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HRRR Time-Lagged Ensemble (HRRR-TLE) 
         Time-lagged ensembles are a computationally inexpensive substitute for full ensembles, 
using the “free” uncertainty information provided by a single, rapidly-cycled deterministic model 
(or a small set of deterministic models).  Rather than running a large number of simultaneous 
simulations where initial conditions are perturbed based on uncertainty information from a data 
assimilation routine, time-lagging simply combines forecasts from deterministic model runs 
initialized at different times.  Differences in the initial conditions from one run to the next are 
used in lieu of uncertainty estimates of the initial atmospheric state. 

The HRRR-TLE combines forecasts from multiple deterministic HRRR runs, initialized 
at different times but valid at the same time.  The current version, frozen for the duration of 
WWE 2016, uses the 3 most recent runs of the experimental ESRL “HRRRx”.  The HRRRx 
operates with a ~2-h latency, and we chose to set hour zero of the HRRR-TLE forecast to the 
current time. For example, the 12z HRRR-TLE utilizes forecasts from HRRRx runs 
initialized at 8z, 9z and 10z.  

Why only 3 runs?  Additional time-lagged members in theory provide greater spread.  
However, in practice the spread increase is small beyond 3-4 members, and spread is not 
necessarily useful if older runs are producing poor forecasts.  There are in fact few situations 
where an older run could possibly produce a better forecast, unless the model is “cold started” 
and requires substantial time to spin up, or long-latency observations have a large impact. 
Increasing the membership also decreases the maximum lead time of the ensemble.  Combining 
these factors, we find an optimal membership of 3 HRRRx runs, forgoing a small increase in 
spread in favor of achieving longer lead times. 

Most time-lagged ensembles are underdispersive.  The differences in initial conditions 
from one run to the next, especially for an hourly-cycled model, are typically not as large as the 
actual analysis errors.  Hence integrating forward in time from those underdispersive initial 
conditions leads to forecasts that do not come close to capturing the full range of possible future 
states.  To address this issue, we employ the statistical post-processing methods described below 
to artificially increase the spread and achieve more reliable probabilistic forecasts. 
  
Probabilistic QPF 



         HRRR-TLE PQPF provides 0-6 and 6-12-h probabilities of exceeding various 
precipitation thresholds. These forecasts benefit from two post-processing steps.  First, 
forecasts from each member are bias corrected based on verification of past forecasts at the 
same lead time.  The bias correction technique is a quantile-mapping approach, where a 
regression equation is calculated to adjust quantiles (e.g., 99th percentile) of HRRR QPF toward 
quantiles of Stage-IV QPE.  Based on a series of experiments, we chose to use a calibration 
dataset of 50 past forecasts and a linear curve fit from QPF to QPE.  For example, if the slope of 
the linear fit is 0.9 and intercept is zero, forecasts of 1.0 in / 6 h are adjusted to 0.9 in / 6 h.  
Given the simplicity of this technique, the results are surprisingly good, but skill decreases 
beyond thresholds of 3.0 in / 6 h.  Calibration coefficients are recalculated daily based on the 
most up-to-date set of 50 forecast-analysis pairs. 

In the second step, our algorithm uses a spatial filter of varying size to increase the 
ensemble spread at a given point.  Through several experiments, we find that an 80-km filter 
achieves the best reliability over the CONUS.  This means that forecasts at all grid points in an 
80-km radius around a given point are considered ensemble “members”.  Physically speaking, 
this is an attempt to incorporate larger spatial forecast errors than the raw 3-member ensemble is 
able to provide.  HRRR-TLE output is not a “neighborhood probability” – the probability 
of > 1.0 in QPF at a point is just that – the probability of receiving 1.0 inches at that point.  
We are only using forecasts from surrounding areas to calculate a more reliable probability at 
that point. 
         It’s not hard to imagine where a constant spatial filter size might cause problems: 
complex terrain.  When precipitation processes are dominated by orographic forcing, forecasts 
80 km away from a mountain range do not add value to the probabilistic forecast over the range 
itself.  Over high terrain and low valleys we find a spatial filter size of only 12 km is much more 
appropriate.  HRRR-TLE output therefore weights the probabilistic QPF and snowfall forecasts 
more toward a 12-km radius over complex terrain, and more toward an 80-km radius over flat 
terrain.  “Complex terrain” points are those where the elevation is significantly higher or lower 
(by 250 m) than the average elevation of the surrounding area (~80-100-km radius). The 
resulting forecasts both appear more physically realistic and verify better than those achieved 
with a constant filter size across the CONUS. 
  
Probabilistic Snowfall 
         HRRR-TLE probabilistic snowfall forecasts provide 0-6 and 6-12-h probabilities of 
exceeding various snowfall accumulation thresholds. The output is actual snowfall depth, not a 
snow-water equivalent.  Our algorithm uses a varying spatial filter identical to that for 
PQPF, and leverages snowfall forecasts derived directly from the HRRRx microphysics 
scheme. This recent (Dec 2015) addition to the microphysics scheme calculates a variable-
density accumulation of all frozen precipitation types, including contributions from snow, 
graupel and cloud ice with a temperature dependency.  There is no use of a fixed or 
climatological snow-to-liquid ratio.   



Bias-correction is not employed for snowfall, since we lack a universally accepted 
snowfall dataset.  Snowfall is also subject to a large variety of forecast errors, including the 
precipitation forecast, the column temperature profile and any potential false assumptions in the 
microphysics-based snowfall algorithm.  A correction appropriate for one scenario might be 
entirely inappropriate for another—to a much greater degree than for QPF.  Hence bias 
correction is much more complex, and we have tabled this topic for future development. 
  
Snowfall Rate 
         HRRR-TLE snowfall rate forecasts are the instantaneous probability of exceeding various 
rate thresholds at a point, at each forecast hour from 0 to 12.  Our algorithm employs a varying 
spatial filter similar to that for PQPF and snowfall, but also uses the 1-h snowfall forecasts for 
the hour before, and hour after the valid time as ensemble “members”.  Owing to the additional 
spread provided by this temporal filtering, and the larger run-to-run differences noted for hourly 
snowfall forecasts, the flat-terrain spatial filter size for snowfall rate is reduced to 40 km. As for 
the 6-h snowfall accumulation guidance, the instantaneous snowfall rate guidance uses 
snow accumulation forecasts directly from the HRRRx microphysics scheme.  This 
algorithm does not combine QPF with a snow-to-liquid ratio, and also does not employ an initial 
bias correction step for the same reasons described above in Probabilistic Snowfall. 
  
Future 
         Following WWE 2016, the development focus will shift to severe weather and flash 
flooding.  Additional products will debut at the SPC Hazardous Weather Testbed and the Flash 
Flooding and Intense Rainfall experiment.  There are plans to expand the HRRR-TLE winter 
weather output for testing in WWE 2017, with improved calibration and filter algorithms, and 
possibly including additional fields such as freezing rain probabilities. 
 
 

ESRL/GSD 

2015-16 HRRRX (experimental HRRR a.k.a. HRRRv2) 

Deterministic Winter Precipitation Fields 
  
Water Equivalent of Accumulated Snow Depth (kg/m^2 or mm) 
Discipline 0, Category 1, Parameter 13, “WEASD” 
●            Snow-only water-equivalent accumulation at surface from microphysics 
●            Ignores contributions from graupel or ice 
●            Reported as “accumulation” and starts with zero value 
●            Provided in both one-hour and run-total forecast buckets 
●            Can use traditional 10:1 ratios to estimate accumulated snow depth 
●            Hourly bucket values used as the input to the HRRR-TLE probabilities of all snowfall 
rates 



  
Accumulated Snow Depth (m) 
Discipline 0, Category 1, Parameter 29, “ASNOW” 
●            Variable-density accumulation of all frozen precipitation types from the microphysics, 
minus snow melt, is computed inside the land surface model (RUC) 
●            Includes contributions from snow, graupel and ice with temperature-dependent density 
●            Reported as “accumulation” and starts with zero value 
●            Provided only as run-total forecast 
●            Can be evaluated against the traditional 10:1 estimate 
●            Used as the input to the HRRR-TLE probabilities of snow accumulation > 1, 3 or 6 
inches in 6 hrs 
  
Water Equivalent Snow Depth (kg/m^2 or mm) 
Discipline 0, Category 1, Parameter 13, “WEASD” 
●            Water equivalent of “snow pack” as reported by the land-surface model 
●            All frozen precipitation included (snow, graupel, ice) 
●            Cycled from previous forecasts and can have non-zero starting value 
●            Includes effects of new frozen precipitation, melting and sublimation 
●            Provided as an instantaneous surface value at the top of each hour 
  
Snow Depth (m) 
Discipline 0, Category 1, Parameter 11, “SNOD” 
●            Depth of “snow pack” as reported by the land-surface model 
●            All frozen precipitation included (snow, graupel, ice) 
●            Cycled from previous forecasts and can have non-zero starting value 
●            Includes effects of new frozen precipitation, melting and sublimation 
●            Provided as an instantaneous surface value at the top of each hour 
  
Percent of Frozen Precipitation (%) 
Discipline 0, Category 1, Parameter 39, “CPOFP” 
●            Ratio of frozen precipitation (snow + graupel + ice) to total precipitation (snow + 
graupel + ice + rain) 
●            Provided as an instantaneous surface value at the top of each hour 
  
  
  
Categorical Snow Precipitation Type (0 = no or 1 = yes) 
Discipline 0, Category 1, Parameter 36, “CSNOW” 
●            Identification of snow precipitation type at surface based on explicit microphysics, 
precipitation intensity and surface temperature 
●            Identification of precipitation for very small rates < 0.01”/hr 



●            Can exist with one or more other precipitation types 
●            Provided as an instantaneous surface value every 15 min into forecast 
  
Categorical Graupel Precipitation Type (0 or 1) 
Discipline 0, Category 1, Parameter 35, “CICEP” 
●            Identification of graupel (sleet or ice-pellets) precipitation type at surface based on 
explicit microphysics, precipitation intensity and surface temperature 
●            Identification of precipitation for very small rates < 0.01”/hr 
●            Can exist with one or more other precipitation types 
●            Provided as an instantaneous surface value every 15 min into forecast 
  
Categorical Freezing Rain Precipitation Type (0 or 1) 
Discipline 0, Category 1, Parameter 34, “CFRZR” 
●            Identification of freezing rain precipitation type at surface based on explicit 
microphysics, precipitation intensity and surface temperature 
●            Identification of precipitation for very small rates < 0.01”/hr...i.e. freezing drizzle 
●            Can exist with one or more other precipitation types 
●            Provided as an instantaneous surface value every 15 min into forecast 
  
Categorical Rain Precipitation Type (0 or 1) 
Discipline 0, Category 1, Parameter 33, “CRAIN” 
●            Identification of rain precipitation type at surface based on explicit microphysics, 
precipitation intensity and surface temperature 
●            Identification of precipitation for very small rates < 0.01”/hr 
●            Can exist with one or more other precipitation types 
●            Provided as an instantaneous surface value every 15 min into forecast 
  
  
 


