
Inducing Model Trees for Continuous ClassesYong Wang and Ian H. WittenDepartment of Computer Science, University of Waikato, New Zealandemail fyongwang,ihwg@cs.waikato.ac.nzAbstract. Many problems encountered when applying machine learn-ing in practice involve predicting a \class" that takes on a continuousnumeric value, yet few machine learning schemes are able to do this.This paper describes a \rational reconstruction" of M5, a method devel-oped by Quinlan (1992) for inducing trees of regression models. In orderto accommodate data typically encountered in practice it is necessaryto deal e�ectively with enumerated attributes and with missing values,and techniques devised by Breiman et al. (1984) are adapted for thispurpose. The resulting system seems to outperform M5, based on thescanty published data that is available.1 IntroductionIn our experience of applying machine learning to agricultural situations (Garneret al. 1995), many problems encountered in practice involve predicting a \class"that takes on a continuous numeric value, rather than a discrete category intowhich an example falls. Classical decision-tree and decision-rule learning methodshave developed in an environment in which class values, and originally attributevalues too, are discrete. Over the last decade it has become commonplace to ex-tend induction techniques to deal with numerically-valued attributes by choosinga threshold at each node of the tree, or for each conjunct of a rule, and testing thevalue against that threshold. However, decision-tree and decision-rule learnersare not commonly extended to situations where the class value itself is numeric.There are, of course, several learning techniques that do predict numeric val-ues. These techniques include standard regression, neural nets, instance-basedlearning, regression trees, and prediction by pre-discretization. But all have se-rious weaknesses. Standard regression is not a very potent way of representingan induced function because it imposes a linear relationship on the data. Neu-ral nets and instance-based learning are more powerful but su�er from opacity:the model does not reveal anything about the structure of the function that itrepresents. Our experience is that most end users of machine learning are keenlyinterested in any light that the learning technique sheds on the structure of thedata, sometimes more than in making good predictions on new data. Regres-sion trees, which are adopted by the well-known CART system (Breiman et al.1984), approximate a non-linear function by a piecewise constant one. Predictionby discretizing simply maps the problem into a categorical-class one.A new technique for dealing with continuous-class learning problems, the\model tree," has been developed by Quinlan (1992) and embodied in a learning1



algorithm called M5. Model trees combine a conventional decision tree with thepossibility of linear regression functions at the leaves. This representation isrelatively perspicuous because the decision structure is clear and the regressionfunctions do not normally involve many variables.This paper describes a new implementation of a model-tree inducer, basedon Quinlan's pioneering work. However, details of that work are not readilyavailable, and solutions to some small design decisions had to be worked outfrom scratch. We also adopted a method from the CART system (Breiman et al.1984) for dealing with enumerated attributes, and adapted a method for treatingmissing values|both of which feature strongly in the real-world datasets that wehave encountered in practice. We �nd that the resulting model tree inducer|apublic-domain \rational reconstruction" of the original system|which we callM50, performs somewhat better than the original algorithm on the standarddatasets for which results have been published. We also introduce a modi�cationwhich allows the tree size to be reduced dramatically with only a small penalty inprediction performance, leading to much more comprehensible models. Finally,we present results which test the method used for dealing with missing values.2 Inducing Model TreesThe basic idea behind building a model tree is quite straightforward. In the�rst stage, a decision-tree induction algorithm is used to build a tree. Insteadof maximizing the information gain at each interior node, a splitting criterionis used that minimizes the intra-subset variation in the class values down eachbranch. In the second stage, consideration is given to pruning the tree back fromeach leaf, a technique that was pioneered independently by Breiman et al. (1984)and Quinlan (1986), and has become standard in decision-tree induction. Theonly di�erence is that when pruning to an interior node, consideration is givento replacing that node by a regression plane instead of a constant value. And theattributes that serve to de�ne that regression are precisely those that participatein decisions in nodes subordinate to the current one.2.1 Building the Initial TreeThe splitting criterion is based on treating the standard deviation of the classvalues that reach a node as a measure of the error at that node, and calculatingthe expected reduction in error as a result of testing each attribute at thatnode. The attribute which maximizes the expected error reduction is chosen.The standard deviation reduction (SDR) is calculated by the formulaSDR = sd(T ) �Xi jTijjT j � sd(Ti) ; (1)where T is the set of examples that reach the node and T1, T2, . . . are the setsthat result from splitting the node according to the chosen attribute. The tree-growing procedure is similar to that of CART (Breiman et al. 1984), except that



CART chooses the attribute that gives the greatest expected reduction of eithervariance or absolute deviation, a choice that is made at run-time as a command-line option. Our experience is that results are quite insensitive to which of thesethree criteria is chosen: similar trees are obtained in each case. Splitting in M5ceases when the class values of all the instances that reach a node vary veryslightly, or only a few instances remain.2.2 Pruning the TreeThe pruning procedure makes use of an estimate of the expected error thatwill be experienced at each node for test data. First, the absolute di�erencebetween the predicted value and the actual class value is averaged for each ofthe training examples that reach that node. This average will underestimate theexpected error for unseen cases, of course, and to compensate, it is multipliedby the factor (n+ �)=(n� �), where n is the number of training examples thatreach the node and � is the number of parameters in the model that representsthe class value at that node.M5 computes a linear model for each interior node of the unpruned tree.The model is calculated using standard regression, using only the attributesthat are tested in the subtree below this node. The resulting linear model issimpli�ed by dropping terms to minimize the estimated error calculated usingthe above multiplication factor|dropping a term decreases the multiplicationfactor, which may be enough to o�set the inevitable increase in average errorover the training examples. Terms are dropped one by one, greedily, so long asthe error estimate decreases. Finally, once a linear model is in place for eachinterior node, the tree is pruned back from the leaves, so long as the expectedestimated error decreases.2.3 SmoothingA �nal stage is to use a smoothing process to compensate for the sharp disconti-nuities that will inevitably occur between adjacent linear models at the leaves ofthe pruned tree, particularly for some models constructed from a small numberof training instances. The smoothing procedure described by Quinlan (1992) �rstuses the leaf model to compute the predicted value, and then �lters that valuealong the path back to the root, smoothing it at each node by combining it withthe value predicted by the linear model for that node. The calculation isp0 = np+ kqn+ k ; (2)where p0 is the prediction passed up to the next higher node, p is the predictionpassed to this node from below, q is the value predicted by the model at thisnode, n is the number of training instances that reach the node below, and k is aconstant (default value 15). As we see below, smoothing substantially increasesthe accuracy of predictions.



3 Implementing M50The M50 algorithm is based closely on Quinlan's ideas as summarized above.Some details are not completely resolved in the publications describing M5; weidentify these in the �rst section below and give our interpretation. Moreover,it is not clear how enumerated attributes and missing values should be handled.Since these features are of vital importance for the real-world data sets that wehave encountered in our practical work, we have incorporated ways of dealingwith them which are described in the next two sections. Finally, we give pseudo-code for the M50 algorithm.3.1 Further Details of the Original AlgorithmHere we discuss four details of the original M5 and clarify the approach of M50.First, the form of the linear models is quite clear. For a particular node inthe tree with k attributes, say a1, a2, . . . , ak, which are tested in splittingsbelow that node, we use k + 1-parameter model that includes a constant term.Because this makes the compensation factor (n+ �)=(n� �) used in calculatingthe expected error in�nite at leaves having one example (since n = � = 1), wenever allow a split that creates a leaf with fewer than two training examples.Second, during the initial splitting procedure, M5 does not split a node ifit represents very few examples or their values vary only slightly. Since ourleaves cannot contain fewer than two training examples, we do not split nodes ifthey represent three examples or less. Neither do we split them if the standarddeviation of the class values of the examples at the node is less than 5% ofthe standard deviation of the class values of the entire original set of examples.Experiments show that the results are not very sensitive to the exact choice ofthreshold.Third, it is not clear exactly what attributes are used in the linear models.Recall that, during pruning, attributes are dropped from a model when theire�ect is so small that it actually increases the estimated error. Do these at-tributes participate in higher-level models or not? After some experimentation,we decided to leave them in; sometimes lower-level models seem to discard at-tributes that higher-level models can in fact use e�ectively. Tests showed thatalthough the error rate is not very sensitive to this decision, much smaller treeswere sometimes obtained by leaving the attributes in.Fourth, when making the decision whether or not to prune a subtree, it isnecessary to compare the estimated expected error for the linear model at thatnode with the estimated expected error from the subtree. To calculate the latter,the expected error from each branch is combined into a single overall value forthe node using a linear sum in which each branch is weighted by the proportionof the training examples that go down it.3.2 Enumerated AttributesBefore constructing a model tree, all enumerated attributes are transformedinto binary variables. For each enumerated attribute, the average class value



corresponding to each possible value in the enumeration is calculated from thetraining examples, and the values in the enumeration are sorted according tothese averages. Then, if the enumerated attribute has k possible values, it isreplaced by k � 1 synthetic binary attributes, the ith being 0 if the value is oneof the �rst i in the ordering and 1 otherwise. Thus in M50 all splits are binary:they involve either a continuous-valued attribute or a synthetic binary one.This technique is based on a development by Breiman et al. (1984 p. 274),who prove that the best split at a node for an enumerated variable with k valuesis one of the k � 1 positions obtained by ordering the average class values foreach enumerated value. CART performs this operation at each node for everyenumerated attribute. However, M50 does it only once before starting to build amodel tree. Although this has the advantage of speed, it does assume that theoptimal ordering of di�erent values of each attribute at nodes in the tree is, ingeneral, the same as the optimal ordering for the entire data set, an assumptionthat may be invalid when data sets are not uniformly sampled. On the otherhand, CART's method may su�er from the inevitable increase in noise due tosmall numbers of examples at lower nodes in the tree|and in some cases nodesmay not represent all values for some attributes.As with regular decision tree induction, the problem arises that enumeratedattributes having a large number of di�erent values are automatically favored.For instance, an attribute that has a di�erent value for each example will auto-matically be chosen �rst for splitting, despite the fact that it has no predictivepower. C4.5 deals with this problem by de�ning the information gain in a waythat takes account of the number of subnodes created by the split (Quinlan1993b), but this solution does not transfer easily to the situation where a k-valued enumerated attribute is transformed into k � 1 binary attributes.Our solution in M50 is to multiply the SDR value by a factor � that is unityfor a binary split and decays exponentially as the number of values increases.3.3 Missing ValuesTo take account of missing values, the SDR is further modi�ed toSDR = mjT j � �(i) � 24sd(T ) � Xj2fL;Rg jTjjjT j � sd(Tj)35 : (3)m is the number of examples without missing values for that attribute, and T isthe set of examples that reach this node. �(i) is the correction factor mentionedin the previous section, calculated for the original attribute to which this syn-thetic attribute corresponds. TL, TR are sets that result from splitting on thisattribute|for all attributes are now binary.Once an attribute is selected for splitting, it is necessary to divide the exam-ples into subsets according to their value for this attribute. An obvious problemarises when the value is missing. CART uses an interesting technique called \sur-rogate splitting" to handle this situation. Essentially, it �nds another attribute



to split on in place of the original one and uses it instead. The attribute is cho-sen as the one most highly correlated with the original attribute. However, thistechnique is both complex to implement and time-consuming to execute, and inM50 we are experimenting with a simpler heuristic.During training, we use the class value as the surrogate attribute, in thebelief that, a priori, this is the attribute most likely to be correlated with theone being used for splitting. We �rst deal with all examples for which the valueof the splitting attribute is known. If it is continuous, we determine a numericthreshold for splitting in the usual way, by sorting the examples according toits value and, for each possible split point, calculating the SDR according tothe above formula, choosing the split point that yields the greatest reduction inerror. Only the examples for which the value of the splitting attribute is knownare used to determine the split point.Then we divide these examples into the two sets L and R according to thetest. In the case of an enumerated attribute, we determine whether the examplesin L or R have the greater average class value, and we calculate the average ofthese two averages. Then, an example for which this attribute value is unknownis placed into L or R according to whether its class value exceeds this overallaverage or not|if it does, it goes into whichever of L and R has the greateraverage class value, otherwise it goes into the one with the smaller average classvalue. In the case of a continuous attribute we sort on attribute value and thenuse the same procedure, except that we just use a few examples each side ofthe threshold|the top three examples in L and the bottom three in R|todetermine the average class value to be used for splitting the examples withmissing values. When the splitting stops, all the missing values will be replacedby the average values of the corresponding attributes of the training examplesreaching the leaves.So much for processing the training set. Suppose a node is encountered whenprocessing a test example that speci�es a test on an attribute whose value isunknown. We cannot use the class value as above, because it too is unknown.Consequently, we simply replace the unknown attribute value by the averagevalue of that attribute for the training examples that reach the node|whichhas the e�ect, for a binary attribute, of choosing the most populous subnode.This simple approach seems to work very well in practice.3.4 Pseudo-Code for M50Figure 1 gives pseudo-code for M50. The two main parts are creating a tree bysuccessively splitting nodes, performed by split, and pruning it from the leavesupwards, performed by prune. The node data structure contains a type agsaying whether it is an internal node or a leaf, pointers to the left and rightchild, the set of examples that reach that node, the attribute that is used forsplitting at that node, and a structure representing the linear model for the node.The sd function called at the beginning of the main program and again atthe beginning of split calculates the standard deviation of the class values ofa set of examples. The procedure for obtaining synthetic binary attributes that



M50(examples) prune(node)f fSD = sd(examples) if node = INTERIOR thenfor each k-valued enumerated attribute prune(node.left child)convert into k-1 synthetic binary attributes prune(node.right child)root = new node node.model = linear regression(node)root.examples = examples if subtree error(node) > error(node) thensplit(root) node.type = LEAFprune(root) gprint tree(root) subtree error(node)g fsplit(node) l = node.left; r = node.rightf if node = INTERIOR thenif sizeof(node.examples) < 4 or return (sizeof(l.examples)*subtree error(l) +sd(node.examples) < 0.05*SD sizeof(r.examples)*subtree error(r))/node.type = LEAF sizeof(node.examples)else else return error(node)node.type = INTERIOR gfor each continuous and binary attributefor all possible split positionscalculate the attribute's SDRnode.attribute = attribute with max SDRsplit(node.left)split(node.right)g Fig. 1. Pseudo-code for the M50 algorithmfollows was discussed in Sect. 3.2. Standard procedures for creating new nodesand printing the �nal tree are not shown. In split, sizeof returns the numberof elements in a set. Missing attribute values are dealt with as described inSect. 3.3. The SDR is calculated according to (3). Although not shown in thecode, it is set to in�nity if splitting on the attribute would create a leaf withless than two examples. In prune, the linear-regression routine recursivelydescends the subtree collecting attributes, performs a linear regression on theexamples at that node as a function of those attributes, and then greedily dropsterms if doing so improves the error estimate, as described in Sect. 2.2. Finally,the error function returns(n + �)(n � �) � Pexamples jdeviation from predicted class valuejn (4)where n is the number of examples at the node and � the number of parametersin the node's linear model.4 Empirical ResultsWe performed empirical testing of the implementation on the six data sets de-scribed by Quinlan (1993a), taken from the UCI Repository of Machine LearningDatabases. The performance measure we adopt is the relative error as de�ned



by Breiman et al. (1984, p. 224). All results given below are calculated using10-fold cross validation, repeated twenty times and averaged.The datasets pw-linear and auto-price contain continuous attributes (10 and15 respectively); they do not have any enumerated attributes. Housing contains12 continuous and one enumerated attribute, but the latter is binary so our treat-ment has no special e�ect. Cpu has six continuous and one 30-valued enumeratedattribute. Auto-mpg contains �ve continuous and two enumerated attributes, thelatter having �ve and three possible values respectively. Finally, servo containstwo continuous and two �ve-valued enumerated attributes; it is the one for whichthe enumerated attributes have the most prominent e�ect.4.1 Comparing M50 with M5Table 1 shows the error rates of standard linear regression, the results Quinlan(1993a) gives for M5, and the results of M50, both smoothed and unsmoothed.Our experimental results are written in the form \mean � standard deviation,"calculated from the twenty individual cross-validations. They all use syntheticbinary attributes.Quinlan (1993a) also gives the results of standard linear regression, althoughit is unclear what approach he takes to enumerated attributes. Our regressionresults resemble Quinlan's except in the case of the auto-mpg data set, when (forreasons that we do not understand) he obtains a much higher relative error.Comparing the second and third rows, that is, the published results of M5with those of M50, we see similar performance for pw-linear , housingand auto-price, slightly better results for cpu and auto-mpg , and dramatically better re-sults for servo. Since the �rst three datasets have either no enumerated attributesor only binary-valued enumerated attributes, we conclude that the policy of cre-ating synthetic binary attributes for each multi-valued enumerated attribute hasa signi�cant positive e�ect on performance.Comparing the �nal two rows of Table 1 shows that smoothing does indeedhave an appreciable e�ect on results for most of the datasets.pw-linear housing cpu auto-price auto-mpg servoregression 31.7�1.0 27.6�0.4 18.4�2.1 19.6�1.0 14.2�0.3 48.1�1.5M5 9.5 18.6 17.2 16.2 14.7 28.7M50 (smoothed) 9.4�0.3 17.8�2.4 14.6�2.4 14.9�1.2 13.0�0.5 15.8�1.7M50 (unsmoothed) 9.3�0.3 19.9�2.5 16.3�2.8 18.2�1.8 13.6�0.5 18.3�2.2Table 1. Relative errors (%) on test cases (results for M5 from Quinlan, 1993)



4.2 A model for the servo DatasetIt is instructive to take a closer look at the results for the servo dataset, whichhas two continuous and two discrete attributes. The discrete attributes playimportant roles. Figure 2 shows the structure of the model tree found by M50.Four synthetic binary attributes have been created for each of the �ve-valuedenumerated attributes motor and screw , and are each shown in the Table interms of the two sets of values to which they correspond.
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Data missing pw-linear housing cpu auto-price auto-mpg servoM50 CART M50 CART0 % 9.4 17 17.8 22 14.6 14.9 13.0 15.85 % 16.7 27 22.3 22 20.5 20.3 17.4 25.310 % 23.2 36 23.0 31 24.8 22.1 21.7 33.225 % 43.6 65 34.6 35 35.6 29.9 32.1 53.4Table 2. Relative error (%) for di�erent amounts of missing data5 ConclusionThis paper has described M50, a reconstruction of a machine learning methodfor inducing model trees from empirical data. This system �lls a notable gapby providing a public-domain scheme1 for inducing models from data that in-volves continuous classes. It deals e�ectively with both enumerated attributesand missing attribute values. Its performance is not generally quite as high asthe best of the methods described by Quinlan (1993a), which involve neural netsand instance-based learning (although its performance overall is arguably supe-rior to either of these methods individually). However, it has the advantage thatthe models it generates are compact and relatively comprehensible.There are many productive areas for future work. A number of design de-cisions and parameters in M50 seem ad hoc and arbitrary; it is possible that aminimumdescription length formulation will be able to provide a design that ismore principled. The pruning factor controls a tradeo� between prediction andtree size that deserves further investigation. And we have yet to return, armedwith our method, to the agricultural problems that originally motivated thiswork.ReferencesBreiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.: Classi�cation and Regres-sion Trees. Wadsworth, Belmont CA. (1984)Garner, S.R., Cunningham, S.J., Holmes, G., Nevill-Manning, C.G. and Witten, I.H.:Applying a machine learning workbench. Proc Machine Learning in Practice Work-shop, Machine Learning Conference, Tahoe City, CA. (1995) 14{21Quinlan, J.R.: Simplifying decision trees. Proc Workshop on Knowledge Acquisitionfor Knowledge-based Systems, Ban�, Canada.(1986)Quinlan, J.R.: Learning with continuous classes. Proceedings 5th Australian Joint Con-ference on Arti�cial Intelligence. World Scienti�c, Singapore. (1992) 343{348Quinlan, J.R.: Combining instance-based and model-based learning. International Con-ference on Machine Learning. (1993) 236{243Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann. (1993)1 The code for M50 is available from http://www.cs.waikato.ac.nz/�ml


