
Combining Instance-Based and Model-Based LearningJ. R. QuinlanBasser Department of Computer ScienceUniversity of SydneySydney Australia 2006quinlan@cs.su.oz.au
In Proceedings ML'93 (Utgo�, Ed), San Mateo, CA: Morgan Kaufmann, 1993

AbstractThis paper concerns learning tasks that re-quire the prediction of a continuous valuerather than a discrete class. A generalmethod is presented that allows predictionsto use both instance-based and model-basedlearning. Results with three approaches toconstructing models and with eight datasetsdemonstrate improvements due to the com-posite method.Keywords: learning with continuousclasses, instance-based learning, model-basedlearning, empirical evaluation.1 INTRODUCTIONAmong the many approaches to supervised learning,instance-based and model-based methods belong totwo extremes. Instance-based approaches representwhat has been learned as a collection of prototypescouched in the same language as that used to describetraining data. A prototype might be just one of thetraining cases, or some hypothetical case computedfrom one or more of them (such as the weightedaverage of a set of cases). An unseen case is classi�edby �nding similar prototypes and using their classesin some way to form a prediction. Di�erent instance-based systems vary in how they assess the similarityof two cases, specify the number of similar prototypesto be used, and combine predictions from individualprototypes. Stan�ll and Waltz [1986] and Aha, Kibler,and Albert [1991] provide examples of these mecha-nisms and discussions of the merits of instance-basedlearning.Model-based approaches, on the other hand, representwhat has been learned in some theory language thatis richer than the language used to describe data.Learning methods of this kind construct explicit gen-eralizations of the training cases, rather than allowinggeneralization to ow implicitly from the similarity

measure above. When a task domain has many irrel-evant attributes, an explicit generalization expressedby some model can be more intelligible than a set ofprototype cases and can also lead to better predictions.Breiman, Friedman, Olshen and Stone [1984] andQuinlan [1993a] present arguments in favor of learningby constructing symbolic models.This paper considers tasks of learning to predictnumerical values, a form of supervised learning inwhich the classes are continuous rather than discrete.A general method for combining instance-based andmodel-based learning for such tasks is proposed. Thismethod, which can be used with any form of model,is illustrated here using three of them { familiar linearregression [Press, Flannery, Teukolsky, and Vetterling,1988],model trees [Quinlan, 1992], and neural networks[Hinton, 1986; McClelland and Rumelhart, 1988;Hinton, 1992]. Over a representative collection ofdatasets, the composite methods often produce betterpredictions than either instance-based or model-basedapproaches.2 USING MODELS ANDINSTANCESWe assume some set of training cases T . Each caseconsists of an attribute-value vector and a known classvalue, here a number rather than a category. UsingT , some instance-based method assembles a set ofprototypes P and a model-based method constructsa predictive model M . For a case or prototype C, wewill write V (C) to represent the class value of C andM(C) to represent the value predicted for C by M .(Note that, since prototypes are expressed in the samelanguage as cases, we can apply the model to bothcases and prototypes.)Suppose now that we are to predict the class valuefor some unseen case U . Using the model-basedapproach we would get M(U). If the instance-basedapproach were employed, a subset fP1; P2; :::; Pkg ofthe prototype points would �rst be identi�ed as being



similar to U ; the values fV (P1); V (P2); :::; V (Pk)gwould then be combined in some way to give thepredicted value of U .Consider one of the selected prototypes, Pi say. Therationale for making use of V (Pi) in computing apredicted value for U is that Pi is similar to U , soV (Pi) should be similar to V (U). Prototype Pi willnot generally be identical to U , but the nature of thedi�erence between them is not taken into account, evenif some measure of their similarity is used to determinethe weight of V (Pi) in the combined prediction.The model M , however, provides a way of takingexplicit account of the di�erence between the unseencase and the prototype. Speci�cally, the model Mpredicts the di�erence between the class values of Piand U to be M(Pi)�M(U):If the model is correct, the adjusted valueV (Pi)� (M(Pi)�M(U))should be a better predictor of the class value ofU than the quantity V (Pi) alone. The compositemethod di�ers from the instance-based method onlyin carrying out this adjustment to the class values ofselected prototypes before they are combined to givea prediction.3 EMPIRICAL EVALUATIONThis straightforward idea for combining instance-based and model-based learning has been evaluatedusing a simple instance-based paradigm, three di�er-ent forms of model-based learning, and eight learningtasks. Short descriptions of each follow.3.1 INSTANCE-BASED LEARNINGThe instance-based approach used here is based on ibl[Kibler, Aha, and Albert, 1988]. Prototypes consist ofall training cases without any modi�cation. The dis-similarity of two cases is computed by summing theirnormalized di�erences over each attribute, de�ned as� for discrete attributes: 0 if the attribute valuesare the same, 1 otherwise; and� for continuous-valued attributes: the ratio of theabsolute di�erence between the values divided byvalue range of the attribute.To classify an unknown case, the three most similarprototypes are found and their associated class valuesaveraged. (When the instance-based approach iscombined with a model-based approach, the classvalues are adjusted before their mean is computed.)

3.2 REGRESSIONThe �rst of the methods for constructing predictivemodels is the ubiquitous multivariate linear regression[Press et al, 1988] that is often used as the startingpoint for statistical data analysis. Let Ci denote thevalue of the ith attribute for case C, or the rank ofthis value if the ith attribute is discrete (nominal).We assume a model of the formM(C) = �0 +Xi �i � Ciand �nd the coe�cients f�ig to minimize the sumof the squares of the di�erences between the actualand predicted values for the training cases. Thesecoe�cients can be found by inverting a matrix, withsome minor complications when the matrix is singular.3.3 MODEL TREESThe second is a system called m5 that uses recursivepartitioning to build a piecewise linear model in theform of a model tree [Quinlan, 1992]. The idea isto split the training cases in much the same way aswhen growing a decision tree, using a criterion ofminimizing intra-subset variation of class values ratherthan maximizing information gain. Whereas a leafof a decision tree contains just a class name, thecorresponding leaf of a model tree is a linear modelrelating the class values of the training cases to theirattribute values. Regression trees [Breiman et al, 1984]are based on a similar divide-and-conquer strategy, buthave values rather than linear models at the leaves.Consider a set T of training cases for which a modeltree is to be constructed. Unless T contains fewcases or their values vary only slightly, it is splitaccording to the outcomes of a test. Every potentialtest is evaluated by determining the subset of casesassociated with each outcome; let Ti denote the subsetof cases that have the ith outcome of the potential test.If we treat the standard deviation sd(Ti) of the targetvalues of cases in Ti as a measure of error, the expectedreduction in error as a result of this test can be written�error = sd(T )�Xi jTijjT j � sd(Ti):After examining all possible tests, m5 chooses onethat maximizes this expected error reduction. (Forcomparison, cart [Breiman et al , 1984] chooses atest to give the greatest expected reduction in eithervariance or absolute deviation.)The major innovations of m5 come into play after theinitial tree has been grown:Error estimates : m5 often needs to estimate theaccuracy of a model on unseen cases. First, theresidual of a model on a case is just the absolutedi�erence between the actual target value of the case



and the value predicted by the model. To estimatethe error of a model, m5 �rst determines the averageresidual of the model on the training cases used toconstruct it. This will generally underestimate theerror on unseen cases, so m5 multiplies the value by(n+�)=(n��), where n is the number of training casesand � is the number of parameters in the model. Thee�ect is to increase the estimated error of models withmany parameters constructed from small numbers ofcases.Linear models : A linear model is constructed for thecases at each node of the model tree using standardregression techniques. This model, however, is re-stricted to the attributes that are referenced by sometest or linear model in the subtree at this node. Asm5 will compare the accuracy of a linear model withthe accuracy of a subtree, this ensures a level playing�eld in which the two types of models use the sameinformation.Simpli�cation of linear models : Each linear modelis then simpli�ed by eliminating parameters so asto minimize its estimated error. Even though theelimination of parameters generally causes the averageresidual to increase, it also reduces the multiplicativefactor above, so the estimated error can decrease.m5 uses a greedy search to remove variables thatcontribute little to the model; in some cases, m5removes all variables, leaving only a constant.Pruning : Each internal node of the tree now has botha simpli�ed model and a model subtree. The one ofthese with lower estimate error is chosen; if this is thelinear model, the subtree at this node has been prunedto a leaf.Smoothing : Pregibon [private communications, 1989,1992] observes that the prediction accuracy of tree-basedmodels can be improved by a smoothing process.When the value of a case is predicted by a model tree,the value returned by the model at the appropriateleaf is adjusted to take account of models at nodesalong the path from the root to that leaf. The form ofsmoothing used by m5 di�ers from that developed byPregibon, but the motivation is similar. The predictedvalue is backed up from the leaf to the root as follows:� The predicted value at the leaf is unchanged.� If the case follows branch Si of subtree S, let nibe the number of training cases at Si, PV (Si) thepredicted value at Si, and M(S) the value givenby the model at S. The predicted value backedup to S isPV (S) = ni � PV (Si) + k �M(S)ni + kwhere k is a smoothing constant1.1The default value of 15 was used in all experiments.

Smoothing has most e�ect when leaf models areconstructed from few training cases and do not agreewith models higher in the tree.3.4 NEURAL NETSThe third form of model is the neural network. Geof-frey Hinton very kindly agreed to develop the networkmodels used in these experiments, as described below:\The neural networks all contained one layer of hiddenunits that used the logistic function to convert theircombined input into their output. The single outputunit of each network was linear and the error functionwas the sum of the squared di�erences between theactual and desired outputs. All input and output val-ues for each training set were normalized to have zeromean and unit variance and the same normalization(based on the training set) was used for the test set.\To reduce over�tting, the number of hidden units waskept small and, in addition, a penalty was imposedon the squared values of the weights. So the overallcost function that was minimized during training wasthe sum of the error function and a penalty coe�cienttimes the sum of the squared weights.\The precise number of hidden units and the coe�-cient of the penalty term were di�erent for each task.To decide the values of these two parameters, one thirdof one of the training sets was held-out as a validationset. The remaining two thirds of the training set wasthen used to train many di�erent networks containingdi�erent numbers of hidden units and di�erent penaltycoe�cients. For each task, the largest number ofhidden units explored was the number that gave about2 training cases per connection, and the smallestnumber explored was the one that gave about 5training cases per connection. Within this range, upto 6 di�erent numbers of hidden units were tried. Thepenalty coe�cients explored were 0, 0.01, 0.02, 0.03,0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.16, and 0.2. Foreach setting of these two parameters, the network wastrained 3 times starting with di�erent random weightsuniformly distributed in the range -0.3 to +0.3. Theparameters that gave the smallest average error onthe validation set were selected. Ideally, this wholeprocedure should have been repeated for each of the10 training sets used for each task, but to save time,the parameters were determined from the �rst trainingset of each task.\The training was performed using the default conju-gate gradient method of the Xerion neural networksimulator developed at the University of Toronto.The user does not need to specify any parametersfor this method. Training is terminated when theerror decreases by less than 10�6." [Hinton, privatecommunication, 1993]



3.5 DATASETSThe four \pure" methods and three composites weretested on eight datasets drawn from seven domainsthat were selected to provide a range of learningchallenges:� pw-linear: (200 cases)This is a piecewise linear function de�ned byBreiman et al [1984]. There are 10 attributes, X1having equiprobable values -1 and 1, and X2 toX10 having equiprobable values -1, 0, and 1. Thegenerating function isV (X) = � 3X2 + 2X3 +X4 + 3 + Z if X1=13X5 + 2X6 +X7 � 3 + Z if X1=-1where Z is a random Gaussian noise term withvariance 2. Attributes X8, X9 and X10 have nobearing on the class value.� housing: (506 cases)This dataset, obtained from the Statistics librarymaintained by Carnegie Mellon University, con-cerns housing values in suburbs of Boston. Thereare 12 continuous attributes and one binary-valued attribute.� cpu: (209 cases)Ein-Dor and Feldmesser [1987] published thisdataset that relates the measured performanceof CPUs to six continuous-valued and one multi-valued discrete attribute (the vendor). Althoughthe paper also develops a new set of derivedfeatures, the attributes used in these experimentsare the original parameters of the cpu such asminimum and maximum memory size.� auto-price: (159 cases)The class value for this dataset is the 1985 listprice of common automobiles. There are 16continuous attributes covering quantities such asthe automobile's size, weight and engine capacity.� auto-mpg: (398 cases)This is another dataset from the CMU Statisticslibrary. The data concern city-cycle fuel consump-tion in miles per gallon, to be predicted in termsof 3 multi-valued discrete and 5 continuous at-tributes. (The dataset was used as the testbed forgraphical analysis packages at the 1983 AmericanStatistical Association Exposition.)� servo: (167 cases)This interesting collection of data, provided byKarl Ulrich, refers to an extremely non-linearphenomenon { predicting the rise time of a ser-vomechanism in terms of two (continuous) gainsettings and two (discrete) choices of mechanicallinkages.� lhrh: (526 cases)This �nal domain concerns a very di�cult task{ predicting the biomedical activity of LHRH

peptides that are chains of exactly 10 amino acids.The information was obtained from Arris Phar-maceutical Corporation of San Francisco, whoused an extensive table compiled by Dr MarvinKarten of the U.S. National Institutes of Health.This domain supplies two datasets:{ lhrh-att: Each peptide is described in termsof 48 binary and 80 continuous attributesthat measure properties of the individualamino acids and properties of the peptide asa whole. This dataset provides a very high-dimensional test of all the methods.{ lhrh-def: Each peptide is described only bythe names of its constituent amino acids.There are thus 10 discrete-valued attributes,all of which have very many values { about400 amino acids occur at one or more placesin the 526 peptides. Recall that linear modelsand neural networks use the rank of discreteattribute values. Since the amino acid namesare ordered randomly, this dataset provideslittle joy to model-based learning systems!Results have previously been reported for at least fourof these domains. Breiman et al [1984] give perfor-mance �gures for cart on pw-linear and housing; Ein-Dor and Feldmesser [1987] and Kibler et al [1988]describe experiments with cpu; and the latter paperalso discusses auto-price.3.6 EXPERIMENTS AND RESULTSEach dataset was analysed by each method using thesame 10-way cross-validation. The dataset was dividedinto ten blocks of near-equal size and distribution ofclass values. For every block in turn, each methodwas trained on the remaining blocks and tested on thehold-out block. Results, averaged over all test blocks,thus reect predictive performance on unseen cases.The �rst measure of performance is average error mag-nitude (or residual) on unseen cases, summarized inTable 1. Each column is associated with one dataset,each row with one method. The �rst row refers to thesimple default method that always predicts the averagevalue of the training set; this serves as a reference pointfor the underlying di�culty of the prediction tasks.The next rows show the results for instances alone andthen for pairs of pure models and composite methods.The same information is presented graphically inFigure 1, where the average error magnitudes havebeen normalized by dividing by the correspondingmagnitude given by the default procedure.Because all methods were evaluated with the samecross-validation partitions, each trial using exactly thesame training and test cases, the sensitive one-tailedpaired test of signi�cance can be used. For everydataset, we are interested in seeing how each composite



Table 1: Average error on unseen casespw-linear housing cpu auto-price auto-mpg servo lhrh-att lhrh-defdefault procedure 3.77 6.65 96.0 4578 6.53 1.15 2.28 2.28instances alone 1.73 2.90 34.0 1689 2.72 0.52 0.91 0.85regression 2.13 3.29 35.5 1848 2.61 0.86 1.10 2.01regression + instances 1.56 2.45 30.0 1430 2.37 0.48 0.97 1.22model trees 1.10 2.45 28.9 1562 2.11 0.45 0.96 1.29model trees + instances 1.21 2.32 28.1 1386 2.18 0.30 0.88 0.97neural nets 1.14 2.29 28.7 1833 2.02 0.30 1.07 1.16neural nets + instances 1.29 2.23 29.0 1677 2.06 0.29 0.99 1.04instances alone regressionregression + instances ^ model trees^ model trees + instances _ neural nets_ neural nets + instances
^̂̂̂̂^̂̂̂̂̂ _____________pw-linear ^̂̂̂̂̂̂^̂̂̂̂̂̂ _____________housing ^̂̂̂̂̂^̂̂̂̂̂ ____________cpu ^̂̂̂̂̂^̂̂̂̂̂ _______________auto-price ^̂̂̂̂̂^̂̂̂̂̂ ____________auto-mpg ^̂̂̂̂̂̂̂^̂̂̂̂ __________servo ^̂̂̂̂̂̂̂^̂̂̂̂̂̂ _________________lhrh-att ^̂̂̂̂̂̂̂̂̂̂^̂̂̂̂̂̂̂ ___________________lhrh-defFigure 1: Average error on unseen casesmethod compares to the two pure methods from whichit is constituted, e.g. how model trees + instancescompares with instances alone and with model treesalone. This gives six comparisons for each dataset, or48 comparisons in all.At the 5% signi�cance level, the composite methodsare signi�cantly better than the constituent puremethods in 31 comparisons, about the same in twelvecomparisons, and signi�cantly worse in only �ve com-parisons. The �ve cases in which composite modelsare signi�cantly worse are:� In the pw-linear task, model trees are superiorto model trees + instances and neural networksare superior to neural nets + instances. Both themodel trees and neural nets �nd close approxi-mations to the true underlying function (minus

the noise term). The use of prototypes witha near-perfect model causes a slight increase inerror, since the noise is absent from the modelbut present in the prototype cases.� The other three cases all concern the lhrh-deftask, instances alone being superior to all threecomposite methods. For this dataset, whereattribute values are just the names of amino acids,all models are (understandably) very weak andtheir use to adjust prototype estimators intro-duces substantial errors.On the positive side, the composite methods oftenscore big wins. The improved accuracy of the regres-sion + instances composite over simple regression isuniformly (and dramatically) apparent on all datasets.The servo dataset also highlights the e�ectiveness of



Table 2: Relative error (%) on unseen casespw-linear housing cpu auto-price auto-mpg servo lhrh-att lhrh-definstances alone 21.7 22.7 20.0 26.0 23.0 25.6 20.7 17.5regression 33.5 29.4 19.7 20.1 19.4 49.2 31.5 84.5regression + instances 18.3 16.8 11.8 14.8 17.3 19.7 26.9 37.8model trees 9.5 18.6 17.2 16.2 14.7 28.7 23.6 39.6model trees + instances 11.7 16.5 12.0 12.8 16.0 16.5 21.0 25.4neural nets 10.1 13.6 11.0 28.5 12.5 11.4 28.3 32.4neural nets + instances 12.6 12.9 11.1 25.7 13.4 10.6 25.4 27.5instances alone regressionregression + instances ^ model trees^ model trees + instances _ neural nets_ neural nets + instances
^̂^̂ ____pw-linear ^̂̂^̂̂ ____housing ^̂̂^̂ ____cpu ^̂̂^̂ __________auto-price ^̂̂^̂̂ ____auto-mpg ^̂̂̂̂^̂̂ ____servo ^̂̂̂^̂̂̂ __________lhrh-att ^̂̂̂̂̂̂̂^̂̂̂̂ ___________lhrh-defFigure 2: Relative error on unseen casesthe composite methods: average error is nearly halvedin the case of regression, is reduced by 33% for modeltrees, and is reduced slightly even for networks (wherethe pure method is already doing extremely well).In the few cases for which the composite models areinferior to one or other of their constituent models, thedi�erence in accuracy is usually small.The second performance measure investigated is rel-ative error [Breiman et al, 1984], de�ned as thevariance of the residuals on unseen cases, divided bythe variance of the class values themselves. (Despite itsname, this statistic thus measures squared error.) Aswith the normalized metric used in Figure 1, the valueis 100% for any method that always predicts the meanvalue. Relative errors are presented in Table 2 andrepeated in graph form in Figure 2. The results showa similar pattern, although the error-squared measureaccentuates di�erences in some domains.

Table 3: Average relative error (%) across tasksinstances alone 22.2regression 35.9regression + instances 20.4model trees 21.0model trees + instances 16.5neural nets 18.5neural nets + instances 17.4As a rough indicator of overall performance, therelative errors for each method were averaged over alleight tasks (Table 3).Finally, there might be some concern that the use of anunsophisticated instance-based paradigm could havedistorted these rather positive results. However, per-



Table 4: Comparison of relative errormodel trees cart ibl+ instancespw-linear 12% 17%housing 16% 22%cpu 11% 23%auto-price 11% 19%formance of the various methods compares favorablywith results from other systems. For example, Table4 shows relative error of the model trees + instancescomposite compared with published results from carton the �rst two domains and with computed resultsfrom ibl on the next two. The composite fares well onthis comparison, and might achieve even better accu-racy if it were changed to incorporate more advancedinstance-based methods such as those described byAha et al [1991].4 CONCLUSIONThis paper has described a simple method for combin-ing instance-based and model-based learning for tasksthat involve the prediction of values. The advantagesof the approach have been illustrated using threedisparate model-learning methods and a variety ofdomains. The approach is quite general and shouldbe applicable to any instance-based method and anyform of learned model.The method achieves its power through using the sametraining data to provide local information (in the formof prototypes) and a global model. Both kinds ofknowledge are brought to bear when the class valueof an unseen case is predicted. The method seems toprovide robust improvement, with two exceptions:� If the model is extremely weak, as was the casewith the lhrh-def dataset, it is advisable to usethe instances alone.� If the model is near-perfect but there is un-avoidable noise, as with model trees for the pw-linear domain, the use of local information mightintroduce additional error.I have also experimented with a similar compositeapproach in which the model attempts to predictdi�erences directly [Quinlan, 1993b]. For domains inwhich such a di�erence model can be found, includingservo and lhrh-def among the present datasets, thisapproach produces predictors that are better still.

AcknowledgementsThis research has been made possible by grants fromthe Australian Research Council and assisted by aresearch agreement with Digital Equipment Corpo-ration. I am extremely grateful to Geo� Hinton,who designed, trained, and evaluated the 80 neuralnets used in these experiments. Donald Michie madeseveral helpful suggestions, especially the idea of tryingcomposite regression models. The paper was improvedas a result of comments by Mike Cameron-Jones.Thanks to Dr Marvin Karten, National Institutes ofHealth, Bethesda MD, and to Arris PharmaceuticalCorporation, San Francisco, for access to the LHRHpeptide data, and to Karl Ulrich for the servomech-anism dataset. I also gratefully acknowledge usingdatasets from the UCI Data Repository and StatLibat CMU.ReferencesAha, D.W., Kibler, D., and Albert, M.K. (1991),Instance-based learning algorithms,Machine Learning6, 1, 37-66.Breiman, L., Friedman, J.H., Olshen, R.A., andStone, C.J. (1984), Classi�cation and regression trees,Belmont, California: Wadsworth.Ein-Dor, P. and Feldmesser, J. (1987), Attributes ofthe performance of central processing units: a relativeperformance prediction model, Communications of theACM 30, 4, 308-317.Hinton, G.E. (1986), Learning distributed represen-tations of concepts, Proceedings Eighth Annual Con-ference of the Cognitive Science Society, Amherst.Reprinted in R.G.M. Morris (Ed), Parallel DistributedProcessing: Implications for Psychology and Neurobi-ology, Oxford University Press.Hinton, G.E. (1992), How neural networks learn fromexperience, Scienti�c American 267, 3, (September1992), 144-151.Kibler, D., Aha, D.W., and Albert, M.K. (1988),Instance-based prediction of real-valued attributes,Technical Report 88-07, ICS, University of California,Irvine.McClelland, J.L., and Rumelhart, D.E. (1988), Explo-rations in Parallel Distributed Processing, Cambridge:MIT Press.Press, W.H., Flannery, B.P., Teukolsky, S.A., andVetterling, W.T. (1988), Numerical Recipes in C,Cambridge University Press.Quinlan, J.R. (1992), Learning with continuousclasses, Proceedings 5th Australian Joint Conferenceon Arti�cial Intelligence, Singapore: World Scienti�c,343-348.



Quinlan, J.R. (1993a), C4.5: Programs for MachineLearning, San Mateo, California: Morgan Kaufmann.Quinlan, J.R. (1993b), A case study in machine learn-ing, Proceedings 16th Australian Computer ScienceConference, Brisbane, 731-737.Stan�ll, C. and Waltz, D. (1986), Toward memory-based reasoning, Communications of the ACM 29, 12,1213-1228.


