Processing . 18
7.5 Post-Processing . 19

8 Git Repositories 20

9 Tips & Tricks 21
9.1 HDF Creation . 21
9.2 Retrieval List Updating . 21

Thursday 28th July, 2016 14:44 1

2 PRE-PROCESSING

1 Introduction
This document describes the step-by-step procedures and computing tools, locations and
repositories used by the NCAR OT group to process ground based high resolution spectral
data from the sites located at Thule Greenland, Mauna Loa, Hawaii and Boulder Colorado.
These processing tools can be applied to any similar data set.

2 Pre-Processing
The spectral database and ZPTW (altitude, pressure, temperature, and water vapor) pro-
files are necessary pre-processing steps to retrievals. The spectral database holds information
pertaining to each of the measurements. A spectral database is unique to each site

The majority of information in the spectral database comes from the OPUS file itself; how-
ever, we append meteorological data from local weather weather stations.

There are several steps in creating the spectral database:

1. Creating the initial spectral database

2. Re-formatting the house log data files

3. Re-formatting the external station weather data

4. Appending the initial spectral database with house an external station weather data

Note that not all sites have house or external station weather data.

Station House Data External Station Data
MLO Yes Yes (CMDL)
TAB Yes No
FL0 No Yes (EOL)

The necessary python files are located in the sfit-processing-environment git repository.

2.1 Pulling Data

Both the ancillary data as well as the OPUS files need to be downloaded from various
sources. The OPUS data is automatically downloaded from MLO and TAB by the program
pullRemoteData2.py. This program is set on a cron tab to download data everyday.
The following table shows where the OPUS data is downloaded to.

Data Local Storage
MLO otserver:/ya4/id/mlo/
TAB otserver:/ya4/id/tab/

Thursday 28th July, 2016 14:44 2

https://git.ucar.edu/?p=sfit-processing-environment.git

2.2 Initial Quality Check 3 SPECTRAL DATABASE

The supporting data is pulled with a program using wget. The program is pullAncillary-
Data.py and is located at: /data/bin/. This program has been setup in cron tab to pull data
everyday. The program pullAncillaryData.py gets the following data: NCEP nmc, NCEP I
re-analysis, EOL, and CMDL.

ERA-Interim data must be manually pulled through the server data-access.ucar.edu.

The following table shows the local storage of the ancillary data

Data Local Storage
WACCM otserver:/data/Campaign/TAB,MLO,FL0/waccm/
NCEP nmc Height otserver:/data1/ancillary_data/NCEP_NMC/height/
NCEP nmc Temp otserver:/data1/ancillary_data/NCEP_NMC/temp/
NCEP I Height otserver:/data1/ancillary_data/NCEPdata/NCEP_hgt/
NCEP I Shum otserver:/data1/ancillary_data/NCEPdata/NCEP_Shum/
NCEP I Temp otserver:/data1/ancillary_data/NCEPdata/NCEP_Temp/
NCEP I Trpp otserver:/data1/ancillary_data/NCEPdata/NCEP_trpp/
ERA-Interim otserver:/data1/ancillary_data/ERAdata/
EOL otserver:/data1/ancillary_data/fl0/eol/
CMDL Hourly otserver:/data1/ancillary_data/mlo/cmdl/Hourly_Data/
CMDL Minute otserver:/data1/ancillary_data/mlo/cmdl/Minute_Data/

2.2 Initial Quality Check

An initial quality check on the spectrum is done using the IDL program ckop.pro. This pro-
gram allows the user to look through each individual spectra and discard or keep it. Once
this is completed the data should be copied over from /ya4/id/(mlo,tab,fl0) to the directory
/data1/(mlo,tab,fl0).

Program Description
ckop.pro IDL program to check OPUS spectra

3 Spectral Database

3.1 Initial Spectral Database

The initial spectral database file is created by running ckopus on the various raw OPUS
file. A python program is created to manage the creation of the initial spectral database file
(mkSpecDB.py). The program will create a new spectral database file or append an already
existing file. Associated with mkSpecDB.py is an input file. The input file allows one to
specify the starting and ending date to process, the station, and the various directories and
files to use. In addition, one can specify additional ckopus flags to use in the ckopus call.
There are logical flags which control the creating of a file which list the folders processed
and whether bnr files are created. These files are located under the SpectralDatabase folder

Thursday 28th July, 2016 14:44 3

3.2 House Data 3 SPECTRAL DATABASE

of the git repository.

The initial spectral databases should be made for individual years. The output files have the
names spDB_loc_YYYY.dat. They are space delimited text files. You can either re-write
the particular year database file or append it depending if you are processing an entire year
or just a portion of it. If you want to append the spectral database file keep the original file
in place and just adjust the time interval in the specDBInputFile.py input file. Make sure
the start date in the input file is at least a day after the last entry in the spectral database file.

An input file for each site (MLO,FL0,TAB) already exists in each of the Campaign directo-
ries (/data/Campaign/(MLO,TAB,FL0)/Spectra_DB/.

Program Description
mkSpecDB.py Main program to create initial spectral database
specDBInputFile.py Input file for mkSpecDB.py program

3.2 House Data

House data is data that is recorded by the FTS autonomous system, such as outside tem-
perature, pressure, wind direction, etc. The format of this data has changed for each
station over time as the instrument gets modified or upgraded. A python program (sta-
tion_house_reader.py) is created to read the various formats and create a standardized file.
There is one file for each year. There are no input files for the station_house_reader.py
program. The time range, station identifier, and directories are specified directly in the
program under the main function. An excel spreadsheet describes the various formats for
the house log files for MLO and TAB.

Program Description
station_house_reader.py Main program to read house data files
HouseReaderC.py Supporting program with formats of previous house data files
HouseDataLog.xlsx Excel file with format of house log files

These programs are located in the ExternalData folder of the git repository.

3.3 External Station Data

There are currently two external station data sources used (EOL for FL0, and CMDL for
MLO) only the EOL data needs to be pre-processed. The original format of this data is in
netcdf files. The program read_FL0_EOL_data.py reads the daily netcdf files and creates a
yearly text file. There are no input files for read_FL0_EOL_data.py program. The year of
interest and directories of data are specified directly in the program under the main function.
The program pullAncillaryData.py pulls the CMDL and EOL data from each individual ftp
site.

Thursday 28th July, 2016 14:44 4

3.4 Append Spectral Database File 3 SPECTRAL DATABASE

Program Description
pullAncillaryData.py Program to automatically pull EOL and CMDL data
read_FL0_EOL_data.py Main program to read EOL and CMDL data

These programs are located in the ExternalData folder of the git repository.

3.4 Append Spectral Database File

One can now appending the initial spectral database file with the house and external station
weather data. A python program was created to accomplish this (appendSpecDB.py). The
program appendSpecDB.py reads in the initial spectral database file. It then searches the
house and external station files for weather data at the time of observation, plus a certain
number of minutes specified by the user. The mean of the data collected is calculated and a
new spectral database file is created. If no data is present missing values are used. Associ-
ated with appendSpecDB.py is an input file. The input file allows one to specify directories
and files, year to process, station, how many minutes to use for averaging, and whether to
create a comma separated or pre-specified formatted new spectral database file.

One should remove previous spectral database files (HRspDB_loc_YYYY.dat) from the
output location before creating new appended spectral database files.

Each site already has an input file located in their Campaign directory.

Program Description
appendSpecDB.py Program to create the append spectral database file
appndSpecDBInputFile.py Input file for appendSpecDB.py

Note:A warning message will often appear when running this program originating from the
python numpy module. This warning is a result of numpy taking the mean of an empty array.
This is handled by the main program.

The sfit4Layer1 processing looks for a database file with all years. Once you create a year
appended spectral database file you should copy or append this to the file which contains
all years processed. For example say you have processed 2010 to 2014 and have a spectral
database file called HRspDB_fl0_2010_2014.dat. You then create an and appended spectral
database file for 2015 called HRspDB_fl0_2015.dat. You should append the contents of this
file to the HRspDB_fl0_2010_2014.dat file and rename to HRspDB_fl0_2010_2015.dat.
Take care not to include the header of the individual year file. There should only be one
header at the top in the conglomerated file.

3.5 Coadd Spectral Database File

When the spectral data is to be co-added an additional step must be taken after the cre-
ation of the appended spectral database. The program mkCoadSpecDB.py co-adds two bnr
files together with the appropriate forward and backward scans. A new coadded bnr file is

Thursday 28th July, 2016 14:44 5

4 ZPTW PROFILES

created. The program mkCoadSpecDB.py calls the C program coadd.c to co-add the files.
The program mkCoadSpecDB.py requires an input file.

The mkCoadSpecDB.py program reads in a HRspDB_loc_YYYY.dat data file and creates
a CoaddspDB_loc_YYYY.dat output file. One can either run the co-add program on a
conglomerated spectral database file (e.g. HRspDB_fl0_2010_2014.dat) or on individual
year file (e.g. HRspDB_fl0_2014.dat) and then conglomerate all the years. When running
the co-add program all previous output files with the same name should be removed.

Program Description
mkCoadSpecDB.py Main program to create coadded spectral database
CoadSpecDBInputFile.py Input file for mkCoadSpecDB.py

4 ZPTW Profiles
The pressure, temperature, and water vapor profiles can be created from several outside
sources. Temperature and pressure profiles are taken from NCEP nmc data; while currently
only water profiles are taken from NCEP I and ERA-Interim re-analysis data. Both NCEP
and ERA-Interim data are interpolated with WACCM data to reach 120km vertical height.
The profiles are daily averages and they reside in the data directories (/data1/tab,mlo,fl0/).

The following is a table showing the various reference profiles, their sources, along with the
associated file names.

Profile Type Source File Name
Temperature NCEP nmc ZPT.nmc.120
Pressure NCEP nmc ZPT.nmc.120
Water Vapor WACCM w-120.v1
Water Vapor NCEP I w-120.v3
Water Vapor ERA-Interim w-120.v4
Water Vapor Retrieved w-120.YYYYMMDD.HHMMSS.v99
Water Vapor Retrieved Daily w-120.v5

The following table shows the various sources for the data.

Data Source
WACCM Local (otserver:/data/Campaign/TAB,MLO,FL0/waccm/
NCEP nmc ftp://ftp.cpc.ncep.noaa.gov/ndacc/ncep/
NCEP I re-analysis ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/
ERA-Interim re-analysis /glade/p/rda/data/ds627.0/ei.oper.an.pl/

4.1 Pressure & Temperature Profiles

Pressure and temperature profiles in the ZPT.nmc.120 files come from NCEP nmc data.
The NCEP nmc data is vertically interpolated with WACCM data to reach 120km. In the

Thursday 28th July, 2016 14:44 6

4.2 NCEP I & ERA Interim Water Profiles 4 ZPTW PROFILES

event that the NCEP nmc data is not available for a particular day, the WACCM data is
substituted.

The NCEP nmc data must first be formatted. This is done using the program NCEPnmc-
Format.py.

After formating the NCEP nmc data one can create the altitude, pressure, and tempera-
ture profiles using the program MergPrf.py. This program also creates water profiles from
WACCM data (v1).

Program Description
NCEPnmcFormat.py Program to format the NCEP nmc data
NCEPinputFile.py Input file for NCEPnmcFormat.py program
MergPrf.py Main program to create ZPT and water files from WACCM data
mergprfInput.py Input file for MergPrf.py program

4.2 NCEP I & ERA Interim Water Profiles

The ERA-Interim daily profiles are calculated from 6 hourly data. Both the 6 hourly and
daily data for profiles are created. The ERA-Interim data is housed locally at NCAR in
the CISL Research Data Archive. There is a three month lag between the current date
and when the data becomes available. The data is hosted on /glade/ and can be ac-
cessed through the data-access.ucar.edu server. The data can be found at: /glade/p/r-
da/data/ds627.0/ei.oper.an.pl/. The following steps should be used to pre-process the data:

1. Copy over the data from glade

2. Convert GRIB format files to NetCDF files using cnvrtNC.py

3. Create water profiles using ERAwaterPrf.py

The NCEP I re-analysis data are already daily averages. The grid resolution of NCEP I
is less than ERA-interim. In addition ERA-Interim assimilates GPS occultation data. It
is preferable to use ERA-Interim over NCEP I. The program to create water profiles from
NCEP I data is NCEPwaterPrf.py.

Program Description
cnvrtNC.py Program to convert ERA-Interim GRIB files to NetCDF files
ERAwaterPrf.py Program to extract daily averaged water profiles from ERA-Interim
NCEPwaterPrf.py Program to create daily water profiles from NCEP I

4.3 Retrieved Water Profiles

For all sites (MLO,TAB, and FL0) water is retrieved when available. This water can be
used as a prior for other retrievals. The program retWaterPrf.py creates w-120.YYYY

Thursday 28th July, 2016 14:44 7

4.4 Steps for Pre-Processing 5 PROCESSING

MMDD.HHMMSS.v99 for each retrieval. These files are stored in the data directories
(/data1/tab,mlo,fl0/). A daily average of these profiles can be created using the program
retWaterPrfDaily.py. These daily averages are also stored in the main data directories
(/data1/tab,mlo,fl0/).

Program Description
retWaterPrf.py Program to create water profiles from water retrieval
retWaterPrfDaily.py Program to create daily average profiles from water retrievals

4.4 Steps for Pre-Processing

• Download OPUS and ancillary data (This is done automatically)

• Check OPUS spectra

• Copy spectra from /ya4/id/(mlo,tab,fl0) to /data1/(mlo,tab,fl0)

• Create initial database

• Format house data

• Format external station data

• Create appended spectral database

• Create co-added spectral database file if necessary

• Create Altitude, Pressure, and Temperature profiles (ZPT.nmc.120)

• Create water profiles (v1,v2,v3,v4,v5,v99)

5 Processing

5.1 Layer0

The purpose of Layer0 is to run a single retrieval. The program sfit4Layer0.py runs layer 0.
This program is called with command line arguments. There is no input file.

Program Description
sfit4Layer0.py Program to run layer 0 using command line arguments

5.2 Layer1

The purpose of Layer1 is to batch process multiple or many retrievals. Layer1 requires an
input file to specify retrieval options such as date range, input/output directory, etc. In
addition, from Layer1 a user can create plots of an individual retrieval. The layer one pro-
cessing environment serves to do the following:

Thursday 28th July, 2016 14:44 8

5.2 Layer1 5 PROCESSING

• Create a directory structure to organize the output data

• Generate the necessary input files to run SFIT core code

• Execute the SFIT core code

• Conduct error analysis on output

The following figure shows the input/output flow control for layer 1 processing.

Figure 1: A visual representation of the processing flow.

Program Description
sfit4Layer1.py Program to run layer 1
stat_input.py Input file for layer 1
mkListFile.py Program to create list file from retrieval set (for IDL)

Thursday 28th July, 2016 14:44 9

6 POST-PROCESSING

6 Post-Processing

6.1 Plotting

One can plot individual retrievals or an entire set of retrievals. There are no filtering options
for a single retrieval; however, for a set of retrieval there are multiple parameters that one
can filter on such as RMS, DOFs, date, etc. The program pltRet.py creates plots for a single
retrieval and only requires command line arguments. The program pltSet.py plots an entire
set of retrievals and requires an input file (setInput.py).

Program Description
pltRet.py Program to plot individual retrieval using command line arguments
pltSet.py Program to plot multiple retrievals using an input file
setInput.py Input file for pltSet.py

6.2 HDF Creation

In order to archive retrievals of NDACC gases one must put the data in a GEOMS complient
HDF file (Link. There is a python routine that converts data to GEOMS HDF4 format. This
package of code will also write HDF5 files. In order to run this code there are several software
packages that must be install prior to use:

• The latest HDF4 libraries should be installed on your computer. This library and
information on the install can be found at: HDF4

• If you wish to write HDF5 files, install the python package: h5py (IRWG / GEOMS
files are only HDF4.)

• For writing HDF4 files you need to install the python pyhdf package. We have had to
’tweak’ this package for use with GEOMS file format so use the link on the sfit4 wiki
page https://wiki.ucar.edu/display/sfit4/Post-Processing. Installation instructions for
this package are in the INSTALL text file

• You will also need pythons numpy package

The following are a list of files used in the creation of the HDF files:

• hdfBaseRetDat.py

• hdfCrtFile.py

• hdfInitData.py

• hdfsave.py

• HDFmain.py

The only files that you will need to modify are hdfsave.py, HDFmain.py, and hdfInitData.py.
Here is a description of these files:

Thursday 28th July, 2016 14:44 10

http://avdc.gsfc.nasa.gov/index.php?site=1989220925
https://wiki.ucar.edu/display/sfit4/Post-Processing

6.2 HDF Creation 6 POST-PROCESSING

• HDFmain.py – This is an example of how you call the HDFsave object and create an
HDF file. From here you define the directory to write the HDF file, whether to write
the file using single or double precision, and whether to write an HDF4 or HDF5 file
(IRWG / GEOMS are single precision.)

• hdfsave.py – This file contains all the global and variable attributes or meta-data.
You will need to modify the strings in this file to reflect the specifics of your group,
instrument and retrieval process. Remember the formatting of the strings for GEOMS
files is VERY specific (e.g. space and capitalization).

• hdfInitData.py – This file is the interface between your data and the HDF file. Everyone
has data in a specific format so you will need to define a function that takes that data
from that format and fills the appropriate class attributes. Currently there are three
example interfaces in this file:

– initIDL – This interface takes data in from an IDL save file. Note the IDL save
file has a specific structure (this idl program is available on request.)

– initPy – This interface can take data using python functions. This interface has
not been developed

– initDummy – This is a dummy interface which will create dummy (FillValue) data
to go into the HDF file.

A note on writing data to HDF file:

First, a brief description of the difference between row-major (column is fastest running in-
dex) and column-major (row is the fastest running index):

Row-major and column-major are methods for storing multidimensional arrays in linear
memory. For example, the C language follows row-major convention such that a 2x3 C ma-
trix:

C[2, 3] =

(
1 2 3
4 5 6

)

will be written into linear memory such as: 1,2,3,4,5,6. The rows are written contiguously.
The columns are the fastest running index.

In Fortran, a 2x3 matrix:

F [2, 3] =

(
1 2 3
4 5 6

)

Thursday 28th July, 2016 14:44 11

6.2 HDF Creation 6 POST-PROCESSING

will be written into linear memory such as: 1,4,2,5,3,6. The columns are written contigu-
ously. The rows are the fastest running index.

How does this translate to higher level dimensions?

For column-major convention (Fortran) the fastest running index is furthest left index. For
row-major convention (C) the fastest running index is the furthest right index.

What does this mean for writing to HDF?

HDF uses C storage conventions. It assumes row-major (or the column is the fastest running
index). The HDF read and write codes also ensure that the fastest running index is consistent
no matter which program (Fortran or C) reads/writes the data. This has implications if you
are writing to an HDF file using the Fortran wrapper. From the HDF documentation:

"When a Fortran application describes a dataspace to store an array as A(20,100), it
specifies the value of the first dimension to be 20 and the second to be 100. Since Fortran
stores data by columns, the first-listed dimension with the value 20 is the fastest-changing
dimension and the last-listed dimension with the value 100 is the slowest-changing. In
order to adhere to the HDF5 storage convention, the HDF5 Fortran wrapper transposes

dimensions, so the first dimension becomes the last. The dataspace dimensions stored in the
file will be 100,20 instead of 20,100 in order to correctly describe the Fortran data that is

stored in 100 columns, each containing 20 elements."

The Fortran wrapper transposes the matrix before it is written to HDF. So the Fortran
matrix:

F [3, 2] =

1 4
2 5
3 6

Is written to the HDF file as:

1 2 3
4 5 6

If read using the C wrapper the matrix would look like:

1 2 3
4 5 6

This makes the values in the fastest running index consistent between Fortran and C. For
Fortran the fastest running index are the row (1,2,3) (4,5,6) and for C the fastest running

Thursday 28th July, 2016 14:44 12

7 PROGRAM LIST

index is the column (1,2,3) (4,5,6). Transposing the matrix before writing and after reading
in the Fortran wrapper ensures that the same values are in the fastest running index for
Fortran as in C, even though these are different indices in terms of math matrix.

The higher-level scripting languages such as Python and IDL use the C set wrappers, so this
is not an issue for them; however, if you are using Matlab to write the data this WILL be an
issue. Matlab follows column-major convention (or the rows are the fastest running index).
See Matlab documentation.

In terms of NDACC GEOMS HDF files this can be an issue for the averaging kernel (AVK)
since this matrix is square. The standard for the GEOMS format is that the columns of the
AVK (as described in Rodgers, 2000 pg) should be the fastest running index.

So, if you are using column-major (Fortran, Matlab) the dimensions of your AVK when you
write to HDF should be:

AVK[layer_Index,Kernel_Index,Datetime_Index]

If you are using row-major (C, Python, IDL) the dimensions of your AVK when you write
to the HDF should be:

AVK[Datetime_Index,Kernel_Index, layer_Index]

If you have any doubt about how your data is written download either HDF-View or Panalopy
or use HDP to view the HDF file you have written. These use C libraries to read the data.
When you view the AVK with these programs it should have the following dimensions:
[datetime, kernel, altitude].

7 Program List
The following is a list of programs along with a description.

7.1 Pre-Processing

7.2 Spectral Database

• mkSpecDB.py

– Description: This is the main program to create the spectral database. This
program will append a spectral database if one already exists or create a new
file. The spectral databases are text files space deliminated. The program looks
for .bnr files in the date directories for a given input directory and runs ckopus.
The output from ckopus is used to create the initial database. One must have a
working version of ckopus.c on their computer in order to create the database. A
seperate database is created for each year. This program uses an input file.

Thursday 28th July, 2016 14:44 13

7.2 Spectral Database 7 PROGRAM LIST

– Dependencies: This program requires ckopus.c and an input file (specDBInput-
File.py).

– Invocation: mkSpecDB.py -i specDBinputFile.py

– Output: Initial spectral database file. Current location of spectral databases:
/data/Campaign/(MLO,TAB)/Spectral_DB/

• station_house_reader.py

– Description: This program reformats the house data log files from MLO and TAB
into a single format. The inputs are specified directly in the program file. Even
though one can specify a start and stop year, this program should be run for only
one year at a time.

– Dependencies: This program requires HouseReaderC.py which tells the program
how to read the various formats of the MLO and TAB house data.

– Invocation: station_house_reader.py

– Output: Reformated house log file data. Current directory of reformated house
log data: /data/Campaign/(MLO,TAB)/House_Log_Files/

• HouseReaderC.py

– Description: This program contains the formats for MLO and TAB house log
files.

– Dependencies: None

– Invocation: None

– Output: None

• HouseDataLog.xlsx

– Description: This program contains a description of the house log files.

– Dependencies: None

– Invocation: None

– Output: None

• pullAncillaryData.py

– Description: This program uses the system call "wget" to get NCEP nmc, NCEP
re-analysis, EOL, and CMDL data. The output data directories are specified
directly in the program. Command line argument allows one to specify the par-
ticular date to get data for. This program is set on a cron tab to download data
every day. If no date is specified current day is used.

– Dependencies: None

– Invocation: pullAncillaryData.py [-d YYYYMMDD]

Thursday 28th July, 2016 14:44 14

7.2 Spectral Database 7 PROGRAM LIST

– Output: Various directories. See program for output directories.

• read_FL0_EOL_data.py

– Description: This program re-formats the EOL data from netCDF data into
simple text data to be used by the append spectral database program. All inputs
are specified within the program. One year is processed at a time.

– Dependencies: None

– Invocation: read_FL0_EOL_data.py

– Input: Input NetCDF files are currently located at: data1/ancillary_data/fl0/eo
l/flab.YYYMMDD.cdf

– Output: Output data is currently written to: data1/ancillary_data/fl0/eol/fl0_
met_data_YYYY.txt

• appendSpecDB.py

– Description: This program appends already created spectral database files with
house and station outside pressure, temperature, and relative humidity values.
The inputs are specified with an input file (appndSpecDBInputFile.py). The
spectral databases for each year are appended. After the new appended spectral
databases are created, the user should concatenate these together into a single
database.

– Dependencies: Requires an input file (appndSpecDBInputFile.py)

– Invocation: appndSpecDBInputFile.py -i appndSpecDBInputFile.py

– Output: Appended spectral database file. Current location of spectral databases:
/data/Campaign/(MLO,TAB)/Spectral_DB/

• mkCoadSpecDB.py

– Description: This program creates co-added bnr files (.bnrc) and a co-added
spectral database file. The inputs to the program are specified through an in-
put file (CoadSpecDBInputFile.py). The mkCoadSpecDB.py program reads in
a HRspDB_loc_YYYY.dat data file and creates a CoaddspDB_loc_YYYY.dat
output file. One can either run the co-add program on a conglomerated spectral
database file (e.g. HRspDB_fl0_2010_2014.dat) or on individual year file (e.g.
HRspDB_fl0_2014.dat) and then conglomerate all the years. When running the
co-add program all previous output files with the same name should be removed.

– Dependencies: Requires an input file (CoadSpecDBINputFile.py) and coad.c

– Invocation: mkCoadSpecDB.py -i CoadSpecDBInputFile.py

– Input: Appended spectral database file (e.g. HRspDB_fl0_2014.dat).

– Output: Co-added spectral database file (e.g. CoaddspDB_fl0_2014.dat).

Thursday 28th July, 2016 14:44 15

7.3 Reference Profiles 7 PROGRAM LIST

7.3 Reference Profiles

• NCEPnmnFormat.py

– Description: For an individual station this program re-formats the NCEP nmc
pressure and temperature data into a single file by year. This program takes an
input file (NCEPinputFile.py)

– Dependencies: Requires an input file (NCEPinputFile.py)
– Invocation: NCEPnmnFormat.py -i NCEPinputFile.py
– Input: The input NCEP nmc data is currently located at /data/ancillary_data/

NCEP_NMC/
– Output: The re-formated NCEP nmc data is currently located at /data/Campai

gn/(MLO,TAB,FL0)/NCEP_nmc/

• MergPrf.py

– Description: This program creates ZPT files from NCEP nmc data and water
files from WACCM data. It requires the use of an input file (mergprfInput.py)

– Dependencies: Requires an input file (mergprfInput.py)
– Invocation: MergPrf.py -i mergprfInput.py
– Input: The input NCEP nmc data is currently located at /data/ancillary_data/

NCEP_NMC/. The input WACCM data is currently at /data/Campaign/(ML
O,TAB,FL0)/waccm/

– Output: The profiles are stored with the bnr data in the daily directories /data1
/(mlo,tab,fl0)/

• cnvrtNC.py

– Description: This program converts the ERA-Interim GRIB files into NetCDF
files. This program calls the linux program ncl_convert2nc to convert the GRIB
file to NetCDF. The inputs are directly specified in the program. The NetCDF
files are easily readable by python.

– Dependencies: Requires installation of linux program ncl_convert2nc.
– Invocation: cnvrtNC.py
– Input: The input ERA-Interim (GRIB) data is currently located at /data1/ancil

lary_data/ERAdata/
– Output: The output ERA-Interim (NetCDF) data is currently located at /data1

/ancillary_data/ERAdata/

• ERAwaterPrf.py

– Description: This program creates water profiles from the ERA-Interim data.
The inputs are directly specified in the program. It interpolates a location and
altitude profile to the ERA-Interim grid. It creates daily averages; however, it
also stores the 6 hourly PV, Temperature, and Q.

Thursday 28th July, 2016 14:44 16

7.3 Reference Profiles 7 PROGRAM LIST

– Dependencies: None

– Invocation: ERAwaterPrf.py

– Input: The input ERA-Interim (NetCDF) data is currently located at /data1/an
cillary_data/ERAdata/

– Output: The output water profiles are stored with the bnr data in the daily
directories /data1/(mlo,tab,fl0)

• NCEPwaterPrf.py

– Description: This program creates water profiles from the NCEP re-analysis data.
The inputs are directly specified in the program. It interpolates a location and
altitude profile to the NCEP grid. Initial NCEP re-analysis data is already daily
averaged.

– Dependencies: None

– Invocation: NCEPwaterPrf.py

– Input: The input NCEP re-analysis (NetCDF) data is currently located at /data
1/ancillary_data/NCEPdata/

– Output: The output water profiles are stored with the bnr data in the daily
directories /data1/(mlo,tab,fl0)

• retWaterPrf.py

– Description: This program creates water a priori profiles retrieved water profiles.
The inputs are directly specified in the program. The a priori water profiles are
time stamped (date and time) corresponding with measurement time.

– Dependencies: None

– Invocation: retWaterPrf.py

– Input: The input is the location of the retrieved water data.

– Output: The output water profiles are stored with the bnr data in the daily
directories /data1/(mlo,tab,fl0)

• retWaterPrfDaily.py

– Description: This program creates daily averaged water profiles from the a priori
water files created from the program retWaterPrf.py. The inputs are specified
directly in the program.

– Dependencies: None

– Invocation: retWaterPrfDaily.py

– Input: The input water profiles are located with the bnr data in the daily direc-
tories /data1/(mlo,tab,fl0)

– Output: The output water profiles are stored with the bnr data in the daily
directories /data1/(mlo,tab,fl0)

Thursday 28th July, 2016 14:44 17

7.4 Processing 7 PROGRAM LIST

7.4 Processing

• sfit4Layer0.py

– Description: This program runs individual retrievals using sfit4. The inputs for
this program are specified through command line arguments.

– Dependencies: The program depends on the following files: sfitClasses.py and
Layer1Mods.py

– Invocation: They are several command line flags to use with this program: sfit4Layer0.py
-f <str> [-i <dir> [-b <dir/str>]

∗ -i Data directory. This is optional. The default directory is the current
working directory

∗ -f Run flags: h = hbin, p = psepc, s = sfit4, e = error analysis, c = clean
directory

∗ -b sfit binary directory: This is optional. The default is hard-coded in the
main program. Also accepts v1, v2, etc

– Input: The input is the specified data directory or the current working directory

– Output: The output is also the specified data directory or the current working
directory

• sfit4Layer1.py

– Description: This program runs multiple retrievals using sfit4. The inputs are
specified through an input file and some command line arguments. If one pauses
during the processing using the -P command you can plot intermediate results or
re-processes the last retrieval done.

– Dependencies: This program depends on the following programs: sfitClasses.py,
dataOutClass.py, Layer1Mods.py

– Invocation: sfit4Layer1.py -i <InputFile> -l -L0 -P <int> -?

∗ -i Filename and path of input file
∗ -l Flag to create log file. Path for log files is specified in input file.
∗ -L 0/1: Flag to create output list file.
∗ -P <int>: Pause processing after retrieval number <int>. So -P1 would
pause after the first retrieval.

∗ -? Show all flags

– Input: Inputs paths and directories are specified in the input file.

– Output: Output paths and directories are specified in the input file

• mkListFile.py

– Description: This program creates a list file of all the directories with retrievals
and some meta-data for the IDL program gather.pro to create a sav file.

Thursday 28th July, 2016 14:44 18

7.5 Post-Processing 7 PROGRAM LIST

– Dependencies: None
– Invocation: mkListFile.py -i <file> -N <file> -d <dir> -?

∗ -i Filename and path of layer1 input file
∗ -N Filename and path to output list file
∗ -d Base directory of data
∗ -? Show all flags

– Input: Layer1 input file, Base directory to data
– Output: Name of list file

7.5 Post-Processing

• pltRet.py

– Description: This program creates plots for an individual retrieval. The input,
which is the directory of the retrieval, is given as a command line argument. If
no command line argument is specified the current working directory is used.

– Dependencies: dataOutClass.py
– Invocation: pltRet.py -i <dir> -?

∗ -i Directory of retrieval
∗ -? Show all flags

– Input: Directory of retrieval
– Output: Various plots

• pltRet.py

– Description: This program creates plots for a set of retrievals. There are multiple
filters and flags that can be used to filter the data. These flags and filters are
specified in the input file

– Dependencies: dataOutClass.py
– Invocation: pltSet.py -i setInput.py [-?]

∗ -i Input file name
∗ -? Show all flags

– Input: Input file
– Output: Various plots

• HDFmain.py

– Description: This is the main file for creating HDF files from data. In this
program you call the HDFsave object and create an HDF file. From here you
define the directory to write the HDF file, whether to write the file using single or
double precision, and whether to write an HDF4 or HDF5 file (IRWG / GEOMS
are single precision.). The inputs are directly specified in the file.

Thursday 28th July, 2016 14:44 19

8 GIT REPOSITORIES

– Dependencies: hdfsave.py

– Invocation: HDFmain.py

∗ -i Input file name
∗ -? Show all flags

– Input: Input file

– Output: Various plots

8 Git Repositories
• sfit-ckopus

– Description: This repository contains the codes for ckopus, a program which can
read the meta-data of an OPUS file.

– Location:
Inside NCAR LAN: https://git.ucar.edu/sfit-ckopus.git
Outside NCAR LAN: https://proxy.git.ucar.edu/sfit-ckopus.git

– Permissions: This repository is only read write to registered users.

• sfit-core-code

– Description: This repository contains the core codes for sfit4.

– Location:
Inside NCAR LAN: https://git.ucar.edu/sfit-core-code.git
Outside NCAR LAN: https://proxy.git.ucar.edu/sfit-core-code.git

– Permissions: This repository is global read with write permissions only to regis-
tered users.

• sfit-idl

– Description: This repository contains IDL codes relevant to processing sfit4 data.

– Location:
Inside NCAR LAN: https://git.ucar.edu/sfit-idl.git
Outside NCAR LAN: https://proxy.git.ucar.edu/sfit-idl.git

– Permissions: This repository is only read write to registered users.

• sfit-linelist

– Description: This repository contains the linelist used by sfit4. It was separated
from the core code repository because of itÕs large size.

– Location:
Inside NCAR LAN: https://git.ucar.edu/sfit-linelist.git
Outside NCAR LAN: https://proxy.git.ucar.edu/sfit-linelist.git

Thursday 28th July, 2016 14:44 20

9 TIPS & TRICKS

– Permissions: This repository is only read write to registered users.

• sfit-processing-environment

– Description: This repository contains codes for pre and post processing sfit4
retrieval data. These codes also contain the error analysis for sfit4.

– Location:
Inside NCAR LAN:
https://git.ucar.edu/sfit-processing-environment.git
Outside NCAR LAN:
https://proxy.git.ucar.edu/sfit-processing-environment.git

– Permissions: This repository is global read with write permissions only to regis-
tered users.

9 Tips & Tricks
These points may be of more or less use...

9.1 HDF Creation

To create HDF files you need to edit HDFmain.py. There is no input file for e.g. species, site
location of retrieval directories etc.. Copy a version of HDFmain.py to your local directory
where the .sav file resides. Update and run that copy.

9.2 Retrieval List Updating

There is a program mkListFile.py that can make a listing of a set of retrievals from the
output directory structure and the Layer1 input file. This is necessary to do if you did
not use the -l switch when running Layer1. This list file is used in some post processing
steps. Alternately, you can use mklist.k -i <Current> where Current is the name of the
directory where the retrieval day.time directories are. This creates a list of those retrieval
directories. Then append this output to the list file header.

Then for instance, run gather4.pro, which takes this list as input to create an IDL .sav file.
This can be passed through filters using savefilter.pro to remove outliers then HDFmain.py
to create a .hdf from a .sav.

Thursday 28th July, 2016 14:44 21

	Introduction
	Pre-Processing
	Pulling Data
	Initial Quality Check

	Spectral Database
	Initial Spectral Database
	House Data
	External Station Data
	Append Spectral Database File
	Coadd Spectral Database File

	ZPTW Profiles
	Pressure & Temperature Profiles
	NCEP I & ERA Interim Water Profiles
	Retrieved Water Profiles
	Steps for Pre-Processing

	Processing
	Layer0
	Layer1

	Post-Processing
	Plotting
	HDF Creation

	Program List
	Pre-Processing
	Spectral Database
	Reference Profiles
	Processing
	Post-Processing

	Git Repositories
	Tips & Tricks
	HDF Creation
	Retrieval List Updating

