
Joint E↵ort for Data assimilation Integration

Unified Forward Operator Code Sprint

Yannick Trémolet

JCSDA

6 November 2017



Modular

• The weather forecasting problem can be broken into manageable
pieces:

– Data assimilation (or ensemble prediction) can be described without
knowing the specifics of a model or observations.

– Minimisation algorithms can be written without knowing the details of
the matrices and vectors involved.

– Development of a dynamical core on a new model grid should not
require knowledge of the data assimilation algorithm.

• Unfortunately, in most cases, Fortran modules don’t lead to modular
codes.

– Very few codes use Fortran modules as more than glorified common
blocks.

• We need to go beyond modules: classes and object oriented
programming.

Y. Trémolet JEDI 1 / 27



Separation of concerns

• All aspects exist but scientists focus on one aspect at a time.

• Di↵erent concepts should be treated in di↵erent parts of the code
that interact through interfaces.

• Each class has clearly defined and limited responsibilities.

Y. Trémolet JEDI 2 / 27



Generic UFO

• JEDI/UFO introduce standard interfaces between models and
observations

• Observation operators are independent of the model and can easily be
shared, exchanged, compared

Y. Trémolet JEDI 3 / 27



Generic UFO

• Interface classes have to be compatible between models and
observation operators

• The UFO is NOT:
– Attempting to access every possible model grid (or not grid)
– Attempting to force every model to cast its data structures into a

mother of all data structures that it can access

• The State must be able provide the value of the requested variables
at the requested locations

Y. Trémolet JEDI 4 / 27



Code Sprint Scope

• The focus of this code sprint will be the observation operator and its
interfaces

• Included:
– Scientific part of observation operators
– Quality control

• Excluded (but there will be other code sprints):
– Bias correction
– Horizontal interpolations
– IODA (code written will be an example of requirements)

Y. Trémolet JEDI 5 / 27



What we have

• Source code repositories:
– OOPS
– GSI
– FV3GFS, WRF, MPAS (if needed)
– CRTM
– UFO (empty)

• Data files:
– Low resolution GSI test case
– Observation data files (NetCDF and HDF)
– GFS state values interpolated at observation locations
– Routines to read/write data files

Y. Trémolet JEDI 6 / 27



What we have

• A working environment
– Repositories to share code
– Containers to test code
– Collaborative tools

• And also
– 12 developers
– 2 weeks
– Co↵ee! (and chocolate)

Y. Trémolet JEDI 7 / 27



What we have

• A working environment
– Repositories to share code
– Containers to test code
– Collaborative tools

• And also
– 12 developers
– 2 weeks
– Co↵ee! (and chocolate)

Y. Trémolet JEDI 7 / 27



Preliminary list of tasks

• Learn about
– OOPS and UFO
– Development environment
– Tools for collaboration

• Define data structures for
– Observations locations
– Interpolated fields (to obs locations)
– Observation vectors
– Simplified observation space

Y. Trémolet JEDI 8 / 27



Preliminary list of tasks

• For selected ”plain” observation operators:
– Determine required inputs (fields and metadata)
– Identify outputs
– Encapsulate inputs and outputs
– Interface inputs and outputs with framework
– Write tests
– Run tests and validate code

• Add quality control
– Identify required inputs
– Evaluate scope for generic QC operators
– Write tests
– Run tests and validate code

Y. Trémolet JEDI 9 / 27



Tools



Git flow

Ti
m
e

release 
branches masterdevelop hotfixes

feature 
branches

Feature 
for future 

release

Tag

1.0

Major 
feature for 

next release

From this point on, 
“next release” 

means the release 
after 1.0

Severe bug 
fixed for 

production:
hotfix 0.2

Bugfixes from 
rel. branch 

may be 
continuously 
merged back 
into develop

Tag

0.1

Tag

0.2

Incorporate 
bugfix in 
develop

Only 
bugfixes!

Start of 
release 

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-succesful-git-branching-model

License: Creative Commons BY-SA

Y. Trémolet JEDI 10 / 27



Git flow cheat sheet

Get the code:
git clone https://user@github.com/UCAR/oops.git oops

cd oops

Get and track the develop branch:
git checkout --track origin/develop

Start git-flow:
git flow init -d

Start a new feature branch:
git flow feature start mygreatstuff

Publish a feature branch to the origin repository:
git flow feature publish mygreatstuff

Track a feature branch from the repository (after it has been published):
git flow feature track otherstuff

Y. Trémolet JEDI 11 / 27



cmake/ctest

• cmake is a modern open-source system that manages the build
process (i.e. generates makefiles) in an operating system and
compiler-independent manner.

• OOPS is built with ecbuild, a set of cmake macros.

• It can track dependencies between projects (for example eckit, fckit,
oops).

• There is a mechanism for declaring and running unit (and other) tests.

Y. Trémolet JEDI 12 / 27



cmake/ctest cheat sheet

Typical first use (from build directory, outside of source):

ecbuild -DFCKIT_PATH=${BUILD }/ fckit \
-DECKIT_PATH=${BUILD }/ eckit ${SRC}/oops

make -j4
ctest

After modifying the code:

make -j4
ctest

To see full output for one test:

ctest -VV -R test_qg_obsoperator

The name of the test is a regular expression and behaves as it has a * at
the end.

Y. Trémolet JEDI 13 / 27



Unit testing

• Using Boost framework

• Easy for plain code

• More complicated with templated classes (99% of OOPS)

• Boost unit test framework is very fussy about compiler versions

• We will invesgigate other options (2018)

Y. Trémolet JEDI 14 / 27



Object Oriented Programming

Y. Trémolet JEDI 15 / 27



Object Oriented Prediction System

(OOPS)



Configuration

• eckit::Configuration class
– Mostly used for holding user defined parameters (21st century
NAMELIST)

– Can be constructed from JSON or YAML files
– No method to modify contents

• eckit::LocalConfiguration class
– Sub-class of eckit::Configuration
– Add methods to modify or add elements
– As the name implies, the intended use is for local variables (in OOPS

arguments are always passed as eckit::Configuration)

Y. Trémolet JEDI 16 / 27



Configuration examples

Get an element:

const std:: string bgn(conf.getString("Begin"));
const double tol = conf.getDouble("tolerance");

An element can be a subtree:

eckit:: LocalConfiguration conf;
fullConfig.get("ObsBias", conf);

Or vector:

std::vector <eckit :: LocalConfiguration > obsconf;
conf.get("ObsTypes", obsconf );

Construct from a part of a larger Configuration:

const eckit:: LocalConfiguration modelConfig(fullConfig , "Model");

Note: get will return an empty Configuration if the element does not
exist, the constructor will fail.
And there is a Fortran interface!

Y. Trémolet JEDI 17 / 27



JSON file

Y. Trémolet JEDI 18 / 27



Forecast Model

Y. Trémolet JEDI 19 / 27



Forecast Model

Log::info() << "Model: forecast starting: " << xx << std::endl;
this ->initialize(xx);
post.initialize(xx, end , model_ ->timeResolution ());
while (xx.validTime () < end) {

this ->step(xx, maux);
post.process(xx);

}
post.finalize(xx);
this ->finalize(xx);
Log::info() << "Model: forecast finished: " << xx << std::endl;

• Log is a print for the 21st century: each channel can be directed to
stdout, web site, operators, database... without touching the code

• xx is the state passed as argument (it is Printable)

• The PostProcessor is the key to achieve separation of concern.
Everything that needs doing during the model integration but is not
part of the model (i.e. does not modify the state) is a
PostProcessor.

Y. Trémolet JEDI 20 / 27



H(x): Observer, HofX and UFO

• The Observer class implements the computation of H(x) as the
model is running.

• It is a PostProcessor.

Y. Trémolet JEDI 21 / 27



H(x) HofX and UFO

• For any realistic application the model is needed.

Y. Trémolet JEDI 22 / 27



State

Y. Trémolet JEDI 23 / 27



Variables

Y. Trémolet JEDI 24 / 27



GeoVaLs

Y. Trémolet JEDI 25 / 27



ObservationSpace

Y. Trémolet JEDI 26 / 27



ObsVector

Y. Trémolet JEDI 27 / 27


