
Ensemble	Filters:	
general	descriptions	and	

some	thoughts	on	types	and	interfaces
Anna	Shlyaeva
15	June	2017



Ensemble	filters:	“types”	generally	used
Inputs:	
𝑥 state	ensemble	 type(state_ensemble)

𝑥̅ mean	state	 type(state / state_vector?)

𝑋 = %
&'%� 𝑥 − 𝑥̅ ensemble	of	normalized	perturbations type(state_ensemble)

Compute:
𝑦+ = 𝐻 𝑥̅ mean	observation	prior type(obs_vector)

𝑌 = %
&'%� 𝐻(𝑥) − 𝐻(𝑥) normalized	obs prior	perturbations type(obs_ensemble)

(or 𝑌 = %
&'%� 𝐇(𝑥 − 𝑥̅) where	𝐇 is	observation	operator	Jacobian)



Ensemble	filters	algorithms:	very	generally
Serial	filters	(EnSRF run	at	NCEP,	DART,	Canadian	pert-obs EnKF):
for each obs batch

[opt] calc observation priors for the batch

for each state var to update

update ensemble state var

[opt] for each obs prior to update

[opt] update ensemble obs prior

LETKF	(option	in	NOAA	EnKF;	UMD	LETKF):
for each state var to update

find observations that are used for the update

update ensemble state var



Ensemble	filters	algorithms:	very	generally
For	all	algorithms	we	need	to	have	methods	to	select	subsets	of	observation	vectors/ensembles	and	
state	vector/ensembles	(or	observation	space	and	state	space)	to:
• Iterate:

• over	observation	[batches]	in	serial	filters:	randomly,	sequentially,	‘smartly’	(e.g.,	first	use	the	
observations	with	the	greatest	impact,	or	group	observations	that	are	nearby	in	the	batch)

• over	gridpoints in	LETKF
• Select	obs/state	within	some	distance	from	some	location.	
We	would	need	locations	(separate	type)	for	both	observation	and	state	classes.
Q:	is	’within	some	distance	from	some	location’	always	a	simple	concept	(say,	just	great	circle	
distance)?



More	detailed	algorithms:	serial	EnSRF
[opt] calc observation priors for all obs // obs_operator%h_oper for	both	state_vector and	

state_ensemble

for each obs batch // method	to	iterate	over	observation	batches	(select	from	obs_space?)	

[opt] calc observation priors for the batch

calc 𝐻𝐵𝐻2 + 𝑅 = 𝑌𝑌2 + 𝑅 for the batch // method	(constructor?)	to	create	obs_error_covariance from	
obs_ensemble (for	𝐻𝐵𝐻2 = 𝑌𝑌2).	Note:	localization	happens	here	for	batches	
of	>1	obs;	method	to	localize	obs_error_covariance:	need	info	about	
locations	of	obs.

for each state var to update // method	to	select	state_vector and	state_ensemble within	localization	
distance	from	obs batch	locations.

calc 𝐵𝐻2 = 𝑋𝑌2 // class	for	state_obs_error_covariance from	state_ensemble and	
obs_ensemble?	Note:	localization	happens	here;	method	for	localizing	
state_obs_error_covariance:	need	info	about	locations	of	obs and	state

calc K = 𝐵𝐻2 𝐻𝐵𝐻2 + 𝑅 '% // method	for	multiplying	state_obs_error_covariance by	inverse	
obs_error_covariance

update 𝑥̅ = 𝑥̅ + 𝐾(𝑦 − 𝐻 𝑥̅ ) // method	for	multiplying	state_obs_error_covariance by	obs_vector

update 𝑋 = 𝑋 − 𝛼𝐾𝑌 // method	for	multiplying	state_obs_error_covariance by	
obs_ensemble

[opt] for each obs prior to update

[opt] update ensemble obs priors // methods	for	multiplying	obs_error_covariance by	obs_vector and	
obs_ensemble



More	detailed	algorithms:	LETKF

calc observation priors for all obs // obs_operator%h_oper for	both	state_vector and	
state_ensemble

for each state var to update // method	to	iterate	over	gridpoints (select	from	state_space?)

find ‘local’ observations // method	to	select	obs_vector and	obs_ensemble within	localization	
distance	from	gridpoint location.

calc 𝑌2𝑅'% // this	is	the	transpose	of	obs_ensemble (another	class?).	Needs	a	method	
of	multiplying	itself	by	inverse	obs_error_covariance.	Note:	
localization	happens	here:	using	𝐶 ∘ 𝑅'% instead	of	𝑅'%.	Where	should	it	be?

calc 𝑃;< = 𝑌2𝑅'%𝑌 + 𝑘 − 1 𝐈 '% // this	is kxk matrix.	Class	ensemble_error_covariance?

calc 𝑊; = (𝑘 − 1)𝑃;< %/B
// method	for	square	root	or	eig,	eiv for	ensemble_error_covariance

calc 𝑤; = 𝑃;<𝑌2𝑅'% 𝑦 − 𝐻 𝑥̅ // this	is	k-size	vector.	ensemble_vector class?	

calc 𝑤; as 𝑊; + 𝑤;

calc 𝑥 = 𝑥 + 𝑋𝑤;


