FTS Profile Retrieval Pre and Post Processing

Eric Nussbaumer!, James Hannigan*! and Ivan Ortegal

L National Center for Atmospheric Research, Boulder, CO, USA

June 2021

Abstract

This document outlines the creation of the spectral database
as well as the profiles for pressure, temperature, and water va-
por.

*corresponding author: jamesw@Qucar.edu

CONTENTS CONTENTS

Contents
[1__Introductionl 2
2 Pre-Processing| 2
2.1 Pulling Datal. 3
2.2 Inmitial Quality Check| o 4
[3 Spectral Database| 4
[3.1 Initial Spectral Databasel L. 4
B2 House Datal 5
3.3 External Station Datal o0 5
[3.4 Append Spectral Database File 5
[3.50 Coadd Spectral Database File] 6
4_ZPTW Profiles 7
(4.1 Pressure & Temperature Profiles|. 7
M2 NCEP I & FRA Interim Water Profiles)o o000 000 8
4.3 Retrieved Water Profiles) 0. 8
(4.4 Steps for Pre-Processingl o 9
[> Processing| 9
....................................... 9
....................................... 9
[6 Post-Processing| 10
0 P Bl e 10
6.2 HDE Creationl 11
[7 Program List| 14
[7.1 Pre-Processingl 14
[7.2 Spectral Database|.o 14
[(.3 Reference Profiled 17
[7.4 Processing| 19
[7.5 Post-Processing] 20

2 PRE-PROCESSING

1 Introduction

This document describes the step-by-step procedures and computing tools, locations and
repositories used by the NCAR OT group to process ground based high resolution spectral
data from the sites located at Thule Greenland, Mauna Loa, Hawaii and Boulder Colorado.
These processing tools can be applied to any similar data set.

The necessary python files described in this document are located in the sfit-processing-
environment git repository. See section 77 for a detailed description of the supporting repos-
itories.

The processing environment (PE) - python package - described here is used for pre and
post-processing of sfit4. The PE is used for:

1. Pre-processing of spectra: building a spectral database, acquiring auxiliary data e.g.
NCEP ZPTW (altitude, pressure, temperature, and water vapor)

2. Batch running of SFIT4 on large sets of spectra

3. Running the error analysis codes post retrieval

4. Plotting standard outputs

5. Using the database and retrievals to build GEOM compliant HDF files

2 Pre-Processing

The spectral database and ZPTW profiles are necessary pre-processing steps to retrievals.
The spectral database holds information pertaining to each of the measurements. A spectral
database is unique to each site

The majority of information in the spectral database comes from the OPUS file itself; how-
ever, we append in-situ meteorological data from local weather stations.

There are several steps in creating the spectral database:

1. Creating the initial spectral database
2. Re-formatting the house log data files
3. Re-formatting the external station weather data

4. Appending the initial spectral database with house an external station weather data

https://git.ucar.edu/?p=sfit-processing-environment.git
https://git.ucar.edu/?p=sfit-processing-environment.git

2.1 Pulling Data 2 PRE-PROCESSING

Note that not all sites have house or external station weather data.

Station House Data External Station Data

MLO Yes Yes (CMDL)
TAB Yes No
FLO No Yes (EOL)

2.1 Pulling Data

Both the ancillary data as well as the OPUS files need to be downloaded from various
sources. The OPUS data is automatically downloaded from MLO and TAB by the program
pullRemoteData2.py. This program is set on a cron tab to download data everyday.

The following table shows where the OPUS data is downloaded to.

Data Local Storage
MLO otserver:/ya4/id/mlo/
TAB otserver:/yad/id/tab/

The supporting data is pulled with a program using wget. The program is pullAncillary-
Data.py and is located at: /data/bin/. This program has been setup in cron tab to pull data
everyday. The program pullAncillaryData.py gets the following data: NCEP nmc, NCEP I
re-analysis, EOL, and CMDL.

ERA-Interim data must be manually pulled through the server data-access.ucar.edu.

The following table shows the local storage of the ancillary data

Data Local Storage

WACCM otserver:/data/Campaign/TAB,MLO,FL0/waccm/
NCEP nmc Height otserver: /datal /ancillary _data/NCEP _NMC /height /
NCEP nmc Temp otserver:/datal /ancillary data/NCEP NMC/temp/
NCEP I Height otserver:/datal /ancillary data/NCEPdata/NCEP _hgt/

NCEP I Shum otserver:/datal /ancillary data/NCEPdata/NCEP _Shum/
NCEP I Temp otserver:/datal /ancillary data/NCEPdata/NCEP Temp/
NCEP I Trpp otserver: /datal /ancillary _data/NCEPdata/NCEP _trpp/
ERA-Interim otserver:/datal /ancillary data/ERAdata/

EOL otserver:/datal /ancillary _data/fl0/eol/

CMDL Hourly otserver:/datal /ancillary data/mlo/cmdl/Hourly Data/
CMDL Minute otserver:/datal /ancillary data/mlo/cmdl/Minute Data/

Note: For security reasons the crontab is initialized in the otserver under Jim’s account.

2.2 Initial Quality Check 3 SPECTRAL DATABASE

2.2 Initial Quality Check

An initial quality check on the spectrum is done using a GUI written in python (ckopPy.py).
This python script uses a python Class to read opus format (nicely provided by Wolfgang
Stremme, CCA-UNAM, Mexico). This GUI calculates a SNR based on out of band noise (or
any other band) and maximal signal. Additionally, a proxy is created to integrate positive
and negative values to create a ratio as a second quality check for each spectra. This program
is available upon request. Note that this step needs to be performed through each individual
spectra and look for good and bad spectra. Another python program (mvSpectra.py) can
be used to sync folders from the /yad/id/(mlo,tab,fl0) to the directory /datal/(mlo,tab,fi0).

Program Description

ckopPy.py Python program to check OPUS spectra
mvSpectra.py Python program to sync folders from /ya4/id/(mlo,tab,fl0) to /datal/(mlo,tab,fl0)

3 Spectral Database

3.1 [Initial Spectral Database

The initial spectral database file is created by running ckopus on the various raw OPUS
files. A python program is created to manage the creation of the initial spectral database file
(mkSpecDB.py). The program will create a new spectral database file or append an already
existing file. Associated with mkSpecDB.py is an input file. The input file allows one to
specify the starting and ending date to process, the station, and the various directories and
files to use. In addition, one can specify additional ckopus flags to use in the ckopus call.
There are logical flags which control the creating of a file which list the folders processed
and whether bnr files are created. These files are located under the SpectralDatabase folder
of the git repository.

The initial spectral databases should be made for individual years. The output files have the
names spDB_loc YYYY.dat. They are space delimited text files. You can either re-write
the particular year database file or append it depending if you are processing an entire year
or just a portion of it. If you want to append the spectral database file keep the original file
in place and just adjust the time interval in the specDBInputFile.py input file. Make sure
the start date in the input file is at least a day after the last entry in the spectral database file.

An input file for each site (MLO,FL0O,TAB) already exists in each of the Campaign directo-
ries (/data/Campaign/(MLO,TAB,FL0)/Spectra_DB/.

Program Description
mkSpecDB.py Main program to create initial spectral database
specDBInputFile.py Input file for mkSpecDB.py program

3.2 House Data 3 SPECTRAL DATABASE

Note: Read through the individual input files. The configuration of the instruments, such as
time, needs to be read properly and the flags are in the input files.

3.2 House Data

House data is data that is recorded by the FTS autonomous system, such as outside tem-
perature, pressure, wind direction, etc. Up to now, this applies only to MLO and TAB. The
format of this data has changed for each station over time as the instrument gets modified
or upgraded. A python program (station house reader.py) is created to read the various
formats and create a standardized file. There is one file for each year. There are no input files
for the station house reader.py program. The time range, station identifier, and directo-
ries are specified directly in the program under the main function. The program creates the
housekeeping files under /data/Campaign/MLO (or TAB). An excel spreadsheet describes
the various formats for the house log files for MLO and TAB.

Program Description

station _house reader.py Main program to read house data files

HouseReaderC.py Supporting program with formats of previous house data files
HouseDatalLog 2xlsx Excel file with format of house log files

These programs are located in the ExternalData folder of the git repository.

3.3 External Station Data

There are currently two external station data sources used (EOL for FLO, and CMDL for
MLO) only the EOL data needs to be pre-processed. The original format of this data is in
netcdf files. The program read FLO EOL data.py reads the daily netcdf files and creates a
yearly text file. There are no input files for read FLO EOL data.py program. The year of
interest and directories of data are specified directly in the program under the main function.
The program pullAncillaryData.py pulls the CMDL and EOL data from each individual ftp
site.

Program Description
pullAncillaryData.py Program to automatically pull EOL and CMDL data
read FLO EOL data.py Main program to read EOL and CMDL data

These programs are located in the ExternalData folder of the git repository.

3.4 Append Spectral Database File

One can now appending the initial spectral database file with the house and external station
weather data. A python program was created to accomplish this (appendSpecDB.py). The
program appendSpecDB.py reads in the initial spectral database file. It then searches the
house and external station files for weather data at the time of observation, plus a certain
number of minutes specified by the user. The mean of the data collected is calculated and a

3.5 Coadd Spectral Database File 3 SPECTRAL DATABASE

new spectral database file is created. If no data is present missing values are used. Associ-
ated with appendSpecDB.py is an input file. The input file allows one to specify directories
and files, year to process, station, how many minutes to use for averaging, and whether to
create a comma separated or pre-specified formatted new spectral database file.

One should remove previous spectral database files (HRspDB loc YYYY.dat) from the
output location before creating new appended spectral database files.

Each site already has an input file located in their Campaign directory.

Program Description
appendSpecDB.py Program to create the append spectral database file
appndSpecDBInputFile.py Input file for appendSpecDB.py

Note:A warning message will often appear when running this program originating from the
python numpy module. This warning is a result of numpy taking the mean of an empty array.
This is handled by the main program.

The sfit4dLayerl processing looks for a database file with all years. Once you create a year
appended spectral database file you should copy or append this to the file which contains
all years processed. For example say you have processed 2010 to 2014 and have a spectral
database file called HRspDB _fl0_ 2010 2014.dat. You then create an and appended spectral
database file for 2015 called HRspDB _fl0 2015.dat. You should append the contents of this
file to the HRspDB_fl0 2010 2014.dat file and rename to HRspDB fl0 2010 2015.dat.
Take care not to include the header of the individual year file. There should only be one
header at the top in the conglomerated file.

3.5 Coadd Spectral Database File

When the spectral data is to be co-added an additional step must be taken after the cre-
ation of the appended spectral database. The program mkCoadSpecDB.py co-adds two bnr
files together with the appropriate forward and backward scans. A new coadded bnr file is
created. The program mkCoadSpecDB.py calls the C program coadd.c to co-add the files.
The program mkCoadSpecDB.py requires an input file.

The mkCoadSpecDB.py program reads in a HRspDB loc_ YYYY.dat data file and creates
a CoaddspDB_loc_ YYYY.dat output file. One can either run the co-add program on a
conglomerated spectral database file (e.g. HRspDB fl0 2010 2014.dat) or on individual
year file (e.g. HRspDB fl0 2014.dat) and then conglomerate all the years. When running
the co-add program all previous output files with the same name should be removed.

Program Description
mkCoadSpecDB.py Main program to create coadded spectral database
CoadSpecDBInputFile.py Input file for mkCoadSpecDB.py

4 ZPTW PROFILES

Note: The co-adding spectra is normally needed at FLO and TAB (before 2014).

4 ZPTW Profiles

The pressure, temperature, and water vapor profiles can be created from several outside
sources. Temperature and pressure profiles are taken from NCEP nmc data; while currently
only water profiles are taken from NCEP I and ERA-Interim re-analysis data. Both NCEP
and ERA-Interim data are interpolated with WACCM data to reach 120km vertical height.
The profiles are daily averages and they reside in the data directories (/datal/tab,mlo,fl0/).

The following is a table showing the various reference profiles, their sources, along with the
associated file names.

Profile Type Source File Name

Temperature NCEP nmc ZPT .nmc.120

Pressure NCEP nmc ZPT .nmc.120

Water Vapor WACCM w-120.v1

Water Vapor NCEP I w-120.v3

Water Vapor ERA-Interim w-120.v4

Water Vapor Retrieved w-120.YYYYMMDD.HHMMSS.v99

Water Vapor Retrieved Daily w-120.v5

The following table shows the various sources for the data.

Data Source

WACCM Local (otserver:/data/Campaign/TAB,MLO,FL0/waccm/
NCEP nmc ftp://ftp.cpc.ncep.noaa.gov/ndacc/ncep/

NCEP I re-analysis ftp://ftp.cdc.noaa.gov/Datasets /ncep.reanalysis.dailyavgs/

ERA-Interim re-analysis /glade/p/rda/data/ds627.0/ei.oper.an.pl/

4.1 Pressure & Temperature Profiles

Pressure and temperature profiles in the ZPT.nmc.120 files come from NCEP nmc data.
The NCEP nmc data is vertically interpolated with WACCM data to reach 120km. In the
event that the NCEP nmc data is not available for a particular day, the WACCM data is
substituted.

The NCEP nmc data must first be formatted. This is done using the program NCEPnmc-
Format.py.

After formating the NCEP nmc data one can create the altitude, pressure, and tempera-
ture profiles using the program MergPrf.py. This program also creates water profiles from

WACCM data (v1).

4.2 NCEP I & ERA Interim Water Profiles 4 ZPTW PROFILES

Program Description

NCEPnmcFormat.py Program to format the NCEP nmc data

NCEPinputFile.py Input file for NCEPnmcFormat.py program

MergPrf.py Main program to create ZPT and water files from WACCM data
mergprflnput.py Input file for MergPrf.py program

4.2 NCEP I & ERA Interim Water Profiles

The ERA-Interim daily profiles are calculated from 6 hourly data. Both the 6 hourly and
daily data for profiles are created. The ERA-Interim data is housed locally at NCAR in
the CISL Research Data Archive. There is a three month lag between the current date
and when the data becomes available. The data is hosted on /glade/ and can be ac-
cessed through the data-access.ucar.edu server. The data can be found at: /glade/p/r-
da/data/ds627.0/ei.oper.an.pl/. The following steps should be used to pre-process the data:

1. Copy over the data from glade
2. Convert GRIB format files to NetCDF files using cnvrtNC.py

3. Create water profiles using ERAwaterPrf.py

The NCEP I re-analysis data are already daily averages. The grid resolution of NCEP I
is less than ERA-interim. In addition ERA-Interim assimilates GPS occultation data. It
is preferable to use ERA-Interim over NCEP 1. The program to create water profiles from
NCEP I data is NCEPwaterPrf.py.

Program Description

cnvrtNC.py Program to convert ERA-Interim GRIB files to NetCDF files
ERAwaterPrf.py = Program to extract daily averaged water profiles from ERA-Interim
NCEPwaterPrf.py Program to create daily water profiles from NCEP I

4.3 Retrieved Water Profiles

For all sites (MLO,TAB, and FLO) water is retrieved when available. This water can be
used as a prior for other retrievals. The program retWaterPrf.py creates w-120.YYYY
MMDD.HHMMSS.v99 for each retrieval. These files are stored in the data directories
(/datal/tab,mlo,fl0/). A daily average of these profiles can be created using the program
retWaterPrfDaily.py. These daily averages are also stored in the main data directories

(/datal/tab,mlo,fl0/).

Program Description
retWaterPrf.py Program to create water profiles from water retrieval
retWaterPrfDaily.py Program to create daily average profiles from water retrievals

4.4 Steps for Pre-Processing 5 PROCESSING

4.4 Steps for Pre-Processing
e Download OPUS and ancillary data (This is done automatically)

e Check OPUS spectra

e Copy spectra from /yad/id/(mlo,tab,fl0) to /datal/(mlo,tab,{l0)

e Create initial database

e Format house data

e Format external station data

e Create appended spectral database

e Create co-added spectral database file if necessary

e Create Altitude, Pressure, and Temperature profiles (ZPT.nmec.120)

e Create water profiles (v1,v2,v3,v4,v5,v99)

5 Processing

5.1 LayerO

The purpose of Layer0 is to run a single retrieval. The program sfit4Layer0.py runs layer 0.
This program is called with command line arguments. There is no input file.

Program Description

sfitdLayer0.py Program to run layer 0 using command line arguments

5.2 Layerl

The purpose of Layerl is to batch process multiple or many retrievals. Layerl requires an
input file to specify retrieval options such as date range, input/output directory, etc. In
addition, from Layerl a user can create plots of an individual retrieval. The layer one pro-
cessing environment serves to do the following;:

Create a directory structure to organize the output data

Generate the necessary input files to run SFIT core code

Execute the SFIT core code

Conduct error analysis on output

6 POST-PROCESSING

The following figure shows the input/output flow control for layer 1 processing.

Inputs

Input and Output flow for Core Processing

refmaker.input

pspec.input

BMNR Files

Processes

Outputs

Program

Merge meteorological data

'

Prepare ascil spectral file for
sfitd input (t15asc)

sfit4.f90
Spectral fit

Optional Output

Figure 1: A visual representation of the processing flow.

Description

sfitdLayerl.py
stat _input.py
mkListFile.py

6 Post-Processing

6.1 Plotting

Program to run layer 1
Input file for layer 1
Program to create list file from retrieval set (for IDL)

One can plot individual retrievals or an entire set of retrievals. There are no filtering options
for a single retrieval; however, for a set of retrieval there are multiple parameters that one
can filter on such as RMS, DOFs, date, etc. The program pltRet.py creates plots for a single
retrieval and only requires command line arguments. The program pltSet.py plots an entire

10

6.2 HDF Creation 6 POST-PROCESSING

set of retrievals and requires an input file (setInput.py).

Program Description

pltRet.py Program to plot individual retrieval using command line arguments
pltSet.py Program to plot multiple retrievals using an input file

setInput.py Input file for pltSet.py

6.2 HDF Creation

In order to archive retrievals of NDACC gases one must put the data in a GEOMS compliant
HDF file (Link). There is a python routine that converts data to GEOMS HDF4 format.
This package of code will also write HDF5 files. In order to run this code there are several
software packages that must be install prior to use:

e The latest HDF4 libraries should be installed on your computer. This library and
information on the install can be found at: HDF4

e If you wish to write HDF5 files, install the python package: hbpy (IRWG / GEOMS
files are only HDF4.)

e You will also need the python numpy package
The following are a list of files used in the creation of the HDF files:

e hdfBaseRetDat.py

hdfCrtFile.py

hdfInitData.py

hdfsaveXXX.py

HDFCreate.py

input_ HDFCreate.py

The only files that you will need to modify are hdfsaveXXX.py, input HDFCreate.py, and
hdflnitData.py. Here is a description of these files:

e HDFCreate.py — This is the main routine to create an object and create an HDF file
and needs the input file input HDFCreate.py. The input file needs to be modified
accordingly.

e hdfsaveXXX.py — This file contains all the global and variable attributes or meta-data.
The XXX is normally the a three letter ID for each site, e.g., hdfsaveMLO.py for
Mauna Loa. You will need to modify the strings in this file to reflect the specifics of
your group, instrument and retrieval process. Remember the formatting of the strings
for GEOMS files is VERY specific (e.g. space and capitalization).

11

http://avdc.gsfc.nasa.gov/index.php?site=1989220925

6.2 HDF Creation 6 POST-PROCESSING

e hdflnitData.py — This file is the interface between your data and the HDF file. Everyone
has data in a specific format so you will need to define a function that takes that data
from that format and fills the appropriate class attributes. Currently there are three
example interfaces in this file, although only the python interface is maintained:

— initIDL — This interface takes data in from an IDL save file. Note the IDL save
file has a specific structure (this idl program is available on request.)

— initPy — This interface can take data using python functions. This interface has
not been developed

— initDummy — This is a dummy interface which will create dummy (FillValue) data
to go into the HDF file.

To run the code create HDF4 type:
python HDFCreate.py -i input HDFCreate.py

To run the code create h5 type:
python HDFCreate.py -i input HDFCreate.py -h

Please don’t hesitate to email us with questions or comments.

Note: An important input is the database file, the variables from the DB are: Lat, Lon,
Duration, Instrument Altitude, RH, Wind, and Solar Azimuth. All other variables come
from the input/output files in the sfit4 directory.

A note on writing data to HDF file:

First, a brief description of the difference between row-major (column is fastest running in-
dex) and column-major (row is the fastest running index):

Row-major and column-major are methods for storing multidimensional arrays in linear

memory. For example, the C language follows row-major convention such that a 2x3 C ma-
trix:

- (32

will be written into linear memory such as: 1,2,3,4,5,6. The rows are written contiguously.
The columns are the fastest running index.

In Fortran, a 2x3 matrix:

12

6.2 HDF Creation 6 POST-PROCESSING

will be written into linear memory such as: 1,4,2,5,3,6. The columns are written contigu-
ously. The rows are the fastest running index.

How does this translate to higher level dimensions?

For column-major convention (Fortran) the fastest running index is furthest left index. For
row-major convention (C) the fastest running index is the furthest right index.

What does this mean for writing to HDF?

HDF uses C storage conventions. It assumes row-major (or the column is the fastest running
index). The HDF read and write codes also ensure that the fastest running index is consistent
no matter which program (Fortran or C) reads/writes the data. This has implications if you
are writing to an HDF file using the Fortran wrapper. From the HDF documentation:

"When a Fortran application describes a dataspace to store an array as A(20,100), it
specifies the value of the first dimension to be 20 and the second to be 100. Since Fortran
stores data by columns, the first-listed dimension with the value 20 is the fastest-changing

dimension and the last-listed dimension with the value 100 is the slowest-changing. In

order to adhere to the HDF5 storage convention, the HDF5 Fortran wrapper transposes
dimensions, so the first dimension becomes the last. The dataspace dimensions stored in the
file will be 100,20 instead of 20,100 in order to correctly describe the Fortran data that is
stored in 100 columns, each containing 20 elements.”

The Fortran wrapper transposes the matrix before it is written to HDF. So the Fortran
matrix:

1 4
F[3,2] =12 5
3 6
Is written to the HDF file as:
1 2 3
4 5 6

If read using the C wrapper the matrix would look like:

1 2 3
4 5 6

13

7 PROGRAM LIST

This makes the values in the fastest running index consistent between Fortran and C. For
Fortran the fastest running index are the row (1,2,3) (4,5,6) and for C the fastest running
index is the column (1,2,3) (4,5,6). Transposing the matrix before writing and after reading
in the Fortran wrapper ensures that the same values are in the fastest running index for
Fortran as in C, even though these are different indices in terms of math matrix.

The higher-level scripting languages such as Python and IDL use the C set wrappers, so this
is not an issue for them; however, if you are using Matlab to write the data this WILL be an
issue. Matlab follows column-major convention (or the rows are the fastest running index).
See Matlab documentation.

In terms of NDACC GEOMS HDF files this can be an issue for the averaging kernel (AVK)
since this matrix is square. The standard for the GEOMS format is that the columns of the
AVK (as described in Rodgers, 2000 pg) should be the fastest running index.

So, if you are using column-major (Fortran, Matlab) the dimensions of your AVK when you
write to HDF should be:

AV K|[layer Index, Kernel;ndex, Datetime index]

If you are using row-major (C, Python, IDL) the dimensions of your AVK when you write
to the HDF should be:

AV K[Datetime _index, Kernel;ndex, layer _index]

If you have any doubt about how your data is written download either HDF-View or Panalopy
or use HDP to view the HDF file you have written. These use C libraries to read the data.
When you view the AVK with these programs it should have the following dimensions:
[datetime, kernel, altitude).

7 Program List

The following is a list of programs along with a description.

7.1 Pre-Processing

7.2 Spectral Database
e mkSpecDB.py

— Description: This is the main program to create the spectral database. This
program will append a spectral database if one already exists or create a new
file. The spectral databases are text files space deliminated. The program looks
for .bnr files in the date directories for a given input directory and runs ckopus.
The output from ckopus is used to create the initial database. One must have a

14

7.2 Spectral Database 7 PROGRAM LIST

working version of ckopus.c on their computer in order to create the database. A
seperate database is created for each year. This program uses an input file.

Dependencies: This program requires ckopus.c and an input file (specDBInput-
File.py).

Invocation: mkSpecDB.py -1 specDBinputFile.py

Output: Initial spectral database file. Current location of spectral databases:
/data/Campaign/(MLO,TAB)/Spectral DB/

e station house reader.py

Description: This program reformats the house data log files from MLO and TAB
into a single format. The inputs are specified directly in the program file. Even
though one can specify a start and stop year, this program should be run for only
one year at a time.

Dependencies: This program requires HouseReaderC.py which tells the program
how to read the various formats of the MLLO and TAB house data.

Invocation: station house reader.py

Output: Reformated house log file data. Current directory of reformated house
log data: /data/Campaign/(MLO,TAB)/House Log Files/

e HouseReaderC.py

Description: This program contains the formats for MLO and TAB house log
files.

Dependencies: None
Invocation: None

Output: None

e HouseDataLog.xlsx

Description: This program contains a description of the house log files.
Dependencies: None
Invocation: None

Output: None

e pullAncillaryData.py

Description: This program uses the system call "wget" to get NCEP nmc, NCEP
re-analysis, EOL, and CMDL data. The output data directories are specified
directly in the program. Command line argument allows one to specify the par-
ticular date to get data for. This program is set on a cron tab to download data
every day. If no date is specified current day is used.

15

7.2 Spectral Database 7 PROGRAM LIST

Dependencies: None
Invocation: pullAncillaryData.py [-d YYYYMMDD)|

QOutput: Various directories. See program for output directories.

e read FLO EOL data.py

Description: This program re-formats the EOL data from netCDF data into
simple text data to be used by the append spectral database program. All inputs
are specified within the program. One year is processed at a time.

Dependencies: None
Invocation: read FLO EOL_data.py

Input: Input NetCDF files are currently located at: datal/ancillary data/fl0/eo
1/flab.YYYMMDD.cdf

Output: Output data is currently written to: datal/ancillary data/fl0/eol/fl0
met data YYYY.txt

e appendSpecDB.py

Description: This program appends already created spectral database files with
house and station outside pressure, temperature, and relative humidity values.
The inputs are specified with an input file (appndSpecDBInputFile.py). The
spectral databases for each year are appended. After the new appended spectral
databases are created, the user should concatenate these together into a single
database.

Dependencies: Requires an input file (appndSpecDBInputFile.py)
Invocation: appndSpecDBInputFile.py -i appndSpecDBInputFile.py

Output: Appended spectral database file. Current location of spectral databases:
/data/Campaign/(MLO,TAB)/Spectral DB/

e mkCoadSpecDB.py

Description: This program creates co-added bnr files (.bnrc) and a co-added
spectral database file. The inputs to the program are specified through an in-
put file (CoadSpecDBInputFile.py). The mkCoadSpecDB.py program reads in
a HRspDB loc_YYYY.dat data file and creates a CoaddspDB _loc_ YYYY.dat
output file. One can either run the co-add program on a conglomerated spectral
database file (e.g. HRspDB_fl0 2010 2014.dat) or on individual year file (e.g.
HRspDB_ fl0 2014.dat) and then conglomerate all the years. When running the
co-add program all previous output files with the same name should be removed.

Dependencies: Requires an input file (CoadSpecDBINputFile.py) and coad.c
Invocation: mkCoadSpecDB.py -i CoadSpecDBInputFile.py

Input: Appended spectral database file (e.g. HRspDB_ fl0 2014.dat).
Output: Co-added spectral database file (e.g. CoaddspDB_fl0 2014.dat).

16

7.3 Reference Profiles 7 PROGRAM LIST

7.3 Reference Profiles

e NCEPnmnFormat.py

Description: For an individual station this program re-formats the NCEP nmc
pressure and temperature data into a single file by year. This program takes an
input file (NCEPinputFile.py)

Dependencies: Requires an input file (NCEPinputFile.py)
Invocation: NCEPnmnFormat.py -i NCEPinputFile.py

Input: The input NCEP nmc data is currently located at /data/ancillary data/
NCEP_NMC/

Output: The re-formated NCEP nmec data is currently located at /data/Campai
gn/(MLO,TAB,FL0O)/NCEP _nmc/

e MergPrf.py

Description: This program creates ZPT files from NCEP nmc data and water
files from WACCM data. It requires the use of an input file (mergprflnput.py)

Dependencies: Requires an input file (mergprflnput.py)
Invocation: MergPrf.py -i mergprflnput.py

Input: The input NCEP nmc data is currently located at /data/ancillary data/
NCEP_NMC/. The input WACCM data is currently at /data/Campaign/(ML
O,TAB,FL0)/waccm/

Output: The profiles are stored with the bnr data in the daily directories /datal
/(mlo,tab,f10)/

e cnvrtNC.py

— Description: This program converts the ERA-Interim GRIB files into NetCDF

files. This program calls the linux program ncl convert2nc to convert the GRIB
file to NetCDF. The inputs are directly specified in the program. The NetCDF
files are easily readable by python.

— Dependencies: Requires installation of linux program ncl convert2nc.

— Invocation: cnvrtNC.py
— Input: The input ERA-Interim (GRIB) data is currently located at /datal/ancil

lary data/ERAdata/

— Output: The output ERA-Interim (NetCDF) data is currently located at /datal

/ancillary data/ERAdata/

o ERAwaterPrf.py

— Description: This program creates water profiles from the ERA-Interim data.

The inputs are directly specified in the program. It interpolates a location and
altitude profile to the ERA-Interim grid. It creates daily averages; however, it
also stores the 6 hourly PV, Temperature, and Q.

17

7.3 Reference Profiles 7 PROGRAM LIST

Dependencies: None
Invocation: ERAwaterPrf.py

Input: The input ERA-Interim (NetCDF') data is currently located at /datal/an
cillary _data/ERAdata/

Output: The output water profiles are stored with the bnr data in the daily
directories /datal/(mlo,tab,fl0)

e NCEPwaterPrf.py

Description: This program creates water profiles from the NCEP re-analysis data.
The inputs are directly specified in the program. It interpolates a location and
altitude profile to the NCEP grid. Initial NCEP re-analysis data is already daily
averaged.

Dependencies: None
Invocation: NCEPwaterPrf.py

Input: The input NCEP re-analysis (NetCDF) data is currently located at /data
1/ancillary _data/NCEPdata/

Output: The output water profiles are stored with the bnr data in the daily
directories /datal/(mlo,tab,fl0)

e retWaterPrf.py

Description: This program creates water a priori profiles retrieved water profiles.
The inputs are directly specified in the program. The a priori water profiles are
time stamped (date and time) corresponding with measurement time.

Dependencies: None
Invocation: retWaterPrf.py
Input: The input is the location of the retrieved water data.

Output: The output water profiles are stored with the bnr data in the daily
directories /datal/(mlo,tab,fl0)

o retWaterPrfDaily.py

Description: This program creates daily averaged water profiles from the a priori
water files created from the program retWaterPrf.py. The inputs are specified
directly in the program.

Dependencies: None
Invocation: retWaterPrtDaily.py

Input: The input water profiles are located with the bnr data in the daily direc-
tories /datal/(mlo,tab,fl0)

Output: The output water profiles are stored with the bnr data in the daily
directories /datal/(mlo,tab,fl0)

18

7.4 Processing 7 PROGRAM LIST

7.4 Processing

o sfit4Layer0.py

— Description: This program runs individual retrievals using sfit4. The inputs for
this program are specified through command line arguments.

— Dependencies: The program depends on the following files: sfitClasses.py and
Layer1Mods.py

— Invocation: They are several command line flags to use with this program: sfit4Layer0.py
-f <str> [-i <dir> [-b <dir/str> |
x -1 Data directory. This is optional. The default directory is the current
working directory
* -f Run flags: h = hbin, p = psepc, s = sfit4, e = error analysis, ¢ = clean
directory
x -b sfit binary directory: This is optional. The default is hard-coded in the
main program. Also accepts v1, v2, etc
— Input: The input is the specified data directory or the current working directory

— Qutput: The output is also the specified data directory or the current working
directory

o sfit4dLayerl.py

— Description: This program runs multiple retrievals using sfit4. The inputs are
specified through an input file and some command line arguments. If one pauses
during the processing using the -P command you can plot intermediate results or
re-processes the last retrieval done.

— Dependencies: This program depends on the following programs: sfitClasses.py,
dataOutClass.py, Layer1Mods.py

— Invocation: sfitdLayerl.py -1 <InputFile> -1-L0 -P <int> -7

x -1 Filename and path of input file
x -1 Flag to create log file. Path for log files is specified in input file.
« -1, 0/1: Flag to create output list file.

*x -P <int>: Pause processing after retrieval number <int>. So -P1 would
pause after the first retrieval.

% -7 Show all flags
— Input: Inputs paths and directories are specified in the input file.

— Qutput: Output paths and directories are specified in the input file

e mkListFile.py

— Description: This program creates a list file of all the directories with retrievals
and some meta-data for the IDL program gather.pro to create a sav file.

19

7.5 Post-Processing 7 PROGRAM LIST

— Dependencies: None
— Invocation: mkListFile.py -i <file> -N <file> -d <dir> -?

x -1 Filename and path of layerl input file
x -N Filename and path to output list file
x -d Base directory of data
x -7 Show all flags
— Input: Layerl input file, Base directory to data

— Qutput: Name of list file

7.5 Post-Processing
e pltRet.py

— Description: This program creates plots for an individual retrieval. The input,
which is the directory of the retrieval, is given as a command line argument. If
no command line argument is specified the current working directory is used.

Dependencies: dataOutClass.py
— Invocation: pltRet.py -i <dir> -7

% -1 Directory of retrieval
* -7 Show all flags

— Input: Directory of retrieval

— Qutput: Various plots
e pltRet.py

— Description: This program creates plots for a set of retrievals. There are multiple
filters and flags that can be used to filter the data. These flags and filters are
specified in the input file

— Dependencies: dataOutClass.py

— Invocation: pltSet.py -i setInput.py [-?]
x -1 Input file name
x -7 Show all flags

— Input: Input file

— Qutput: Various plots

e HDFCreate.py

— Description: This is the main file for creating HDF files from data. In this
program you call the HDFsave object and create an HDF file. From here you
define the directory to write the HDF file, whether to write the file using single or
double precision, and whether to write an HDF4 or HDF5 file (IRWG / GEOMS
are single precision.). The inputs are directly specified in the file.

20

7.5 Post-Processing 7 PROGRAM LIST

— Dependencies: hdfsave.py
— Invocation: HDFCreate.py -1 inputHDFCreate.py

% -1 Input file name
* -7 Show all flags

Input: Input file
— QOutput: HDF file(s)

21

	Introduction
	Pre-Processing
	Pulling Data
	Initial Quality Check

	Spectral Database
	Initial Spectral Database
	House Data
	External Station Data
	Append Spectral Database File
	Coadd Spectral Database File

	ZPTW Profiles
	Pressure & Temperature Profiles
	NCEP I & ERA Interim Water Profiles
	Retrieved Water Profiles
	Steps for Pre-Processing

	Processing
	Layer0
	Layer1

	Post-Processing
	Plotting
	HDF Creation

	Program List
	Pre-Processing
	Spectral Database
	Reference Profiles
	Processing
	Post-Processing

