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Abstract

This paper concerns learning tasks that re-
quire the prediction of a continuous value
rather than a discrete class. A general
method is presented that allows predictions
to use both instance-based and model-based
learning. Results with three approaches to
constructing models and with eight datasets
demonstrate improvements due to the com-
posite method.
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1 INTRODUCTION

Among the many approaches to supervised learning,
instance-based and model-based methods belong to
two extremes. Instance-based approaches represent
what has been learned as a collection of prototypes
couched in the same language as that used to describe
training data. A prototype might be just one of the
training cases, or some hypothetical case computed
from oune or more of them (such as the weighted
average of a set of cases). An unseen case is classified
by finding similar prototypes and using their classes
in some way to form a prediction. Different instance-
based systems vary in how they assess the similarity
of two cases, specify the number of similar prototypes
to be used, and combine predictions from individual
prototypes. Stanfill and Waltz [1986] and Aha, Kibler,
and Albert [1991] provide examples of these mecha-
nisms and discussions of the merits of instance-based
learning.

Model-based approaches, on the other hand, represent
what has been learned in some theory language that
is richer than the language used to describe data.
Learning methods of this kind construct explicit gen-
eralizations of the training cases, rather than allowing
generalization to flow implicitly from the similarity

measure above. When a task domain has many irrel-
evant attributes, an explicit generalization expressed
by some model can be more intelligible than a set of
prototype cases and can also lead to better predictions.
Breiman, Friedman, Olshen and Stone [1984] and
Quinlan [1993a] present arguments in favor of learning
by constructing symbolic models.

This paper considers tasks of learning to predict
numerical values, a form of supervised learning in
which the classes are continuous rather than discrete.
A general method for combining instance-based and
model-based learning for such tasks is proposed. This
method, which can be used with any form of model,
is illustrated here using three of them — familiar linear
regression [Press, Flannery, Teukolsky, and Vetterling,
1988], model trees [Quinlan, 1992], and neural networks
[Hinton, 1986; McClelland and Rumelhart, 1988;
Hinton, 1992]. Over a representative collection of
datasets, the composite methods often produce better
predictions than either instance-based or model-based
approaches.

2 USING MODELS AND
INSTANCES

We assume some set of training cases 7. FEach case
consists of an attribute-value vector and a known class
value, here a number rather than a category. Using
T, some instance-based method assembles a set of
prototypes P and a model-based method constructs
a predictive model M. For a case or prototype C', we
will write V(C') to represent the class value of C' and
M(C) to represent the value predicted for C' by M.
(Note that, since prototypes are expressed in the same
language as cases, we can apply the model to both
cases and prototypes.)

Suppose now that we are to predict the class value
for some unseen case U. Using the model-based
approach we would get M (U). If the instance-based
approach were employed, a subset {P;, Ps,..., P, } of
the prototype points would first be identified as being



similar to U; the values {V(Py),V(P2),....V(Px)}
would then be combined in some way to give the
predicted value of U.

Consider one of the selected prototypes, P; say. The
rationale for making use of V(F;) in computing a
predicted value for U is that P; is similar to U, so
V(P;) should be similar to V(U). Prototype P; will
not generally be identical to U, but the nature of the
difference between them is not taken into account, even
if some measure of their similarity is used to determine
the weight of V(P;) in the combined prediction.

The model M, however, provides a way of taking
explicit account of the difference hetween the unseen
case and the prototype. Specifically, the model M
predicts the difference between the class values of P;
and U to be

M(P;) - M(U).
If the model is correct, the adjusted value
V(P)— (M(P;) - M(U))

should be a better predictor of the class value of
U than the quantity V(P;) alone. The composite
method differs from the instance-based method only
in carrying out this adjustment to the class values of
selected prototypes before they are combined to give
a prediction.

3 EMPIRICAL EVALUATION

This straightforward idea for combining instance-
based and model-based learning has been evaluated
using a simple instance-based paradigm, three differ-
ent forms of model-based learning, and eight learning
tasks. Short descriptions of each follow.

3.1 INSTANCE-BASED LEARNING

The instance-based approach used here is based on 1BL.
[Kibler, Aha, and Albert, 1988]. Prototypes consist of
all training cases without any modification. The dis-
similarity of two cases is computed by summing their
normalized differences over each attribute, defined as

o for discrete attributes: 0 if the attribute values
are the same, 1 otherwise; and

o for continuous-valued attributes: the ratio of the
absolute difference between the values divided by
value range of the attribute.

To classify an unknown case, the three most similar
prototypes are found and their associated class values
averaged. (When the instance-based approach is
combined with a model-based approach, the class
values are adjusted before their mean is computed.)

3.2 REGRESSION

The first of the methods for constructing predictive
models is the ubiquitous multivariate linear regression
[Press et al, 1988] that is often used as the starting
point for statistical data analysis. Let C; denote the
value of the ith attribute for case C, or the rank of
this value if the ith attribute is discrete (nominal).
We assume a model of the form

M(Cy=ao+ Y a; xC;

and find the coefficients {a;} to minimize the sum
of the squares of the differences between the actual
and predicted values for the training cases. These
coefficients can be found by inverting a matrix, with
some minor complications when the matrix is singular.

3.3 MODEL TREES

The second is a system called M5 that uses recursive
partitioning to build a piecewise linear model in the
form of a model tree [Quinlan, 1992]. The idea is
to split the training cases in much the same way as
when growing a decision tree, using a criterion of
minimizing intra-subset variation of class values rather
than maximizing information gain. Whereas a leaf
of a decision tree contains just a class name, the
corresponding leaf of a model tree is a linear model
relating the class values of the training cases to their
attribute values. Regression trees [Breiman et al, 1984)
are based on a similar divide-and-conquer strategy, but
have values rather than linear models at the leaves.

Consider a set T' of training cases for which a model
tree is to be constructed. Unless T contains few
cases or their values vary only slightly, it is split
according to the outcomes of a test. Every potential
test is evaluated by determining the subset of cases
associated with each outcome; let T; denote the subset
of cases that have the ith outcome of the potential test.
If we treat the standard deviation sd(T;) of the target
values of cases in T; as a measure of error, the expected
reduction in error as a result of this test can be written
Aerror = sd(T) — Z @ x sd(Ty).
—~ |T|

After examining all possible tests, M5 chooses one
that maximizes this expected error reduction. (For
comparison, CART [Breiman et al, 1984] chooses a
test to give the greatest expected reduction in either
variance or absolute deviation.)

The major innovations of M5 come into play after the
initial tree has been grown:

Error estimates: M5 often needs to estimate the
accuracy of a model on unseen cases. First, the
restdual of a model on a case is just the absolute
difference between the actual target value of the case



and the value predicted by the model. To estimate
the error of a model, M5 first determines the average
residual of the model on the training cases used to
construct it. This will generally underestimate the
error on unseen cases, so M5 multiplies the value by
(n+v)/(n—v), where n is the number of training cases
and v is the number of parameters in the model. The
effect is to increase the estimated error of models with
many parameters constructed from small numbers of
cases.

Linear models: A linear model is constructed for the
cases at each node of the model tree using standard
regression techniques. This model, however, is re-
stricted to the attributes that are referenced by some
test or linear model in the subtree at this node. As
M5 will compare the accuracy of a linear model with
the accuracy of a subtree, this ensures a level playing
field in which the two types of models use the same
information.

Simplification of linear models: FEach linear model
is then simplified by eliminating parameters so as
to minimize its estimated error. Even though the
elimination of parameters generally causes the average
residual to increase, it also reduces the multiplicative
factor above, so the estimated error can decrease.
M5 uses a greedy search to remove variables that
contribute little to the model; in some cases, M5
removes all variables, leaving only a constant.

Pruning: Each internal node of the tree now has both
a simplified model and a model subtree. The one of
these with lower estimate error is chosen; if this is the
linear model, the subtree at this node has been pruned
to a leaf.

Smoothing: Pregibon [private communications, 1989,
1992] observes that the prediction accuracy of tree-
based models can be improved by a smoothing process.
When the value of a case is predicted by a model tree,
the value returned by the model at the appropriate
leaf is adjusted to take account of models at nodes
along the path from the root to that leaf. The form of
smoothing used by M5 differs from that developed by
Pregibon, but the motivation is similar. The predicted
value is backed up from the leaf to the root as follows:

e The predicted value at the leaf is unchanged.

¢ If the case follows branch S; of subtree S, let n;
be the number of training cases at §;, PV(S;) the
predicted value at S;, and M(S) the value given
by the model at S. The predicted value backed
up to S is

n; x PV(S;)+k x ]\/[(S)
n; +k

PV(S) =

where k is a smoothing constant’.

IThe default value of 15 was used in all experiments.

Smoothing has most effect when leaf models are
constructed from few training cases and do not agree
with models higher in the tree.

3.4 NEURAL NETS

The third form of model is the neural network. Geof-
frey Hinton very kindly agreed to develop the network
models used in these experiments, as described below:

“The neural networks all contained one layer of hidden
units that used the logistic function to convert their
combined input into their output. The single output
unit of each network was linear and the error function
was the sum of the squared differences between the
actual and desired outputs. All input and output val-
ues for each training set were normalized to have zero
mean and unit variance and the same normalization
(based on the training set) was used for the test set.

“To reduce overfitting, the number of hidden units was
kept small and, in addition, a penalty was imposed
on the squared values of the weights. So the overall
cost function that was minimized during training was
the sum of the error function and a penalty coefficient
times the sum of the squared weights.

“The precise number of hidden units and the coeffi-
cient of the penalty term were different for each task.
To decide the values of these two parameters, one third
of one of the training sets was held-out as a validation
set. The remaining two thirds of the training set was
then used to train many different networks containing
different numbers of hidden units and different penalty
coefficients. For each task, the largest number of
hidden units explored was the number that gave about
2 training cases per connection, and the smallest
number explored was the one that gave about 5
training cases per connection. Within this range, up
to 6 different numbers of hidden units were tried. The
penalty coefficients explored were 0, 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.16, and 0.2. For
each setting of these two parameters, the network was
trained 3 times starting with different random weights
uniformly distributed in the range -0.3 to +0.3. The
parameters that gave the smallest average error on
the validation set were selected. Ideally, this whole
procedure should have been repeated for each of the
10 training sets used for each task, but to save time,
the parameters were determined from the first training
set of each task.

“The training was performed using the default conju-
gate gradient method of the Xerion neural network
simulator developed at the University of Toronto.
The user does not need to specify any parameters
for this method. Training is terminated when the
error decreases by less than 107" [Hinton, private
communication, 1993]



3.5 DATASETS

The four “pure” methods and three composites were
tested on eight datasets drawn from seven domains
that were selected to provide a range of learning
challenges:

o pw-linear: (200 cases)
This is a piecewise linear function defined by
Breiman et al [1984]. There are 10 attributes, X
having equiprobable values -1 and 1, and X, to
X0 having equiprobable values -1, 0, and 1. The
generating function is

3Xo 42X+ Xy +34+27

e if X, =1
‘(X)—{ 3X; +2Xs + X7 - 3+ 7

if X;=-1

where Z is a random Gaussian noise term with
variance 2. Attributes Xz, Xy and X7y have no
bearing on the class value.

o housing: (506 cases)
This dataset, obtained from the Statistics library
maintained by Carnegie Mellon University, con-
cerns housing values in suburbs of Boston. There
are 12 continuous attributes and omne binary-
valued attribute.

e cpu: (209 cases)

Ein-Dor and Feldmesser [1987] published this
dataset that relates the measured performance
of CPUs to six continuous-valued and one multi-
valued discrete attribute (the vendor). Although
the paper also develops a new set of derived
features, the attributes used in these experiments
are the original parameters of the cpu such as
minimum and maximum memory size.

o auto-price: (159 cases)
The class value for this dataset is the 1985 list
price of common automobiles. There are 16
continuous attributes covering quantities such as
the automobile’s size, weight and engine capacity.

o auto-mpg: (398 cases)
This is another dataset from the CMU Statistics
library. The data concern city-cycle fuel consump-
tion in miles per gallon, to be predicted in terms
of 3 multi-valued discrete and 5 continuous at-
tributes. (The dataset was used as the testbed for
graphical analysis packages at the 1983 American
Statistical Association Exposition.)

e servo: (167 cases)
This interesting collection of data, provided by
Karl Ulrich, refers to an extremely non-linear
phenomenon — predicting the rise time of a ser-
vomechanism in terms of two (continuous) gain
settings and two (discrete) choices of mechanical
linkages.

o lhrh: (526 cases)
This final domain concerns a very difficult task
predicting the biomedical activity of LHRH

peptides that are chains of exactly 10 amino acids.
The information was obtained from Arris Phar-
maceutical Corporation of San Francisco, who
used an extensive table compiled by Dr Marvin
Karten of the U.S. National Institutes of Health.
This domain supplies two datasets:

— Ilhrh-att: Each peptide is described in terms
of 48 binary and 80 continuous attributes
that measure properties of the individual
amino acids and properties of the peptide as
a whole. This dataset provides a very high-
dimensional test of all the methods.

— Ilhrh-def: Each peptide is described only by
the names of its constituent amino acids.
There are thus 10 discrete-valued attributes,
all of which have very many values about
400 amino acids occur at one or more places
in the 526 peptides. Recall that linear models
and neural networks use the rank of discrete
attribute values. Since the amino acid names
are ordered randomly, this dataset provides
little joy to model-based learning systems!

Results have previously been reported for at least four
of these domains. Breiman et al [1984] give perfor-
mance figures for CART on pw-linear and housing; Ein-
Dor and Feldmesser [1987] and Kibler et al [1988]
describe experiments with cpu; and the latter paper
also discusses auto-price.

3.6 EXPERIMENTS AND RESULTS

Each dataset was analysed by each method using the
same 10-way cross-validation. The dataset was divided
into ten blocks of near-equal size and distribution of
class values. For every block in turn, each method
was trained on the remaining blocks and tested on the
hold-out block. Results, averaged over all test blocks,
thus reflect predictive performance on unseen cases.

The first measure of performance is average error mag-
nitude (or residual) on unseen cases, summarized in
Table 1. Each column is associated with one dataset,
each row with one method. The first row refers to the
simple default method that always predicts the average
value of the training set; this serves as a reference point
for the underlying difficulty of the prediction tasks.
The next rows show the results for instances alone and
then for pairs of pure models and composite methods.

The same information is presented graphically in
Figure 1, where the average error magnitudes have
been normalized by dividing by the corresponding
magnitude given by the default procedure.

Because all methods were evaluated with the same
cross-validation partitions, each trial using exactly the
same training and test cases, the sensitive one-tailed
paired test of significance can be used. For every
dataset, we are interested in seeing how each composite



Table 1: Average error on unseen cases

pw-linear [ housing cpu |auto-price|auto-mpg| servo Ihrh-att | lThrh-def
default procedure 3.77 6.65 96.0 4578 6.53 1.15 2.28 2.28
instances alone 1.73 2.90 34.0 1689 2.72 0.52 0.91 0.85
regression 2.13 3.29 33.5 1848 2.61 0.86 1.10 2.01
regression + instances 1.56 2.45 30.0 1430 2.37 0.48 0.97 1.22
model trees 1.10 2.45 28.9 1562 2.11 0.45 0.96 1.29
model trees 4 instances 1.21 2.32 28.1 1386 2.18 0.30 0.88 0.97
neural nets 1.14 2.29 28.7 1833 2.02 0.30 1.07 1.16
neural nets + instances 1.29 2.23 29.0 1677 2.06 0.29 0.99 1.04
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Figure 1: Average error on unseen cases

method compares to the two pure methods from which
it is constituted, e.g. how model trees + instances
compares with wnstances alone and with model trees
alone. This gives six comparisons for each dataset, or
48 comparisons in all.

At the 5% significance level, the composite methods
are significantly better than the constituent pure
methods in 31 comparisons, about the same in twelve
comparisons, and significantly worse in only five com-
parisons. The five cases in which composite models
are significantly worse are:

e In the pw-linear task, model trees are superior
to model trees + instances and neural networks
are superior to neural nets + instances. Both the
model trees and neural nets find close approxi-
mations to the true underlying function (minus

the noise term). The use of prototypes with
a near-perfect model causes a slight increase in
error, since the noise is absent from the model
but present in the prototype cases.

e The other three cases all concern the lhrh-def
task, instances alone being superior to all three
composite methods.  For this dataset, where
attribute values are just the names of amino acids,
all models are (understandably) very weak and
their use to adjust prototype estimators intro-
duces substantial errors.

On the positive side, the composite methods often
score big wins. The improved accuracy of the regres-
ston + instances composite over simple regression is
uniformly (and dramatically) apparent on all datasets.
The servo dataset also highlights the effectiveness of



Table 2: Relative error (%) on unseen cases

pw-linear [ housing cpu  |auto-price|auto-mpg| servo lhrh-att | lhrh-def
instances alone 21.7 22.7 20.0 26.0 23.0 25.6 20.7 17.5
regression 33.5 29.4 19.7 20.1 19.4 49.2 31.5 84.5
regression + instances 18.3 16.8 11.8 14.8 17.3 19.7 26.9 37.8
model trees 9.5 18.6 17.2 16.2 14.7 28.7 23.6 39.6
model trees 4+ instances 11.7 16.5 12.0 12.8 16.0 16.5 21.0 25.4
neural nets 10.1 13.6 11.0 28.5 12.5 11.4 28.3 324
neural nets + instances 12.6 12.9 11.1 25.7 134 10.6 25.4 27.5
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Figure 2: Relative error on unseen cases

the composite methods: average error is nearly halved
in the case of regression, is reduced by 33% for model
trees, and is reduced slightly even for networks (where
the pure method is already doing extremely well).
In the few cases for which the composite models are
inferior to one or other of their constituent models, the

difference in accuracy is usually small.

The second performance measure investigated is rel-
ative error [Breiman et al, 1984], defined as the
variance of the residuals on unseen cases, divided by
the variance of the class values themselves. (Despite its
name, this statistic thus measures squared error.) As
with the normalized metric used in Figure 1, the value
is 100% for any method that always predicts the mean
value. Relative errors are presented in Table 2 and
repeated in graph form in Figure 2. The results show
a similar pattern, although the error-squared measure
accentuates differences in some domaiuns.

Table 3: Average relative error (%) across tasks

instances alone 22.2
regression 35.9
regression + instances 204
model trees 21.0
model trees + instances 16.5
neural nets 18.5
neural nets + instances 17.4

As a rough indicator of overall performance, the
relative errors for each method were averaged over all
eight tasks (Table 3).

Finally, there might be some concern that the use of an
unsophisticated instance-based paradigm could have
distorted these rather positive results. However, per-



Table 4: Comparison of relative error

model trees | CART  IBL
+ instances
pw-linear 12% 17%
housing 16% 22%
cpu 11% 23%
auto-price 11% 19%

formance of the various methods compares favorably
with results from other systems. For example, Table
4 shows relative error of the model trees + instances
composite compared with published results from CART
on the first two domains and with computed results
from IBL on the next two. The composite fares well on
this comparison, and might achieve even better accu-
racy if it were changed to incorporate more advanced
instance-based methods such as those described by

Aha et al [1991].

4 CONCLUSION

This paper has described a simple method for combin-
ing instance-based and model-based learning for tasks
that involve the prediction of values. The advantages
of the approach have been illustrated using three
disparate model-learning methods and a variety of
domains. The approach is quite general and should
be applicable to any instance-based method and any
form of learned model.

The method achieves its power through using the same
training data to provide local information (in the form
of prototypes) and a global model. Both kinds of
knowledge are brought to bear when the class value
of an unseen case is predicted. The method seems to
provide robust improvement, with two exceptions:

e If the model is extremely weak, as was the case
with the lhrh-def dataset, it is advisable to use
the instances alone.

e If the model is near-perfect but there is un-
avoidable noise, as with model trees for the pw-
hnear domain, the use of local information might
introduce additional error.

I have also experimented with a similar composite
approach in which the model attempts to predict
differences directly [Quinlan, 1993b]. For domains in
which such a difference model can be found, including
servo and lhrh-def among the present datasets, this
approach produces predictors that are better still.
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