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Abstract—Wind power forecasting can enhance the value
of wind energy by improving the reliability of integrating this
variable resource and improving the economic feasibility. The Na-
tional Center for Atmospheric Research (NCAR) has collaborated
with Xcel Energy to develop a multifaceted wind power prediction
system. Both the day-ahead forecast that is used in trading and
the short-term forecast are critical to economic decision making.
This wind power forecasting system includes high resolution

and ensemble modeling capabilities, data assimilation, now-
casting, and statistical postprocessing technologies. The system
utilizes publicly available model data and observations as well as
wind forecasts produced from an NCAR-developed deterministic
mesoscale wind forecast model with real-time four-dimensional
data assimilation and a 30-member model ensemble system,
which is calibrated using an Analogue Ensemble Kalman Filter
and Quantile Regression. The model forecast data are combined
using NCAR’s Dynamic Integrated Forecast System (DICast).
This system has substantially improved Xcel’s overall ability to
incorporate wind energy into their power mix.

Index Terms—Data assimilation, forecasting, nowcasting, wind
energy, wind power forecasting.

I. INTRODUCTION

A. Motivation

T HE recent policy trend to move the U.S. toward a larger
fraction of the energy portfolio devoted to renewable en-

ergy sources [1] puts additional strain on the energy industry
as these sources have to date been less predictable than tradi-
tional generation sources. Improved weather prediction and pre-
cise spatial analysis of mesoscale weather events are crucial to
both short- and long-term energy management. There is a need
to further develop and implement advancedweather observation
and prediction technologies for the energy industry that benefit
both public and private sectors [2]. Weather data and informa-
tion are crucial to infrastructure planning and management, pre-
diction of energy demand, management of energy supply, en-
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Fig. 1. Xcel Energy service areas.

ergy pricing and markets, energy system operations and regula-
tory compliance, and economic risk minimization [3].

B. Background

With 3.4 million electric customers, Xcel Energy is the fifth
largest combined electric and gas utility in the United States. It
is comprised of three separate service regions: Northern States
Power (NSP), Public Service Company of Colorado (PSCo),
and Southwestern Public Service (SPS). These regions are
mapped in Fig. 1.
Xcel Energy boasts the largest wind energy capacity in

the U.S. with more than 50 wind farms, 2972 turbines, and
4062-MW power. With wind capacity rising rapidly, Xcel
Energy realized that improvements in wind energy prediction
skill are required to reduce the cost of wind integration because
this variable resource must be efficiently integrated into the
grid to both minimize costs of day-ahead trading and to provide
reliable and economic dispatch on a real-time basis. Thus, to
meet Xcel Energy’s growing need for wind energy predic-
tion improvements, they forged a collaborative research and
development effort in late 2008 to configure and build a com-
prehensive wind power forecasting system. An initial capability
was rolled out in June 2009 and the more complete system was
online in October 2009. After the system was implemented by
Xcel Energy in 2011, the capabilities have been refined and
updated by NCAR. This paper provides an overview of the
entire system with some details on each of the components. For
more detail on each of the system components, the reader is
referred to the references.

C. System Overview

Our philosophy is to blend forecasting technologies and
statistical methods that each provide useful information at
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Fig. 2. Flowchart of the NCAR/Xcel Energy wind power forecasting system
components.

some specific forecast lead-times covering Xcel Energy’s 168 h
forecast period so that the system as a whole merges all of those
inputs to produce an optimized forecast at each lead time. Fig. 2
provides a flowchart of the NCAR/Xcel Energy wind power
forecasting system components. Input data include weather
model data from the National Centers for Environmental Pre-
diction (NCEP) including the Global Forecast System (GFS),
North American Mesoscale (NAM) Model, and Rapid Update
Cycle (RUC)Model, and the Canadian Meteorological Centre’s
Global Environmental Multiscale (GEM) Model. NCEP Model
Output Statistics (MOS) products are also utilized. In addition
to ingesting forecast and MOS data from the operational cen-
ters, data from NCAR’s own modeling systems are utilized.
NCAR configured and tailored a version of the Weather Re-
search and Forecasting (WRF) model and also configured a
30-member model ensemble system that uses both WRF and
the Penn State-NCAR MM5 model (see Section II).
Wind turbine data are securely transmitted to the forecast

system using an Xcel Energy PI interface node. At the center
of the diagram lies the Dynamic Integrated ForeCast System
(DICast). Its purpose is to bias correct all model input and to
provide the best weights for those model data from its statistical
learning methods (see Section III). DICast is trained to match
the forecasts to the nacelle anemometer wind speeds at each
turbine. This approach allows the system to take into account
availability information that Xcel requires from the individual
wind farms.
The consensus wind forecast for each turbine is then con-

verted to power using various statistical approaches. The wind
energy forecast data for each turbine and connection node are
provided to Xcel Energy directly using comma delimited files,
and via tailored Graphical User Interfaces (GUIs). The opera-
tors are provided with a GUI of projected power output plus
historically derived error bars denoting the 25% and 75% un-
certainty levels. In addition, a GUI showing the deterministic
and ensemble model system output is provided to Xcel Energy
meteorologists. These include standard weather maps available
for each domain at different heights; wind, temperature, and
humidity profiles at each wind farm; and wind power density
maps at 50, 80, and 120 m above ground level. For the prob-
abilistic forecasting, the ensemble mean, spread, meteograms,
wind roses, likelihood of ramp event magnitudes and timing,

and exceedance probabilities for wind threshold plots are pro-
vided.
Below the dashed line in Fig. 2 is depicted the experimental

wind nowcasting systems. The Variational Doppler Radar As-
similation System (VDRAS) uses four-dimensional variational
(4 DVar) assimilation techniques to blend Doppler radar data
into a cloud-scale model to provide a physically balanced cur-
rent state of the atmosphere (Section IV).
The remainder of the paper provides details of the system

components. Section V discusses the economic benefits of this
system and the summary and conclusions appear in Section VI.

II. MODELING COMPONENT

A. Overview

Wind power management requires accurate current and look-
ahead regional and local-scale (tens to hundreds kilometers)
weather information. To analyze and predict wind flows near
nacelle height, the weather prediction model is designed to re-
solve important details of forcing from complex terrain, land-
water contrasts, and the heterogeneities of land surface proper-
ties that affect the wind characteristics. Furthermore, the mod-
eling system is designed to avoid the “spin-up” problem that is
manifested as spurious oscillations in the first few hours due to
the inconsistencies between the analyzed initial conditions and
the model’s mathematical equations. To help alleviate these is-
sues, NCAR implements a multiscale, rapid-cycling modeling
system that includes assimilation techniques to initialize both
the WRF [4] and Penn State-NCAR MM5 models [5].
The WRF model is a next-generation numerical weather

prediction model developed by multiple U.S. government
agencies and a large international research community. NCAR
tests and distributes the code to the weather research and
operational communities. WRF features multiple dynamical
cores, a growing suite of data assimilation systems, and a
software architecture that allows for computational parallelism
and system extensibility. WRF is suitable for a broad spectrum
of applications across scales ranging from tens of meters to
thousands of kilometers.
A key feature of the modeling system is assimilating ob-

servations into the model background to produce an analysis,
which provides a “best guess” initial condition for the model
integration. This Real-Time Four-Dimension Data Assimilation
(RTFDDA) system is based on Newtonian Relaxation, com-
monly known as nudging [6]–[8]. The NCAR RTFDDA system
was originally developed for supporting operations at the Army
test ranges [9], [10] as well as many other weather-critical
applications [11]. The RTFDDA continuous data assimilation
scheme utilizes all weather observations within an application
domain. The continuous data assimilation applied during the
analysis stage is able to provide “spun-up” initial conditions for
each forecast cycle, thus producing four-dimensional dynami-
cally balanced and physically consistent analyses and forecasts.

B. Deterministic Model System Configuration

The deterministic WRF modeling system was configured to
cover Xcel Energy’s service regions, with three nested grids at
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Fig. 3. Domain maps of the three-domain Xcel Energy deterministic WRF-
RTFDDA forecasting system (D1, D2, and D3) and the two-domain 30-member
ensemble probabilistic forecasting system (D1 and D3)).

30-, 10-, and 3.3-km grid spacing (Fig. 3). The RTFDDA system
assimilates diverse observations including World Meteorolog-
ical Organization (WMO) Global Telecommunication System
(GTS) standard upper-air and surface stations, National Oceanic
and Atmospheric Administration (NOAA) wind profilers, co-
operative agency wind profilers, aircraft weather reports, satel-
lite derived atmospheric winds, Doppler radar wind profiles, a
large number of surfacemesonet and other weather data sources,
as well as wind farm meteorological tower and turbine nacelle
anemometer wind speed measurements. This system is run eight
times a day, and in each cycle, produces 24-h forecasts on the
fine mesh (3.3 km) domain, output every 15 min, as well as
producing a 72-h forecast for the two coarser domains, output
hourly [12].

C. Probabilistic Prediction With an Ensemble System

Atmospheric processes are chaotic, implying inherent uncer-
tainty, and weather models inevitably contain errors and uncer-
tainties in various model components, including imperfect spec-
ification of model initial conditions and lateral boundary con-
ditions, truncation errors, and physical process approximations
(cloud physics, radiation, eddy diffusion, land surface, etc.).
Therefore, it is appropriate to use weather prediction technolo-
gies that are designed to approximate forecast errors and uncer-
tainties.
In addition to the deterministic RTFDDA component, NCAR

implemented the mesoscale Ensemble Real-Time Four-Dimen-
sional Data Assimilation (E-RTFDDA) system based on the
probabilistic forecasting technology originally developed for
Army test ranges [13]. The E-RTFDDA contains diverse en-
semble perturbation approaches that consider uncertainties in
all major system components. The system includes multiscale
continuous-cycling probabilistic data assimilation and fore-
casting. The Xcel Energy E-RTFDDA system has 30 members,
with 15 members based on the PSU-NCAR MM5 model and
the other 15 members based on WRF. Because the ensemble
model simulations are computationally costly, the ensemble
model runs on two nested-grid domains with 30- and 10-km

grids. The 30-km grid is the same as the domain (D1 in Fig. 3)
of the deterministic WRF RTFDDA model, but the 10-km
grid is only run on the D3 domain. Furthermore, the ensemble
system runs four forecast cycles a day, producing 6-h analyses
and 48-h forecasts in each cycle.

D. Bias Correction and Ensemble Calibration

Since errors in physical model forecasts are inevitable, sta-
tistically postprocessing the model wind forecasts is beneficial.
Two statistical postprocessing approaches are employed in the
wind powermodeling system. The first technique is the ANalog-
space Kalman Filter (ANKF) that corrects the bias errors of the
WRF RTFDDA forecasts; and the second is a quantile regres-
sion (QR) calibration scheme. Both ANKF and QR require a
significant recent history of the model forecast data and wind
plant measurements.
The theory behind both schemes is that the model’s past

performance, particularly the model error information for the
weather scenarios that are similar to the current forecasts, is
highly valuable for correcting the error of the current prediction.
ANKF was built upon the Kalman Filter (KF)-based bias

correction technique [14], [15]. It was applied as a postpro-
cessing component for the Xcel Energy single high-resolution
deterministic forecast system [16]. The KF approach contin-
uously adjusts/updates the prediction of bias using a Kalman
gain, which weights more recent forecasts higher. In contrast,
the new ANKF approach is formulated to rearrange the training
data set from theworst to the best analog, and to apply the largest
weights to the analogs that better match the current prediction.
QR ensemble calibration technologies [17] tune the re-

liability of the probabilistic prediction. The QR approach
corrects the mean and all quantiles of the wind forecast bias
as well as improving ensemble resolution and, more indi-
rectly, exceedance probability forecasts (e.g., probability of
wind speed m/s). The ANKF and QR techniques have
been applied to the Xcel Energy ensemble forecasting system.
With the combined ANKF-QR scheme, ANKF is performed
independently for each of the 30 members of E-RTFDDA, and
then these bias-corrected forecasts are fed into the QR module
to generate calibrated probabilistic wind predictions.

E. Performance Assessment

To demonstrate the performance of the modeling system
component for the wind-farm averaged 80-m wind speed, the
skill score of ANKF, QR, and ANKF+QR with respect to the
raw Xcel Energy ensemble-mean RFTDDA forecast is shown
in Fig. 4 for a representative wind farm during December
2010. Similar results were obtained at other locations and
for different periods (not shown). Note that the skill score is
positively oriented with larger values indicating improvements
over the raw ensemble mean as measured by a reduction in
the RMSE. After the ANKF correction is applied to every
ensemble member, the resulting improvement of the ensemble
mean is in the 10%–20% range across the different forecast lead
times. QR, which is applied to the entire ensemble distribution,
shows similar skill, with a remarkable improvement for the first
two forecast lead times in the range of 20%–50%. The higher
range of improvements result from the QR, which includes
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Fig. 4. Skill score (%) versus forecast lead time (hour) of ANKF, QR, and
ANKF+QRwith respect to the rawXcel Energy ensemble-mean RFTDDA fore-
cast [as measured by root-mean-square error (RMSE)], for 80-m wind speed av-
eraged over all turbines of a wind farm during December 2010. Positive values
correspond to percentage improvement (i.e., lower RMSE) with respect the raw
forecast.

persistence as one of the predictors to optimize the correction.
Interestingly, given the different design and correction strategy
of the methods—ANKF is applied to each individual ensemble
member whereas QR is a calibration procedure that corrects
the entire ensemble distribution—applying both methods
(ANKF+QR) results in the best correction. Indeed, ANKF+QR
preserves the large improvements (20%–50%) in the first two
hours and produces a better correction than either ANKF or QR
alone, with improvements in the 15%–25% range for forecast
lead times from 3 to 48 hour.

III. STATISTICAL POSTPROCESSING

A. Dynamic Integrated ForeCast System

A centerpiece of the forecast system is DICast, which tunes,
integrates, and optimizes the contributions of the individual
component forecasts. DICast is a robust consensus forecast
system. Its role is to integrate a variety of data and produce a
single, optimized forecast for each user defined site [18].
The main inputs are weather forecast datasets and weather

observations. In this application, DICast generates an optimized
consensus hub height wind speed forecast for each wind turbine.
Downstream processes are responsible for turning these wind
speed forecasts into turbine-specific power forecasts and aggre-
gating these into farm and connection node power forecasts. DI-
Cast generates new wind speed forecasts every hour by taking
advantage of the latest available forecast (e.g., model, MOS)
and observational data. A forward error correction scheme is
then applied every 15 min for the first 3 h of the forecast period.
1) DICast Input Data: The Xcel Energy version of DICast

currently uses seven input models. The publicly available
models include NCEP’s GFS, NAM, and RUC as well as the
Canadian GEM model. In addition, it ingests the high-resolu-
tion (3.3-km grid) deterministic WRF RTFDDA simulation and
the means from each of the two 15-member WRF and MM5
model ensembles (10-km grid). For each input model, only the
most recent model run is used. This means that, for example,
once the 12Z GFS run has arrived, the previous 06Z GFS run is
no longer used in the real-time forecasting process.

2) Observational Input Data: Observational data are critical
to DICast. As an automated learning system, it depends on an
historical observational dataset to serve as “ground truth.” The
ultimate goal in this application is to predict power generation
by a turbine. The environmental measurement most closely re-
lated to turbine power is wind speed. Thus, DICast focuses on
predicting wind speed at hub height.
The two choices of wind speed observations are the

anemometer installed at the meteorological tower at the
farm, and/or the nacelle anemometers mounted atop each
turbine generator. The meteorological tower anemometer,
where available, provides a better measurement of the free
atmospheric wind than the nacelle anemometers because the
latter are positioned behind the rotating turbine blades that
disturb the flow. However, studies have shown that while DI-
Cast can generate tuned forecasts at the meteorological towers,
neither the resultant forecasts nor the statistical equations work
well at the individual turbines. Thus we instead focus on the
nacelle wind speed measurements. Although these data do not
accurately represent the free atmospheric flow, they have a
strong correlation to turbine power based on a large empirical
database.
The raw nacelle observations are available at high frequency,

exceeding one per minute. Due to the gusty nature of wind, these
observations are often noisy. Here we use 15-min averages of
the measured wind speed, which are more statistically represen-
tative of the wind and power produced during that period.
3) Dynamic Model Output Statistics (DMOS): Dynamic

Model Output Statistics (DMOS) is the first forecast optimiza-
tion step in the DICast forecast process. The goal is to optimize
the forecast from each model independently based on avail-
able observation verification data. DMOS finds relationships
between each model’s data and the observations valid at a
particular time of day. DMOS accomplishes this through an
objective statistical process similar to the National Weather
Service’s (NWS) Model Output Statistics (MOS) process
[19]. Unfortunately, the NWS does not provide optimized
MOS products at locations or heights relevant to wind energy
forecasting. Thus, we train to the nacelle anemometer data to
generate an optimized forecast of each anemometer based on
the input models.
The main difficulty with using NWP model data in the pre-

diction of hub height wind speed is that models do not directly
predict the wind speed at hub height. Twomain classes of model
output exist. In the first, data above the surface is provided
on specific pressure levels. Model data from NCEP, the Cana-
dian Meteorological Center (CMC) and the European Center
for Medium Range Forecasting (ECMWF) are provided in this
format. The spacing between these pressure levels varies but is
usually 25 millibars or more near the surface. This translates to
roughly 250 m between relevant data points in the vertical. In
these models, that will often mean that the first pressure level
may actually be below the model’s earth surface. This is an in-
teresting complexity since some of the models, e.g. NAM, fore-
cast only above the surface and yet their output is modified to
match earlier versions of the model’s output grid. The coarse
vertical resolution is mitigated somewhat by the existence of a
10-m above ground level (AGL) wind forecast variable in these
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models. Thismodel variable adds significant value to the DMOS
forecast optimization process. In this class of models, very sig-
nificant reductions in forecast error are possible.
The second class of models use a terrain following coordi-

nate system. The output of these models is provided at sigma
levels, i.e., specific levels above the ground. They are config-
ured to have several closely spaced levels near the surface, e.g.,
60 and 100 m. The number and density of levels is determined
by trading off vertical resolution with compute speed. Models
with output in this format require less interpolation in the ver-
tical. Since this output is more specific to the height of the hub,
the forecast error reductions realized by applying DICast are
less than for the first class of models.
New DMOS regression equations are generated every week.

The DMOS system configured for Xcel Energy uses the last
90 days for forecast predictors and observation pairs when deter-
mining the best statistical relationship. Our analysis has shown
that less than 90 days provides less stable regression equations,
while longer training periods provide marginal benefits and may
introduce seasonal effects.
Sometimes during the DMOS calculation process, a satis-

factory regression equation cannot be generated from the pre-
dictor/observational history due to insufficient history or to not
finding a regression equation with sufficiently high correlation.
In this case, a forecast can still be made by using one of the
predictors derived from the model. The predictor used in this
case is called the default predictor and is chosen by examining
which of the predictors has performed well historically in that
turbine’s region. The use of a default predictor provides robust-
ness to the system and allows it to always produce a forecast
for each turbine in the system. The most common cases where
the default predictor is used are: 1) initial forecasts before suf-
ficient history has been accumulated; 2) an anemometer’s data
does not get into the system due to telecommunication issues;
and 3) the anemometer suffers from quality control issues and
has a number of bad data points that survive quality control pro-
cedures.
As new model data are ingested, the hub height wind speed

predictors are extracted and stored. To complete the process of
making a DMOS forecast, the previously calculated regression
equation specific to this model run time, site, and lead time is
used with these new predictors. This linear combination of the
current predictors produces the forecast value. While calcula-
tion of the regression equation may be computationally expen-
sive, this application of that equation to the current equation is
very fast.
Fig. 5 plots the forecast root mean squared error (RMSE)

of individual predictors from the 12Z NAM run for the 1976
Xcel Energy turbines operating during the month of January
2010. The diurnal cycle is obvious in the errors as well as the
expected general increasing trend in error with lead time. Each
line on Fig. 5 represents the forecast error of one of the NAM
hub height wind speed predictors. Some predictors’ forecasts
are much more accurate during the day yet are less accurate
at night. Others have fairly consistent error characteristics
throughout the diurnal cycle and across the entire forecast pe-
riod. The NAM 10-m wind speed (predictor number 2304) was
particularly poor for direct use as the hub height wind speed

Fig. 5. Root-mean-squared errors for individual wind speed predictors com-
pared to the NAM DMOS forecast made in January 2010 for 1976 turbines.
The NAM DMOS forecast generated by DICast is the black line with consis-
tently lowest RMSE.

forecast during this month. This observation highlights the
difference in wind speeds at hub height (80–100 m) compared
to the traditionally forecast near-surface wind speeds.
While these 1976 sites represent a statistically significant

sample, it is important to remember that although a predictor
may perform poorly overall, it may be excellent at certain sites,
and thus can be of value to the forecast at these sites. Each
predictor has its strengths and weaknesses. No predictor should
be removed from the process unless it does not significantly
contribute at any site and at any time. In fact, although the 10 m
wind speed is a poor standalone predictor, it is less correlated
with the pressure-level winds, and thus often is used in com-
bination with the other predictors during the DMOS process.
The error for the DICast DMOS forecast is plotted as the black
line below the other error lines in Fig. 5. Thus, it is statistically
better than any of the individual predictors at all lead times out
to 72 h.
Each month, the relative skills of the predictors change. That

is, the best predictor one month may not be best in the following
month. In spite of the constant change in skill in the predic-
tors, the DMOS forecast is, by construction, always statistically
better than the individual “predictor of the month.” Thus DMOS
provides both a level of optimization and robustness to the fore-
cast process.
4) Forecast Integration: Once the DMOS process has gen-

erated optimized forecasts from individual forecast models, DI-
Cast combines these forecasts to produce a consensus forecast.
At each forecast location and lead time, comparison of the ob-
servations and the individual models’ DMOS forecasts are used
to determine which models have performed better than others in
the recent past and gives more weight to the better performers.
Since the model’s data arrive asynchronously, the best model

may vary from hour to hour. That is, a “fresh” model is often
better than older models. Assuming that the model data output
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times are predictable, development of weights specific to each
model’s skill at a specific forecast generation time is merited.
For the Xcel Energy system, in which DICast forecasts are gen-
erated hourly, there are 24 complete sets of weights—one for
each forecast generation hour of the day—each with weights
specific to each site and forecast lead time. In each complete set
of weights, there are weight vectors specific to each wind tur-
bine site and lead time.
DICast creates its consensus as a bias-corrected weighted

sum of input forecasts

(1)

where are the forecast values and are the weights. Missing
forecasts are removed from the consensus. This is a compu-
tationally simple, yet effective, forecast combination method.
More complex combination schemes are possible, but in our
experience, the marginal improvement does not merit the ad-
ditional complexity.
Each day the integrator examines how well it performed on

the previous day’s forecast and uses that information to nudge its
weights toward an improved consensus. Because of the models’
spatial and temporal performance differences, the integrator’s
combination will differ for each site, lead time, and forecast
generation time.
By design, the DICast system is robust in its ability to produce

quality forecasts despite the unavailability of one or more of the
input forecast models. When one model’s data has not arrived at
its expected arrival time, the last available run is used until new
data arrives. This may lead to a small degradation in forecast
quality that is rectified at the next model run cycle.
A variety of weight calculation approaches are possible.

These are compared and summarized in several papers
[20]–[22]. The adaptive learning approach taken in the DICast
integrator was chosen for several reasons. First, it is compu-
tationally simple and robust. Second, it can easily adapt to
the addition of new input forecast models or the removal of
obsolete models. Finally, new sites can be added to the system
and, with an initial default weight set, forecasts can be made
almost immediately. These weights will rapidly evolve toward
a nearly optimal solution [23].
Each day, the weights are modified in the direction of the

gradient in weight space. That is, the vector of weights is nudged
in the direction of steepest descent of the error (the difference
between the verification and the forecast values)

(2)

The step length is a parameter determined by the user to
affect how quickly the system adapts. The choice of effec-
tively trades off the initial discovery of the optimal combina-
tion against the daily update magnitude. Unless the step size is
too large, the updated weights would have, by design, led to
a forecast with a smaller error had they been used for the pre-
vious day’s forecast. There is also a cap on the magnitude of any
change so that one day’s missed forecast does not completely
alter a set of weights that work reasonably well.

Fig. 6. Errors for DMOS forecasts compared to the DICast integrated forecast
made for October, November, and December 2010. The DICast integrated fore-
cast is the black line with consistently lowest RMSE.

In this way, the DICast integrator never attempts to directly
calculate the optimal set of weights. Instead it takes an approach
of pursuing the location of the minimum error. The location of
the minimum is rarely stationary. It changes daily. In a larger
sense, the nexus of the optimal vector changes seasonally to
capture the variability in the models’ skills. Other weight cal-
culation approaches that examine a longer history require more
computational resources. Due to the daily variability in model
skill and observational representativeness, this additional com-
putational cost is not merited.
The value of this consensus, multimodel approach and the

implementation choices made within the DICast integrator are
seen in Fig. 6. There, the errors of the individual DMOS opti-
mized forecasts are compared to the errors of the DICast inte-
grated forecast. The errors are shown for the first 72 forecast
hours during the fall and early winter months of 2010. These
statistics are for the same 1976 turbines used for Fig. 5.
The DICast integrated forecast made using these ingredients

statistically outperforms every one of the ingredients by a sub-
stantial margin. During any given month, the integrated forecast
typically outperforms the best “model of the month” with a re-
duction in forecast error of 10%–15%. Each month there is a
reshuffling of the best models, yet the integrated forecast learns
rapidly enough that it always has the best error characteristics.
Studies of errors in wind power production indicate that this re-
duction in wind speed error directly translates into a comparable
reduction in wind power generation error.
The results demonstrated in Fig. 6 argue strongly for a mul-

timodel solution rather than using any single model solution in
order to reduce the RMSE (or MAE) of the hub height wind
speed forecast. This result is not unexpected: Eckel and Mass
[24] have shown that when independent model data are added
to a consensus forecast system, even if that model does not typi-
cally make a better forecast, its addition to the system improves
the consensus forecast. The linkage between accuracy of wind
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Fig. 7. Example manufacturer’s power curve.

Fig. 8. Example scatter plot of empirical wind speed versus power relationship
for a single turbine.

speed forecasts and power forecasts further establishes the ben-
efits of consensus forecasting for hub height wind speeds. We
note that DICast can be configured to produce similar reduc-
tions in error for other forecast variables, e.g., air temperature
and dew point temperature.

B. Power Conversion

The next step in producing a wind power forecast is con-
verting the DICast generated wind speed to power. It may seem
natural to apply the turbine manufacturer’s power curve to the
wind speed forecast at each farm turbine and then to sum up the
resulting powers. The manufacturer’s power curve (see example
in Fig. 7) as developed offers an idealized power output for each
given turbine type as a function of wind speed assuming specific
air density conditions and a minimal amount of turbulence and
wind shear across the blade span.
Unfortunately, power production can often deviate substan-

tially from the manufacturer’s power curve (Fig. 8), which can
lead to significant forecast power error. In examining Fig. 8, it
is obvious that a single wind speed can correspond to a wide
variety of power outputs; thus a simple one-to-one relationship
is not achievable in practice.

Fig. 9. Example scatter plot of empirical wind speed versus power relationship
for a farm connection node.

Power curves representing the total power at a farm connec-
tion node based on average observed nacelle wind speed tend
to be better behaved owing to error cancellation, yet problems
remain, as can be seen in Fig. 9.
One would expect that additional observations including

wind direction, temperature and air pressure would assist in ac-
counting for the above deviations from the ideal manufacturer’s
power curve, but such observations are generally not available
owing to the general lack of maintained meteorological towers
at current wind farms.
Since wind speed alone poorly accounts for turbine power,

the Xcel Energy wind power system was designed to utilize his-
torical wind and power. At farms where turbine observations are
available, the mean nacelle wind speed and mean turbine power
are calculated every 15 min. A training data set is formulated
using: WindSpeed(t0), TurbinePower(t0), and WindSpeed(t1)
as the predictors and TurbinePower(t1) as the predictand.
Here,WindSpeed(t0) is the nacelle wind speed at time t0, Tur-

binePower(t0) is the associated turbine power at time t0, Wind-
Speed(t1) is the nacelle wind speed at time t1 (15 min later) and
TurbinePower(t1) is the desired associated turbine power at time
t1. Different data mining techniques such as Random Forests,
Regression Trees, K-Nearest Neighbor, etc. were tested to ap-
proximate TurbinePower(t1) using the previous three predictors
and it was found that the regression tree Cubist1 was one of the
best performers and was easy to apply in practice.
In the actual implementation, the current nacelle wind speed,

the current turbine power, and the next forecast nacelle wind
speed are actually substituted into the data mining model in
order to forecast the next turbine power value. Consecutive tur-
bine power forecasts are then generated by utilizing consecu-
tive wind forecasts and employing recursion. In case of missing
observed nacelle winds and turbine power data, forecast wind
speeds and ideal power curve estimated power are used in the
above recursion. Finally, at farms where no wind/power obser-
vations are readily available, forecast wind speed is simply fed
into the appropriate idealized power curve in order to determine
generated power. It should be noted that Xcel Energy realized

1Cubist is a trademark of RuleQuest Research.
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the benefit of having turbine data flow into their wind energy
prediction system and hence implemented procedures to collect
real-time data from their wind farms and to date, real-time data
flow from approximately 80% of their installed capacity.
Once the turbine power is forecast for each turbine, the

powers are summed for each connection node and operating
region in order to estimate the overall connection node and
regional power.

C. Power Forecast Error Calculation

The power forecasts are stored for a number of weeks to
support ongoing forecast verification. The mean absolute error
(MAE) is calculated for each connection node/forecast lead time
pair. Forecast connection node power is compared to observed
connection node power for each 15-min forecast out to 3-h and
for each 60-min forecast out to 168-h. The MAE is normalized
to a percentage error by dividing it by the connection node max-
imum capacity. All errors for a specific lead time are rolled-up
over 7-day and 30-day periods in order to create short-term error
statistics. No attempt is made currently to differentiate mean
absolute percentage error based on different periods of the day
such as day versus night, morning, afternoon, evening, etc.

D. Incorporating Forecast Availability Data

Wind turbines may be taken offline for routine or special
maintenance and as a result the expected power production at
affected farms may be substantially reduced. To account for
this, the forecast system incorporates a percentage turbine avail-
ability forecast for each farm. The available power forecasts are
produced by the contributing farms in accord with their mainte-
nance schedules. This information is automatically incorporated
in the production of an availability forecast that can be viewed
separately from the full potential power forecast.

IV. NOWCASTING

Wind ramp events that correspond to mesoscale features,
such as passages of cold fronts or thunderstorm outflows,
pose a great challenge for wind power prediction. Such ramp
events can cause rapid power increases or decreases over a
short period of time [3], [25], [26]. Forecasting the timing,
magnitude, and duration of these ramps can prove difficult.
Although the basic wind forecasting system described above
typically foresees significant power ramps, we wish to fine-tune
the capability to accurately predict the timing, magnitude, and
duration of an event, particularly those caused by mesoscale
weather phenomena such as thunderstorm gust fronts. Accu-
rately forecasting these events for wind power applications
requires frequently refreshed wind field analyses with details
at the scale that atmospheric convection can be resolved. Wind
nowcasting based on such analyses with a forecast range up to a
few hours are expected to provide improved wind information
for wind energy prediction.
NCAR’s Variational Doppler Radar Assimilation System

(VDRAS) was designed to produce high-resolution and
high-frequency atmospheric analyses using high-resolution
observations from Doppler radars, lidars, and surface networks.
VDRAS, which was originally developed to nowcast convec-
tive storms, has been developed and continually improved

Fig. 10. VDRAS flowchart. The 4DVAR processes are shown in yellow.

by NCAR since the early 1990s. The system provides wind,
thermodynamical, and microphysical analyses with a typical
spatial resolution of 1–4 km and temporal update frequency
of 15–20 min. VDRAS has been used extensively for research
[27], [28] and has been installed for real-time nowcasting of
convective weather domestically in a number of NWS offices
[29], in U.S. Army test ranges, for homeland security appli-
cations, and internationally for the last two summer Olympics
[30], [31]. Thus, it is logical to test this proven technology for
wind ramp forecasting.
The major processes of VDRAS include data ingest, data pre-

processing, data assimilation, and output generation (Fig. 10).
The central process of VDRAS is the four-dimensional varia-
tional analysis (4DVAR) radar data assimilation, which includes
a cloud-scale numerical model, the adjoint of the numerical
model, a cost function, a minimization algorithm, background
analysis, and the specification of background and observations
error statistics. The numerical model used to represent the con-
vective scale motion is anelastic with Kessler-type [30] warm
rain microphysical parameterization and a simple ice scheme.
There are six prognostic equations: one each for the three ve-
locity components ( , , and ), the liquid water potential tem-
perature , the total water mixing ratio , and the rain-
water/snow mixing ratio . The pressure is diagnosed
through a Poisson equation. The temperature and the cloud
water/ice mixing ratio are diagnosed from the prog-
nostic variable by assuming that all vapor in excess of the sat-
uration value is converted to cloud water (or ice depending on
temperature).
The 4DVAR scheme in VDRAS fits the model prediction to

observations over a specified time period; thereby a set of op-
timal initial conditions of the constraining numerical model that
minimize a cost function can be obtained. The cost function in-
cludes three terms: a background term that measures the depar-
ture from a short forecast (typically 5 min) starting from the pre-
vious cycle 4DVAR analysis; an observation term that measures
the difference between the radial velocity and reflectivity obser-
vations and their model counterparts; a mesoscale background
term to ensure that the analysis is not too far from a mesoscale
analysis. The detailed form of the cost function can be found
in [33].
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The mesoscale analysis is obtained using a 3-D objective
analysis technique that combines conventional observations
from radiosonde, profiler, Velocity Azimuth Display (VAD)
profile from radar, and surface observations with a mesoscale
model analysis as a first guess. These nonradar data and
radar-derived VAD profiles are analyzed prior to the 4DVAR
radar data assimilation to obtain a background environment for
the convective-scale features that are represented by Doppler
radars. This two-step approach enables the data assimilation
system to take into account the different representative scales
of the observations and allows the use of a small assimilation
window (and hence a rapid update cycle) for the high-temporal
resolution radar observations. The mesoscale analysis also
provides boundary conditions for the subsequent radar data
assimilation. The detailed description of the mesoscale analysis
can be found in [33].
After the mesoscale background is obtained and the radar ob-

servations are preprocessed and quality-controlled, the VDRAS
4DVAR procedure (indicated by the yellow boxes in Fig. 10) is
executed with the cloud model as the constraint with an assim-
ilation window of 12 min. The cost function is minimized it-
eratively using a quasi-Newton conjugate gradient method with
the gradient provided by the backward integration of the adjoint
model. The forecast background represented in the first term
of the cost function is obtained by integrating the cloud model
5 min forward after the 4DVAR assimilation is finished in the
last cycle. With the temporal window of 12 min in the 4DVAR
assimilation, 3 min in the 4DVAR assimilation, three scanning
Doppler radar volumes are assimilated. The mesoscale analysis
is updated at the start time of each 4DVAR assimilation cycle
using updated surface observations and VAD analysis. The up-
dated analyses of three-dimensional wind, temperature, water
vapor, and microphysical variables are produced through the
4DVAR assimilation.
To test its applicability for observing wind ramps, VDRAS

was installed over part of the Xcel Energy service area, covering
wind farms in Colorado, New Mexico, and Texas (see Fig. 11)
with an initial horizontal resolution of 4 km and a vertical res-
olution of 200 m. Low-level wind analyses are produced every
18 min by assimilating data from eight WSR-88D radars and
METAR surface stations usingWRF-RTFDDA as a background
and first guess.
VDRAS wind analyses of several ramp cases have been ana-

lyzed and evaluated. Here, we report the results from two case
studies (others are reported in [34]). The first case occurred on
June 8, 2010 and featured a line of convective storms when
a cold front passed through the wind farms in Northern Col-
orado near the border of Nebraska. A very strong cold pool de-
veloped as a cold front moved southeastward. The associated
strong wind passed the wind farms in the Northern Colorado.
The second ramp case occurred on July 10–11, 2010 and was as-
sociated with scattered convective activity in a dissipating stage.
Fig. 12 shows the VDRAS analyses of perturbation temper-

ature [(a) and (b)] and wind speed [(c) and (d)]. Cold pools
generated by dissipating convective cells are analyzed [(a) and
(b)] and their evolutions from 230500 UTC to 000500 UTC are
clearly shown by comparing (b) with (a). The cold pool in the
northwest of the domain is the major cause of the wind ramp-up

Fig. 11. VDRAS domains for Xcel Energy wind ramp nowcasting.

Fig. 12. VDRAS analyses of perturbation temperature from the domain mean
(a) at 230500 UTC, July 10 and (b) at 000500 UTC, July 11, and of wind speed
(c) at 230500 UTC, July 10 and (d) at 000500 UTC, July 11. The horizontal
wind vectors from VDRAS are overlaid in all panels. The reflectivity greater
than 35 dBZ is shown in panels (a) and (b) by the red shade.

and wind ramp-down of the wind farms in Northern Colorado
near the border of Colorado and Nebraska. The wind change is
better shown by the wind speed plots in panels (c) and (d).
The VDRASwind analyses at the lowest model level (100 m)

are verified against observations at turbine hub height (approx-
imately 70 m). Fig. 13 shows the verification results of the two
study cases. The VDRAS wind agrees quite well with the tur-
bine hub height wind for the July 10–11 case, while the ramp on
June 8 from VDRAS has a 1-h delay. Preliminary examination
shows that the delay is attributed to the high vertical shear of
the wind on this day and the fact that the two types of data are
not located at the same height (70 m for the turbine hub wind
versus 100m for VDRAS). An interpolation scheme is being de-
veloped to better approximate wind speed at turbine hub height.
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Fig. 13. Verification of VDRAS wind analyses against averaged turbine hub
height wind observations at a Northern Colorado wind farm.

Another solution to align the two winds is to run VDRAS with a
higher vertical resolution so that the first model level coincides
with the turbine hub height.
Obtaining accurate and updated analyses is only the first

step toward improving 0- to 2-h nowcasting of ramp events.
To estimate the future location of the features identified
through VDRAS analyses, several approaches can be taken.
One method is feature extrapolation, in which a feature (e.g.,
convergence line) that has been identified is advected with
the wind, which can have either directional shifts or speed
gradients within the domain. A second approach is to directly
integrate the underlying VDRAS cloud-scale model. A pre-
vious study using VDRAS [35] suggests that the forecast of
a gust front and its associated sudden wind change produces
improved results when a 2-D advection velocity field was used
instead of the 3-D velocity field from the VDRAS analysis. A
third approach is to use the analysis as an initial condition for
other mesoscale models, such as the deterministic WRF model.
A recent study demonstrated that the 0- to 6-h forecasts with
WRF that were initialized with VDRAS analysis significantly
improved precipitation forecasts [36]. These techniques are
currently being investigated for enhancing wind forecasts.

V. SYSTEM VALUE

The NCAR/Xcel wind power forecasting system is being
used for both day-ahead trading and for real-time grid inte-
gration. Xcel Energy has performed a thorough cost analysis
comparing the impact of the system between 2008 (prior to
introduction of the new forecasts), 2009 (the year the wind
forecasting system was just beginning to be integrated), and
2010, when the wind power forecasting system was fully
integrated [37]–[39].
The day-ahead forecasts feed into the decisions of the en-

ergy traders and result in informing generators of the intention
to run or not run, commitments of gas units, and setting of in-
cremental prices for the following day [34]. The specifics of the
process, and thus, of the cost savings depend on the rules for
the particular independent system operating (ISO) market struc-
ture. Here we focus on the outcome for one service area, PSCo
as seen in Fig. 14, which plots the mean absolute percentage
error (MAPE), normalized by system capacity. Note that PSCo
is a region in complex terrain, an environment which has been
shown to be difficult to forecast [2]. The baseline for compar-
ison is the forecast used by Xcel Energy before implementing
NCAR’s system. In 2008 and most of 2009, Xcel meteorologists
downloaded winds from the North American Mesoscale Model

Fig. 14. Comparison of mean absolute error as a percentage of capacity be-
tween 2008 and 2011 for the PSCo service area.

(NAM) and used data soundings from nearby major wind cen-
ters as proxies for a wind plant’s wind speed forecast. The wind
speeds forecast between 45 and 80 m above ground level were
used as a proxy for hub height wind speed. Power conversion
was accomplished with the manufacturer’s power curve, then
scaled by the number of turbines at the wind plant and further
adjusted for wind plant turbine availability. Initial operating ca-
pability of the NCAR system came online in November 2009
and improvements were made periodically through 2011. A de-
crease in MAPE between 2009 and 2010 occurred every month
with a total reduction from 18% in 2009 (before the system was
operational) to 14.3% in 2010 for a total decrease of 20% in
MAPE. In 2011, there was a slight increase in MAPE as com-
pared to 2010 for the first three months (while remaining below
the 2009 level). This increase is directly traceable to several se-
vere icing events (the system does not currently forecast icing).
Then the MAPE continued to decrease for the rest of 2011. Sim-
ilar decreases in error were observed for NSP and somewhat
lower decreases for SPS, which has different governing rules
and was the last system to implement the forecast system.
Xcel has analyzed the annualized savings for improved fore-

casting from one year to the next using rigorous industry cost es-
timation methods. Between 2009 and 2010, they estimate a sav-
ings across the three systems of approximately $6.0M [38]. The
improvements continued throughout 2011 and they estimate an
additional $2.0 M savings on top of the 2010 figure. These sav-
ings are due to more efficient commitment and dispatching of
fossil fuel resources.
It is more difficult to break out the impact of wind power fore-

casting on real-time operations. At this point, however, Xcel
grid operators are comfortable with decommitting large coal
units when sustained wind events are predicted.
Another useful metric is assessing at what point a wind power

prediction system becomes more accurate than a persistence
forecast. By mid-2010, the NCAR system performed better than
persistence at one hour lead times as seen in Fig. 15.

VI. SUMMARY AND CONCLUSION

The NCAR/Xcel Energy integrated wind power forecasting
system components have been described in this paper. The phi-
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Fig. 15. Evolution of the 30-day running average NMAE of the DICast pre-
diction at one hour lead time.

losophy espoused here emphasizes blending of multiple tech-
nologies in a way that takes advantage of their respective pre-
diction skill across the forecast time horizon. The system was
designed to take advantage of real-time wind, power, and avail-
ability data from the wind farms and turbines, predicting wind
at each turbine, and using empirical power curves to translate
from wind speed to power output.
To that end, the system is configured to include tailored high

resolution mesoscale model data with assimilation (RTFDDA)
of wind farm-specific data, including the nacelle winds; a
30-member mesoscale ensemble system (E-RTFDDA); model
data from the national centers; ANalog-space Kalman Filter
(ANKF) and a quantile regression (QR) calibration scheme;
a statistical forecasting system (DICast) to perform MOS
and optimize weights to best match the nacelle wind speeds;
empirical power conversion; and a nowcasting system based
on VDRAS. Note that other system components are currently
being tested, including an observation-based expert system for
short-term forecasting and several data mining applications (to
determine availability and to assess icing, high speed cutouts,
and cold temperature cutouts). This wind power forecasting
system began accruing financial benefits to Xcel Energy shortly
after it was implemented and saved Xcel Energy approximately
$6.0 M in 2010 alone.
There are still many issues to be addressed in wind power

forecasting. Forecasting wind power ramps is in its infancy
and many advances remain to be made. Physical modeling of
icing conditions has not yet been adequately demonstrated.
Forecasting wind power for offshore wind farms has just begun
in Europe and has not been adequately addressed in the U.S.
A plethora of other enhancements and other approaches to the
forecasting problem are forthcoming. But this and other work
has certainly demonstrated the value of wind power forecasting
and how having such a system can enable grid integration of
this variable resource by both enhancing system reliability and
improving the economics of wind power.
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