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Abstract— To blend growing amounts of power from renewable 

resources into utility operations requires accurate forecasts. For 

both day ahead planning and real-time operations, the power from 

the wind and solar resources must be predicted based on real-time 

observations and a series of models that span the temporal and 

spatial scales of the problem, using the physical and dynamical 

knowledge as well as computational intelligence. Accurate 

prediction is a Big Data problem that requires disparate data, 

multiple models that are each applicable for a specific time frame, 

and application of computational intelligence techniques to 

successfully blend all of the model and observational information 

in real-time and deliver it to the decision makers at utilities and 

grid operators. This paper describes an example system that has 

been used for utility applications and how it has been configured 

to meet utility needs while addressing the Big Data issues. 

 

Index Terms— big data, power forecasting, solar energy, 

variable generation, wind energy  

 

I. INTRODUCTION 

tilities and Independent System Operators (ISOs) depend 

on accurate forecasts for the next few hours to several 

weeks in order to effectively utilize variable generation 

resources. It is important to be able to forecast the wind, solar, 

and hydro power available the next day, or often, for the next 

several days. The marginal cost to run these renewable 

resources is quite low and it is economically advantageous to 

allocate as much power from those units as possible. But over-

allocation of those units when the wind, irradiance, or water 

power is not available could lead to using much more expensive 

reserve units in real time. The specific rules depend on the 

particular ISO, but in general, the utility and ISO decision 

makers wish to allocate their resources a day or more ahead, 

and correct predictions of the power expected from the solar 

and wind units allows the marginal cost of energy to be 

minimized while assuring sufficient power to meet the load. 

Optimizing security of supply, economic dispatch, and power 

quality may often be conflicting demands, yet for all of these, 

having accurate forecasts of the renewable power is essential 
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[1]. In real-time, grid operators must have very short-range 

forecasts (known as nowcasts) to meet energy demand and to 

minimize the cost of running excessive reserves. Fig. 1 shows 

an example of the differences between power output by a solar 

unit on a clear day vs. a day with variable clouds. It is obvious 

that large variability in output exists. Wind power also exhibits 

considerable variability. Some system operators (such as the 

Electric Reliability Council of Texas – ERCOT) use historical 

error statistics to help determine nonspinning reserve 

requirements while others (such as the Sacramento Municipal 

Utility District – SMUD) is interested in spatial and temporal 

variabillty of solar irradiance for energy trading and generator 

dispatch decisions [2]. 

To forecast across scales from seconds to a few weeks, 

forecast methods must be tailored for each scale [1]. We focus 

here on the short-term (from times 0 to about 6 hrs, used for 

pre-dispatch and scheduling small power systems) and the 

medium term (current to about a week out, which are used for 

pre-dispatch, unit commitment, trading, and maintenance 

planning) [1]. Observation-based nowcasting provides a much 

more accurate forecast in the short range, but its skill drops off 

rapidly with time. Numerical weather prediction (NWP) 

becomes more important at about 3 hours and provides value to 

about 2 weeks. The limits of predictability of NWP are 

currently around 10-14 days. Because NWP simulations at high 

resolution over a sizable domain can require the order of hours 

to run on supercomputers and often require spin-up time, it is 

not typically available for real-time use for the shortest time 

ranges.  

Modern methods of forecasting renewable energy employ 

post-processing methods to blend these disparate models, as 

well as ensembles of model runs, which greatly improve the 

forecast skill [1-7]. Ensembles of model runs also provide 

probabilistic forecasts. Forecasts of the wind speed expected at 

turbines and irradiance at solar panels can be converted, using 

machine learning, to power forecasts that meet the needs of the 

utilities and ISOs.  
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Fig. 1. Energy output from a commercial solar plant on a clear day top) and 

from the same plant on a cloudy day (bottom) The solid red curves show the 

global horizontal irradiance (GHI) and the dashed blue curves that power output 

from the commercial array as a percent of its capacity. 

 

The methods to make the forecast require a plethora of 

historical and real-time data from both models and 

observations, blended in real-time to provide a seamless 

forecast for use by decision makers. Thus, forecasting for 

variable renewable energy, namely wind and solar power, is an 

example of a real-world Big Data problem and is best treated as 

such [8]. Here we refer to Big Data as including collections of 

datasets that are large or complex and where special 

considerations are necessary for processing to reveal patterns 

and extract actionable information. Characteristics of Big Data 

are often stated to include its volume, velocity, variety, 

variability, veracity, and complexity 

(https://en.wikipedia.org/wiki/Big_data). Each of these is 

discussed in detail below. 

This paper lays out the issues for forecasting the weather for 

renewable energy in Section II. Section III discusses weather 

forecasting as a Big Data application and how fits the 

characteristics listed above. Section IV provides a case study of 

the Sun4Cast™ solar power forecasting system designed by the 

National Center for Atmospheric Research (NCAR). The final 

section V summarizes the issues and presents prospects for 

future applications. 

II. THE NECESSITIES OF WEATHER FORECASTS 

Weather forecasting has always been one of the original 

computational challenges. From the time that L.F. Richardson 

imagined a room of human “computers” numerically solving 

the primitive equations of fluid mechanics [9] in 1922, 

meteorologists have been seeking to use data mining and the 

best numerical methods to improve forecasts. A filtered version 

of these equations was the first problem on the first operational 

computer, the Electronic Numerical Integrator and Computer 

(ENIAC) at Aberdeen Proving Grounds in 1950, set up by Jules 

Charney, John von Neumann, and R. Fjortoft [10]. This was the 

beginning of meteorologists’ passion for using computing to 

make advances in forecasting that naturally leads to 

consumption and production of Big Data. The detailed physics 

included in the numerical models, as well as the spatial and 

temporal resolution have been enhanced rapidly, which 

constantly challenges computing capability. At the same time 

the field has quickly adopted advanced statistical and 

computational intelligence methods. 

Weather prediction is an important real-time challenge and 

many applications rely on its accuracy, including energy 

applications, aviation safety, defense planning, and many more. 

To meet those expectations, NWP models are run as often as 

hourly at high resolution over tens of millions of grid cells and 

include physics packages that solve their own series of 

equations. These physics packages model or parameterize 

incoming and outgoing radiation, cloud physics, shallow and 

deep convection, boundary layer turbulence, land surface 

interaction with the fluid atmosphere, and more. 

The equations of atmospheric motion are nonlinear and 

dissipative, which make them chaotic, implying sensitivity to 

initial conditions. To deal with this chaotic atmospheric flow, 

two approaches are often adopted. First, data assimilation 

blends observed data into the initial model state. These data 

come from sampling the horizontal and vertical extent of the 

atmosphere as well as the land and sea surface boundaries. 

Some of these data are remotely sensed either from the ground, 

such as by radar, or from satellites. Thus, the data points are 

seldom located on the grid and are often of disparate nature. A 

second approach to dealing with the chaotic nature of the flow 

recognizes the potential for multiple possible realizations of the 

development of the weather event. This approach simulates 

these realizations as an ensemble comprised of many runs with 

slightly different initial or boundary conditions or different 

physics parameterizations. Some centers run upward of 50 

model ensemble members to form a probability density 

function (PDF) of the development of the weather [11]. 

Finally, the best predictions are post-processed to blend as 

much of the data, model output, and statistical learning as 

possible to improve the deterministic forecast and to quantify 

the uncertainty. As model output regularly includes systematic 

(bias) and random errors, additional observations, when 

available, can be used in the post-processing step to improve 

the forecast. Training these post-processing methods requires 



large amounts of both model and observational data as 

discussed in more detail below. The best methods blend 

computational intelligence with the discretization of the physics 

and dynamics of the system. Such systems can be quite 

complex [3,12} and is certainly a problem in Big Data [8]. 

 

III. WEATHER FORECASTING FOR SOLAR POWER AS A BIG 

DATA PROBLEM 

Modern applications of weather forecasting include all 

characteristics of Big Data include its volume, variety, velocity, 

variability, veracity, and complexity. How each of these applies 

is described herein. 

A. Data Volume 

Producing real-time NWP model simulations is a notorious 

challenge for large-scale computing. NWP models ingest and 

assimilate large amounts of observational data to initialize a 

model run. They then solve the nonlinear Navier-Stokes 

equations on grids upwards of 100 million grid cells with time 

steps on the order of 20 s. This implies that roughly 18 billion 

calculations of each model variable are handled for each hourly 

output. Thus, these computations require large scale computing 

resources. When one multiplies the degrees of freedom of the 

problem (grid size times dozens of variables times the time 

increment) by 168 hours for each week of forecasts, one begins 

to appreciate the large volume of data (hundreds of trillions) in 

the calculations. Of course not all of that data is stored, with 

about 30 output variables being stored at 15 min increments and 

another 700 stored at hourly increments. The national centers 

require large supercomputers to produce these simulations. 

Storage is optimized by archiving only those data that will be 

subsequently used. 

B. Data Variety 

To produce a forecast requires combining various types of 

observations, some of which sample surface variables at 

convenient locations that seldom correspond with the NWP grid 

points, while others represent the vertical profile of the 

atmosphere at specific locations. Remote sensing, such as from 

a satellite, sample other variables on a horizontal grid at 

differing elevations. Satellite irradiance values often depict the 

cloud top temperature. Since different clouds appear at 

differing atmospheric levels, these indicate temperature at 

different levels of the atmosphere. Other satellite instruments, 

however, look through the clouds to determine properties of the 

atmosphere in vertical profiles. Other remote sensing 

instruments, such as surface-based radars, scan the environment 

and provide reflectivity in terms of distance, angle, and azimuth 

of the beam. 

Even though these remotely sensed observational data may 

be gridded, they are not necessarily on the same grid, or even 

use the same map projection as the NWP data. Thus, one must 

include interpolation as a necessary step of any forecast 

process, for both point-based observations as well as the 

remotely sensed data. Moreover, all of these differing types of 

data with differing types of grid systems must be coordinated 

to provide a picture of the current atmospheric state before it is 

used to initialize the forecasting system.  

The existence of standards and standardized formats for 

meteorological data, including metadata, significantly reduces 

the possibility of errors when processing these disparate data. 

Unfortunately, no such standards exist at present for data 

collected at power plants, although standardization is essential 

to develop accurate and robust renewable energy forecasts.  

Some common problems occur with the lack of power plant 

data standardization. One common standardization issue is the 

time stamp for the observations. All observations and NWP 

data should include a time stamp in universal time. However, 

that is not always the case with power plant data. In particular, 

it is common for specialized observations to be listed in local 

time. For such observations, it can be confusing to determine 

the time zone and whether or not the reported local time is in 

standard or daylight saving time, as some systems report local 

standard time year-round, and some switch with the twice-

yearly time changes. 

Another common data standardization issue lies in the 

averaging time of the observations. There are many small 

networks of specialized weather observations (mesonets). 

Although some of these are standardized, not all follow 

standardization on reporting details and averaging periods. For 

instance, one dataset that brings together observations from a 

variety of mesonets includes data with differing averaging 

periods, with hourly data including everything from averages 

of 10 Hz data for the full hour, for 15 min, for 5 min, for 1 min, 

and even for an instantaneous value. Some observations are 

recorded at the top of the hour, while others are an average of 

the prior hour. It is often difficult to standardize the values that 

are provided. It is critical to understand the metadata describing 

issues such as averaging period when developing best methods 

to deal with the frequent disparity. These challenges must be 

met by each group using the data, but efficiency could be gained 

through standardization. 

C. Data Velocity 

Having large amounts of data arrive at different times creates 

a significant challenge for processing. One must prepare for 

different arrival times for each NWP model and each 

observational dataset. This implies that as data arrive, they must 

be matched to the valid time and steps taken to account for any 

lags before blending it with data from other models, 

observations, or systems. Systems such as those built at NCAR 

incorporate these data as they arrive. Thus, system engineers 

must take into account and track the arrival time when doing 

the integration. 

D. Data Variability 

With the data acquisition speed so variable, one must expect 

that it will be common for some of the data sources to be 

delayed. Thus, one must plan for graceful degradation of 



predictions when particular sources of data or model output are 

not available in time to provide the real-time prediction. 

Because this is a frequent occurrence, fall-back routines are 

necessary for each type of data that could be missing. Although 

the computational intelligence algorithms are trained to 

optimize on having all of the data, it is necessary to also provide 

forecast model systems that assume that some of the data are 

missing. This process becomes yet more complex when more 

than one data source is missing. Again, this requires good 

software engineering preparation to handle the contingencies. 

E. Data Veracity 

The quality of the data is a critical issue for both training the 

computational intelligence models as well as for real-time 

calculations. One must be prepared to identify issues with 

incorrect data that must be corrected. For instance, when an 

observation is far from the expected range for the season and 

time of day at a location, it can be flagged for potential error. 

An additional check on the previous value of temperature can 

determine if the change in that time period is within reason. One 

must take into account, however, that occasionally, rapid 

changes or anomalous values of weather variables may be real. 

Rapid temperature changes do occur, such as during passage of 

a weather front. In addition, extreme values of weather 

variables also occur. During times of flooding, for instance, 

precipitation observations could appear anomalous when in fact 

they are correct for that unusual case. Thus, it is important to 

construct quality control algorithms to identify these 

possibilities. 

F. Data Complexity 

A final characteristic of Big Data is complexity. The previous 

description of the issues of data volume, variety, velocity, 

variability, and veracity exemplify the complexities of 

attempting to blend these data to provide accurate forecasts in 

real-time.  

For example, there are several uses of observations in making 

the forecast: 1) assimilation into the NWP models, 2) training 

the computational intelligence algorithms, 3) using historical 

data corresponding to a past prediction that is analogous to the 

current model prediction to predict the future state (as in AnEn 

approach described below) and 4) identifying the current 

conditions. Data are again required for verification and 

validation after the prediction is made. Thus, it can be 

challenging to take the best advantage of the data for each 

purpose without compromising the other uses.  

 

IV. THE SUN4CAST™ SOLAR POWER FORECASTING 

SYSTEM 

Solar power forecasting provides an example of applied 

weather forecasting where correctly modeling the variability is 

an important goal. Here we describe the Sun4Cast™ solar 

power forecasting system, which is a new comprehensive 

approach to forecasting the power produced from the sun’s 

irradiance and includes a variety of components that illustrate 

the difficulties inherent in making such forecasts and directly 

deals with those difficulties. NCAR has worked closely with 

utilities and ISOs to produce forecasts that allow them to 

effectively balance the variable generation resources with 

conventional energy sources. In order to meet both the short-

range (nowcast) and longer-range (day ahead and beyond) 

needs, NCAR forecasts the expected irradiance and the 

resulting power output from 15 min through 168 h. This system 

was recently built through a Public-Private-Academic 

Partnership funded by the U.S. Department of Energy (DOE) to 

advance solar power forecasting. The project sought to advance 

the state-of-the-science to improve irradiance and power 

forecasting and involved several utilities as cost share partners. 

To accomplish the goals, one must be able to forecast the 

aerosols and clouds accurately. Forecasting clouds, in 

particular, has proven to be challenging in the past. This 

comprehensive system was designed with both the needs of the 

intraday unit commitment and dispatch, as well as longer-range 

unit scheduling and planning in mind. The architecture is 

summarized in Fig. 2. 

 

Fig. 2. Diagram of data flow in the Sun4Cast solar power 

forecasting system.  

A. NWP Forecasts 

For the forecast times beyond the nowcasting period (beyond 

about 4 hours), Sun4Cast leverages NWP models run by the 

National Centers for Environmental Prediction (NCEP) of the 

National Oceanographic and Atmospheric Administration 

(NOAA) and other national centers, as well as deploying 

NCAR’s WRF-Solar. Each of these models has its own grid and 

timeframe.  

1) Specialized runs such as WRF-Solar™ 

WRF-Solar™ is a newly developed branch of the Weather 

Research and Forecasting (WRF) model designed specifically 

to improve solar irradiance forecasts. This version includes an 

improved radiative transfer scheme, improved cloud physics 

parameterization, new shallow convection scheme, improved 



equation of time, robust interaction between the clouds and 

aerosols with the radiation, and output tailored to the specific 

application. Initial and boundary conditions for the WRF-Solar 

forecasting system derive from the Rapid Refresh (RAP) model 

analysis. The irradiances (global horizontal irradiance - GHI, 

direct normal irradiance - DNI, and diffuse irradiance - DIF) are 

output every model time step (20 s) and one-minute averages 

are computed [22]. It is run with one primary domain of 3-km 

horizontal grid spacing over the US and two domains of 1-km 

grid spacing over regions with solar farms – the San Luis Valley 

in Colorado and Sacramento, California. One run per day is 

configured to meet operational needs of the private partners 

targeting the day-ahead forecast. The model is initialized at 

0000 UTC and is run for 54 hours in order to provide a day-

ahead forecast available at the beginning of the morning. The 

model therefore runs during the night period so that the latency 

of the system is not relevant. Because the computational cost of 

activating the 1-km domains is high, they are only activated for 

the daytime of the second day of the simulation to enable the 

simulation to complete in time for the forecast. 

2) HRRR 

NCEP’s High Resolution Rapid Refresh (HRRR) model is 

an example of a model that forecasts the weather over a limited 

area domain, in this case the CONUS, using a relatively fine 3-

km grid cell size. It produces forecasts hourly for the next 15 

hours. A single forecast consisting of three-dimensional fields 

amounts to 365 Mb, while corresponding two-dimensional 

fields representing surface conditions account for an additional 

84 Mb, for a total of approximately 450 Mb for each simulation. 

3)  RAP 

The RAP model, version 2 includes a wider domain than the 

HRRR. It is run hourly with a coarser grid to produce forecasts 

for the following 18 hours. Each RAP output file amounts to 

55-60 Mb. 

4) GFS as a typical global model 

NCEP’s Global Forecast System (GFS) is representative of 

the available global models. GFS is run at 2.5°, 1.0°, and 0.5° 

globally. The model forecasts are produced every 6 hours out 

to 384 hours. Recently an additional 0.25° simulation was 

added and produces forecasts for the next 168 hours. The 

Sun4Cast forecasting system employs the 0.5° forecast, using 

65-70 Mb of data. Other global models, such as those from 

Canada, Europe, and other national centers can also be blended. 

Table 1 summarizes the data output by some of the NWP 

models used in the Sun4Cast system. 

 
TABLE 1 

DETAILS OF SEVERAL NWP MODEL DAILY OUTPUTS. 

Model Forecast 

frequency 

Hours 

ahead 

Grid cell size Daily 

output 

[GB] 

HRRR hourly 15 3 km 130 

RAP hourly 18 9 km 5.7 

NAM 6 hours 84 12 km 5.5 

GFS 6 hours 384 0.5° 68 

GEM 12 hours 240 1° 4.3 

WRF- 

Solar 

Irradiance 

only: 20 sec 

30 3 km 

(CONUS) 

1 km 

(2 subdomains) 

4.2 

 

B. Nowcast System 

Five models comprise the Nowcast system and each displays 

a “sweet spot” for producing a most accurate forecast. These 

nowcasting methods leverage a variety of disparate 

observational data, statistical and computational intelligence 

methods, and physical understanding of the atmosphere to 

produce a “best practices” blended forecast. Each is briefly 

described below. 

1) TSICast, built and deployed by Brookhaven National 

Laboratory, uses three total sky imager (TSI) cameras to 

observe current cloud cover. Because they deploy multiple 

cameras, they can deduce the height, base, location of the 

clouds, as well as the speed and direction of each cloud layer 
by observing the changes in time. Thus, they can predict where 

the clouds will be in the next 15-30 min [13]. TSICast processes 

in about 2-3 min to provide this short-range prediction. 

2) StatCast was developed by NCAR and Penn State 

University to leverage irradiance measurements from 

pyranometers located at the solar plant. There are several 

versions of StatCast [14-16], each of which uses a 

computational intelligence method to predict the cloud cover 

and the resulting clearness index for the next 3 hours. It ingests 

surface irradiance measurements, nearby weather data, and, 

when available, satellite data to estimate the clearness index 

(the observed surface irradiance divided by that available at the 

top of the atmosphere at that location). StatCast requires at least 

a year worth of data to train the forecast model. Once trained, it 

runs in a matter of seconds. 

3) CIRACast was designed by Colorado State University’s 

Cooperative Institute for Research in the Atmosphere (CIRA) 

to detect geostationary satellite-observed clouds, process the 

data to remove parallax and shadowing, and advect those clouds 

with derived motion vector and model winds [17]. Thus, they 

are able to predict cloud coverage over the coming hours. Its 

latency depends on the time to process and ingest remotely the 

satellite and model wind data, typically around 15-30 min. This 

is still useful for the next several hours as it provides the best 

“big picture” view of the state of clouds and can be used to 

project their location for the next several hours. It has been 

particularly useful for predicting short-range ramps in solar 

power. 

4) The Multi-sensor Advection Diffusion foreCast 

(MADCast) system uses the Multivariate Minimum Residual 

(MMR) scheme of Auligné [18-20] to assimilate satellite 

infrared radiance observations into the dynamic core of the 

Weather Research and Forecasting (WRF) model. The 

dynamics of WRF then advects the observed clouds 



accordingly. It predicts out to 6 hours, with a latency of only 

about 10 min due to not employing the computationally 

expensive physics packages of WRF. 

5) WRF-Solar-Now is an implementation of the specially 

configured version of the WRF model, WRF-Solar that 

optimizes computation of solar irradiance (see details below). 

It is run in a nowcasting mode at 9-km horizontal grid spacing 

over the contiguous United States (CONUS) hourly. It predicts 

out to 6 hours with approximately 1 h of latency to complete 

the run. 

The Nowcast system has different data needs, most of which 

are more modest than for NWP. The amount of data produced 

by the Nowcast system is displayed in Table 2.  

Observations used in the Nowcast system include irradiance, 

air temperature, and power output. The total amount of data 

received daily for all the sites for which forecasts are produced 

(14 Sacramento Municipal Utility District, 2 Xcel Energy, 9 

SoCal Edison, and 25 Brookhaven National Laboratory) is 

approximately 35 MB. While this amount of data is modest, 

data quality and disparate data formats represent a processing 

challenge. An exception to the modest data size is the satellite 

data. For CIRACast, approximately 1.54 GB/day in raw GOES 

data (GOES-W and GOES-E) is pulled from the satellite feeds 

plus 1.9 GB/day for the PATMOS-x L2 data uses for the 

advection forecast. In addition, they use the GFS model data 

(about 80 GB of data daily, of which 2-3 GB is directly 

applicable to the CIRACast forecast.  

 
TABLE 2 

DETAILS OF SEVERAL NOWCAST MODEL DAILY OUTPUT 

Model Forecast 

frequency 

[minutes] 

Hours 

ahead 

Daily 

output 

[MB] 

MADCast 15  6 2,100  

CIRACast 15  6 1.4 

StatCast 15  3 13 

WRF-Solar-NOW 15 6 24,000 

C. Completing the Forecast 

The integrator for the various NWP models is the 

computational intelligence algorithm, the Dynamic Integrated 

Forecast System (DICast®) [23], as depicted in Fig. 3. DICast® 

produces automated forecasts using a method that was designed 

to emulate the human forecast process. It generates forecasts by 

optimizing the combination of NWP model data through 

developing empirical relationships gleaned from historical 

model output and observations. DICast typically reduces root 

mean square error by about 10-15% and essentially eliminates 

bias as compared to the best input model. DICast employs a 

two-step process: it first statistically corrects the bias of each 

input model using Dynamic Model Output Statistics (DMOS) 

[24], and second, it optimizes the model blending weights for 

each lead time, producing a consensus forecast. DICast 

typically works with up to 90 days of data; this is an advantage 

because many other methods require a year or more of data for 

training, during which time some of the models may have been 

modified or upgraded, making the training process difficult.  

 
Fig. 3. Diagram of the DICast® blending process. 

 

The configuration of DICast used in Sun4Cast employs 

irradiance values obtained from seven NWP models as seen in 

Fig. 3, as well as observations from the sites of the solar plants. 

These models include those run operationally by NCEP in the 

USA: Global Forecast System (GFS), North American Model 

(NAM), Rapid Update model (RAP), and High Resolution 

Rapid Refresh (HRRR-NCEP) as well as the HRRR-ESRL 

research model developed at the Earth System Research 

Laboratory of NOAA. Environment Canada runs the Global 

Environmental Mesoscale (GEM) model. WRF-Solar was run 

quasi-operationally by NCAR [25]. The data from each of these 

models is ingested and blended in real time to produce forecasts 

hourly. 

 The Nowcast systems discussed above are integrated 

separately using a unique Nowcast expert system integrator that 

utilizes the recent performance scores of each component 

model, whether it be from a computational intelligence method 

(StatCast), based on cloud observations (TSICast and 

CIRACast), or includes NWP components (MADCast and 

WRF-Solar-Now). Although the Nowcast system is currently 

optimized via an expert system, dynamic methods are planned 

for future applications. Each of these models has been shown to 

provide value in the system [25]. Fig. 4 depicts the mean 

absolute error of each of the models for each lead time out to 6 

hrs. We see that the models each show value over some time 

period and all outperform the baseline persistence model (black 

line) over all except the shortest time periods. 



 

 
Fig. 4. Mean absolute error in W m-2 for all NowCast components aggregated 

over all partner sites and all sky conditions. 

 

The DICast® and Nowcast irradiance forecasts are 

integrated and blended during the transition period (2 hrs - 6 

hrs) to produce irradiance forecasts for each 15-min interval out 

to 3 hours then hourly out to 168 hours. GHI is the most useful 

forecast variable for photovoltaic panel operations (see Fig. 1) 

while DNI is the only component useful for concentrated solar 

plants. Diffuse irradiance DIF relates the two. Not all of the 

NWP models, however, are able to separately forecast DNI and 

DIF. That was one of the advances made when formulating 

WRF-Solar. 

The meteorological irradiance values are not the final output 

variables. Utilities require a power prediction, meaning that an 

irradiance-to-power conversion step must be added. A model 

regression tree (Cubist) is used in Sun4Cast to train the 

relationship between the measured irradiance value and the 

coincident power produced. The empirically derived 

relationship is then applied in real-time to the irradiance 

forecast to produce a power forecast. A separate power 

conversion algorithm must be trained for each generation site. 

Once the training/testing procedure is accomplished, the 

algorithms’ real-time application runs in a matter of seconds. 

Finally probabilistic forecasts have been requested by partner 

utilities. NCAR applies the Analog Ensemble (AnEn) approach 

[26,27] to produce an appropriate probability density function 

(PDF) of the forecast uncertainty. The AnEn assumes that if a 

forecast made in the past under meteorological conditions 

analogous to today’s forecast, then it is likely to produce the 

same error characteristics as is probable in today’s forecast. 

Thus, analogs in those past forecasts are identified so that: 1) 

observations corresponding to analog forecasts are selected as 

members of AnEn and used to correct the forecast, and 2) a PDF 

of multiple analogs is used to estimate the uncertainty of the 

forecast. This flow-dependent uncertainty has been shown to 

reproduce the forecast and its statistical reliability at least as 

well as the full ensembles of runs produced at the operational 

centers [26,27]. 

NCAR produced probabilistic solar power forecasts in quasi-

operational mode hourly and made them available to the utility 

and ISO partners for a year in order to provide sufficient data 

for a full assessment. Results indicate that each component 

improves upon baseline forecasts and has a “sweet spot” where 

that component often produces the best forecast and contributes 

to an improved forecast [25]. Over the three years of the project, 

the overall forecast accuracy improved by roughly 50% [25]. 

C. Forecast Usage  

The Sun4Cast forecasts were available to the utility and ISO 

partners to use in integrating their solar resources into their 

energy mix. The partners use those forecasts to plan their day-

to-day operations. One use is in allocating their units for the 

next day. Early in the morning, each utility estimates how much 

power from each source to expect the following day. This 

requires the day-ahead forecast that is accomplished by 

blending the NWP models via DICast®. Then in real-time, 

actual allocations must be adjusted and the Nowcast system is 

helpful for that process. Finally, the probabilistic forecasts are 

used by some utilities in planning their reserve allocations. 

Although most of the utility partners do not yet have a sufficient 

capacity of solar power for the forecasts to make a large 

difference in their operations, given the rapid growth of solar 

deployment in the U.S., they anticipate a time when such 

forecasts will be critical to their operations as wind power 

forecasts are already for many utilities. 

 

V. CONCLUSION AND CHALLENGES 

Renewable energy is becoming a higher percentage of the 

energy capacity as it becomes more prevalent and cost 

effective. Thus, it is important to forecast its expected value, 

variability, and uncertainty. To make such a forecast requires 

observations from that location, specialized models tuned to the 

location, and blending NWP data from multiple sources. 

Observations are additionally critical for building 

computational intelligence models that optimize the forecast. 

Therefore it is necessary to handle data that is large in volume, 

of high variety, using it in real-time at high velocity, and may 

be of questionable veracity. The complexity of blending this 

information in time to provide a forecast that is useful to the 

end user is a complex Big Data problem. Here we have 

described a solar power forecasting system, Sun4Cast™, 

developed by NCAR and collaborators that meets these needs. 

Numerous challenges must be overcome in making an accurate 

forecast.  

Models are always being improved and resolution is growing 

as computer power increases. We sometimes hit limitations to 

our model resolution, however. As NWP models are deployed 

at higher resolution, we resolve processes that we previously 

parameterized. We are also modeling scales of the atmosphere 

beyond those for which the model was originally constructed, 



and thus, the important physics to resolve may change. For 

instance, although the NWP models were constructed to resolve 

large-scale flow over large domains, for much finer scales 

large-eddy simulations (LES) may be more appropriate. A 

“terra incognita” exists between about 1000 m and 100 m where 

the turbulence characteristics change, so that the type of model 

that is appropriate to use must be carefully considered [28]. 

As discussed above, we note that meteorologists often run 

multiple realizations of the NWP models as a way to quantify 

the uncertainty in the flow due to its chaotic nature. With bigger 

and faster computers available, modelers tend to run more 

ensemble members to better fill out the PDF of the forecast in 

an attempt to improve their predictions. Is that approach the 

best, or will statistical learning methods prove better at 

statistically filling out the PDF? The limiting case is 

demonstrated by the analog ensemble method, which uses a 

single high-resolution simulation to create the ensemble. This 

AnEn technique has shown promise for improving the 

deterministic forecast while quantifying its uncertainty. 

More complex data mining techniques are being deployed to 

blend the models and the observations. For instance, deep 

machine learning is becoming more widely used in many Big 

Data problems. But those methods require yet more data. 

Again, we will observe how the balance between data volume 

and its smart usage develops over time. 

Machine learning techniques depend critically on archived 

data for training. Thus, it becomes important to select and 

archive a subset of essential variables at appropriate frequency 

for future use. Similarly, the analog ensemble and other 

statistical learning methods, such as StatCast, require this type 

of historical data as well as coincident observations.  

Because accurate renewable power forecasting so critically 

depends on the amount and quality of historical, real-time, and 

model data, it is important to consider archival at an early stage 

in project planning as well as for future projects. In addition to 

power production, the data regularly collected at solar power 

plants include atmospheric variables: e.g., GHI or DNI, 

temperature, wind speed and direction, as well as pressure and 

humidity. To effectively use these data, dataset formats should 

be standardized. In particular, comprehensive metadata is 

essential, including information about the instruments used to 

collect the data, accurate location information, the time of 

collection, and the instrument maintenance record. The location 

should be specified in latitude and longitude based on the World 

Geodetic System (WGS) standard from 1984, revised in 2004, 

and include the height above the surface. Our experience 

indicates that frequent confusion exists concerning local time 

zones and seasonal time changes due to daylight saving time, 

which can result in time lost by scientists and engineers to 

determine the correct time for the training data. To avoid this 

confusion, the time when the data were collected should be 

reported consistently in internationally accepted Coordinated 

Universal Time (UTC).  

Our experience also indicates that dealing with arcane data 

formats wastes the time of the system engineers. Thus, we 

recommend that the data be organized and stored according to 

one of the established portable data formats for ASCII data; for 

example Met_Point, little_r formats, or self-describing binary 

formats such as GRIdded Binary or General Regularly-

distributed Information in Binary (GRIB) format, Common 

Data Format (CDF, http://cdf.gsfc.nasa.gov/), Network 

Common Data Format (NetCDF, 

http://www.unidata.ucar.edu/software/netcdf/), or Hierarchical 

Data Format (HDF, http://www.hdfgroup.org/). Exploiting 

these well-defined, documented, and widely used data formats 

significantly enhances datasets’ utility and simplifies their 

processing and quality control. 

Finally, as such applications move toward cloud computing 

frameworks, additional complexities arise. As we deploy our 

models on a larger variety of architectures, the issues of 

disparate data arriving at different times and requiring blending 

to provide real-time forecasts will become more complicated. 

Although these issues are challenging, the prospects for 

enhanced application are promising. As more wind and solar 

energy are brought into the energy grid, the need for accurate 

forecasts of the renewable energy variables grows. This 

demand for continually improving forecasts provides 

interesting research topics for atmospheric scientists and 

software engineers. Thus, solutions will continue to arise to 

meet the challenges. 
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