Ensemble Filters: general descriptions and some thoughts on types and interfaces Anna Shlyaeva 15 June 2017

Ensemble filters: "types" generally used

Inputs:

x	state ensemble	<pre>type(state_ensemble)</pre>
$ar{x}$	mean state	<pre>type(state / state_vector?)</pre>
$X = \frac{1}{\sqrt{k-1}}(x - \bar{x})$	ensemble of normalized perturbations	<pre>type(state_ensemble)</pre>

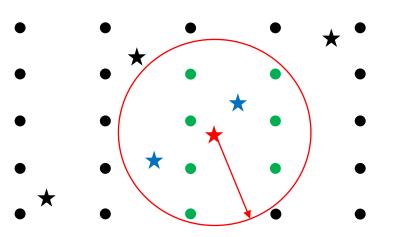
Compute:

$\bar{y} = H(\bar{x})$	mean observation prior	type(obs_vector)
$Y = \frac{1}{\sqrt{k-1}} \left(H(x) - \overline{H(x)} \right)$	normalized obs prior perturbations	type(obs_ensemble)
(or $Y = \frac{1}{\sqrt{k-1}} \mathbf{H}(x - \bar{x})$ where \mathbf{H}	I is observation operator Jacobian)	

Ensemble filters algorithms: very generally

Serial filters (EnSRF run at NCEP, DART, Canadian pert-obs EnKF):

for each obs batch

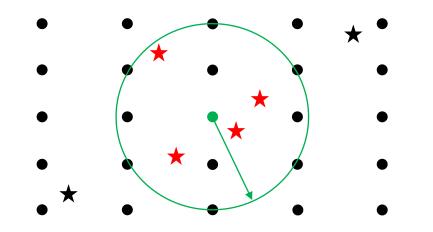

[opt] calc observation priors for the batch

for each state var to update

update ensemble state var

[opt] for each obs prior to update

[opt] update ensemble obs prior



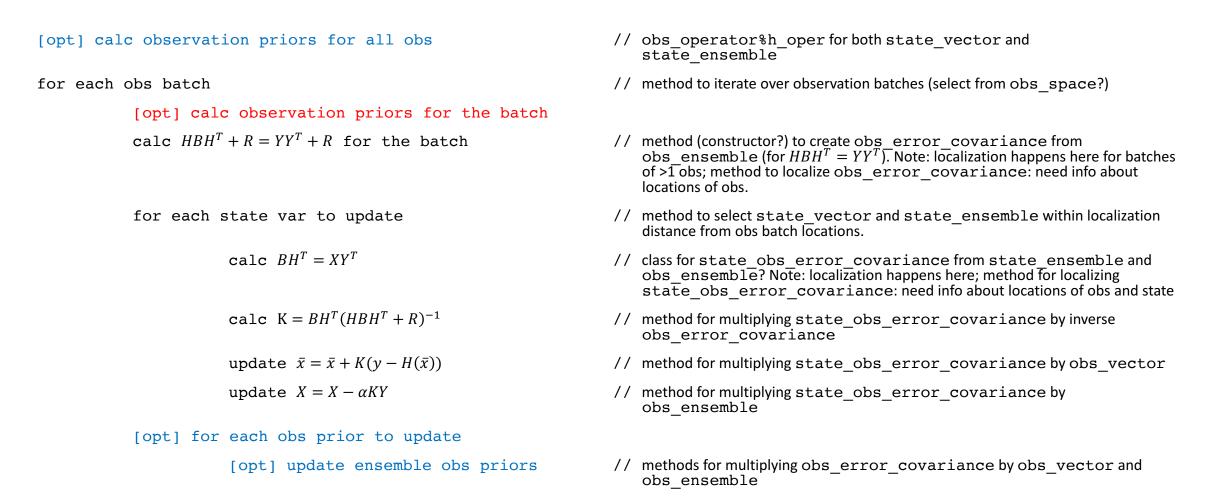
LETKF (option in NOAA EnKF; UMD LETKF):

for each state var to update

find observations that are used for the update

update ensemble state var

Ensemble filters algorithms: very generally


For all algorithms we need to have methods to select subsets of observation vectors/ensembles and state vector/ensembles (or observation space and state space) to:

- Iterate:
 - over observation [batches] in serial filters: randomly, sequentially, 'smartly' (e.g., first use the observations with the greatest impact, or group observations that are nearby in the batch)
 - over gridpoints in LETKF
- Select obs/state within some distance from some location.

We would need locations (separate type) for both observation and state classes.

Q: is 'within some distance from some location' always a simple concept (say, just great circle distance)?

More detailed algorithms: serial EnSRF

More detailed algorithms: LETKF

calc observation priors for all obs

for each state var to update
 find 'local' observations

calc $Y^T R^{-1}$

calc
$$\widetilde{P^{a}} = (Y^{T}R^{-1}Y + (k-1)\mathbf{I})^{-1}$$

calc $W^{a} = ((k-1)\widetilde{P^{a}})^{1/2}$
calc $\overline{w^{a}} = \widetilde{P^{a}}Y^{T}R^{-1}(y-H(\overline{x}))$
calc w^{a} as $W^{a} + \overline{w^{a}}$
calc $x = x + Xw^{a}$

- // obs_operator%h_oper for both state_vector and
 state_ensemble
- // method to iterate over gridpoints (select from state_space?)
- // method to select obs_vector and obs_ensemble within localization
 distance from gridpoint location.
- // this is the transpose of obs_ensemble (another class?). Needs a method of multiplying itself by inverse obs_error_covariance. Note: localization happens here: using $C \circ R^{-1}$ instead of R^{-1} . Where should it be?
- // this is kxk matrix. Class ensemble_error_covariance?
- // method for square root or eig, eiv for ensemble_error_covariance
- // this is k-size vector. ensemble_vector class?