
Driver Requirements (From CPD document)

Classification used in tables below
D = dycore and model application development
O = operations
P = parameterization development
U = model user

“Type” updated to priority (1-3)
1 = First prototype
2 = First release (end of year?)
3 = Desirable (for future, or not precluded)

ID Class Priority Item Reason Source

D1 D
P

1 Driver allows
parameterizations to be
agnostic of dycore.

Scale awareness in
parameterizations must
support unstructured grids
(pass grid cell area as an
array, not single variable).

GMTB

D2

D 2 Provides easily
configurable entry point
for passing information
to/from physics
parameterizations.

Transfer of data through
single driver entry point;
facilitates grid interpolation
and conversion, array
reordering, variable
conversion, destaggering.

GMTB

D3

P 1 Expandable to include
new variables, of any
dimensionality, in case
parameterizations
newly added to CCPP
need information that
cannot be obtained
from existing Driver
variables.

 GMTB

D4

D
P
U

3 Ability to select different
parameterizations of
the same category via
external option
selection.

Provides flexibility and
ease-of-use; allows direct
comparison between
schemes, possibly within an
existing suite.

GMTB

D5

D
P
U

1 Parameterizations can
be used as suites or be
selected individually.

Suites are useful in both an
operational and research
environment; the ability to
choose individual schemes
is important for testing and
development.

GMTB

D6

D
P
U

2 Order and frequency of
calls to individual
parameterizations is
configurable.

 GMTB

D7

D
P

1 Capability to share
same instance of
physical constants with
all model components
(dycore, Driver,
parameterizations).

 GMTB

D8

D
O
P
U

2 Availability of
documentation
including references,
functional descriptions
of code, guidance for
how to call
parameterizations as
suites or individually in
any order, and
guidance on how to
connect new
parameterizations or
dycores.

GMTB

D9

D
O
P

1-3 Driver is developed
using modern and
robust coding standards
balancing portability,
computational
performance, usability,
maintainability, and
flexibility

For NCAR and community
purposes: 1 usability and 1
computational performance
should be prioritized over 2
flexibility (either 2 or 3).
Portability here = across
‘models’ (not a high priority)

GMTB
and
various,
includin
g
modifie
d
Kalnay
rules

D10

P 1-2 Ability to drive
parameterizations or
suites in “offline mode”.

Offline mode allows for
sensitivity and
process-based studies; CPD
takes in ‘data’ and runs

GMTB

parameterizations. I.e.
Single column.

D11

D
O
P

1 Ability to pass arbitrary
“chunks” of dycore
variables to
parameterizations.

Increases computational
performance. (Related to D9
performance)

GMTB,
mod.
Kalnay
6,7

D12

P
U

1 Ability to provide
variables computed by,
or for, use within any
parameterization for
diagnostic purposes to
the model I/O
component.

Important for testing,
development, and
evaluation.

GMTB

D13

D
P

1 Ability to provide
variables computed by,
or for, use within any
parameterization to
external models.

Facilitates consistency with
other Earth System models
(e.g. ability to share
roughness length between
parameterizations and
LSM). ​Note that coupling to
external models will be done
at the dycore level, not by
the CPD. CPD will provide
variables from physics.

GMTB

D14

D
P

2 The Driver will not
modify answers
produced by the
parameterizations.

Provides a mechanism to
prove inadvertent errors
were not introduced by the
driver. [Kind of assume this
is the case?]
[Transformations (e.g.
height) will be explicit]

GMTB

D15

P
U

2 Allows run-time
specification of
parameters (possibly
greater than 1D).

Allows rapid tuning and
sensitivity experimentation.
(Specify namelist variables)

GMTB

D16

D
P

2 More than one code
variable with the same
physical meaning but
different names cannot
exist.

Minimizes ambiguity. GMTB

D17

D
O
P

3 Code management is
designed so scientists
can use and propose
contributions to Driver.

Meets the NCEP goals for
community modeling and
enhances R2O.

GMTB

D18 D
P
U

1 Parameterizations can
specify to the driver
what fields it requires,
which it generates (or
modifies), and which
fields it ‘owns’ (if any).

Some parameterizations
provide data for other
parameterizations. but
require that other
parameterizations do not
modify the field.

NCAR

D19 D
P

1 Parameterizations and
physics driver must be
able to communicate
information to allow the
host model to write
state to restart, restart
from previously written
files, and to reset their
internal state during a
run from restart files.

The restart requirement is
essential both to long runs
and for data assimilation.

NCAR

D20 Does not exist

D21 2 Host must
communicate index
ordering (which index is
horizontal dimension,
which index is vertical
dimension, etc.) to
parameterizations.

Parameterizations must
know the ordering of input
and output data so that it
can do data rearrangement
if necessary.

NCAR

D22 D
P

2-3 The physics driver must
be able to be
multiply-instantiated
(i.e., one run supports
multiple, independent
physics packages).

This allows a model to call,
for example, a chemistry
package on a different time
scale and possibly different
grid than the mainline
physics package.

NCAR

D23 D
P

2 The physics driver must
be able to receive error
codes from any
parameterization and
pass them to the host
model for output and
model termination.

If we are discouraging
parameterizations from
doing I/O and from stopping
the model, we must pass
this information to the host
model

NCAR

D24
(a)

D
P

2 The physics driver
system must produce
Fortran code as part of
the preprocess step.

Scientists and performance
engineers must be able to
inspect the code that is part
of the model run.

NCAR

D25 D
P

2 The physics driver must
be able to communicate
arrays of variables
(e.g., an array of
tracers) whose extent is
only known at compile
time.

Many chemistry packages
operate on arrays of species
which may only be known at
compile time. The metadata
for each species must be
passed through the driver
from this host model to the
parameterizations.

NCAR

D26 D 2 The physics suite
definition must be able
to define both process
split and time split
sequences as well as
shadow (diagnostic)
parameterizations.

Diagnostic
parameterizations sample
the model state but do not
update the state or
contribute to tendencies.

NCAR

D27 D
P

2 The physics driver
system must be able to
handle fields with
multiple time levels.

 NCAR

D28 D
P

2 The physics driver
system must be
configurable in an
offline mode where a
single parameterization
or suite is driven from
captured data.

Offline studies of a physics
parameterization are
essential during the
development cycle. Merge
with D10

NCAR

D29 D
P

1 The physics driver
system must be able to
capture data during
runtime for offline
studies

This functionality supports
D28.

NCAR

D30 D
P

1 Pressure field handed
to physics schemes
must indicate whether
they are wet or dry and,
if wet, which water
phases are included.

Physics parameterizations
need to either make
calculations based on the
nature of the pressure field
or to convert the pressure
field (e.g., to dry) before
doing calculations.

NCAR

See physics dynamics
coupling

D31 D
U

3 Run-time selection of
physics suites and
schemes

Regression testing,
multi-physics ensembles
Needs to also NOT compile
everything.

NCAR

D32 D
P

3 The physics driver
system must operate on
systems which do not
support dynamic library
loading.

Some leadership-class HPC
systems do not support
dynamic libraries.

NCAR

D33 D
P

3 The physics driver
system must support
processing (e.g.,
averaging, max/min
selection) of diagnostic
fields which may be
output multiple times
during a run.

Parameterizations are often
called multiple times during
a suite time step. Since the
host model is not active
during this time, the driver
(and / or parameterizations)
must be able to handle
multiple diagnostic outputs.
Less important (can work
around if hard)

NCAR

D34 D
P

2-3 The driver must support
passing of derived
types between host
model and physics
schemes

When porting new physics
that originally used DDTs in
their argument list, it may be
helpful to call the schemes
exactly as they were called.
Also, schemes may call
libraries that store, e.g.,
state in a derived type.

NCAR

D35 D
P

1 Driver supports multiple
kind-types for integers
and reals

Mixed-precision physics
(may need more analysis as
we proceed)

NCAR

D36 D
P

2 Driver supports calling
of generic physical
parameterizations
(including land-surface,
simple ocean,
combined schemes,
purely diagnostic
schemes)

Capability to call
land-surface model as a
physics parameterization is
required for stand-alone
WRF and MPAS.
Parameterizations should
not read files, but analytic
forcing is fine.

NCAR

D37 D 2 Host model and CPD At run-time (initialization), NCAR

P may interrogate each
other during a
“handshaking” phase

the host model may need
information about physics
choices in order to properly
allocate memory; the CPD
may need information on
which fields are available in
the host model

D38a D
P

2 The host model is
responsible for
allocating all data that
flows between the host
model and physics
schemes

What is the source of this
requirement? [See below:
think a parameterizaton can
define something]. Inputs
and outputs touch the host
model

NCAR

D38b D
P

2 The CPD must facilitate
passing of data
between physics
schemes, which is
never seen by the host
model

[Semantic: if the CPD sees
it, it is the host model?]

NCAR

D39 D
P

3 The CPD should
provide “hooks” to
facilitate debugging and
general scheme
development

For example: can we call a
developer-defined function
before and after each call to
a physics scheme to enable
checking of field values?
[Assume this would be a
parameterization]

NCAR

D40 D
P

3 Internally, the CPD
should support the
association of arbitrary
(and extensible)
metadata with fields

This would facilitate, e.g.,
range checks on fields
before and after calls to
schemes (through hooks),
tracking of data flow in the
CPD, and it may be used to
implement matching of units,
long_name, etc. of fields

NCAR

D41 P 3 Ability to deal with
‘stencils’ or subcolumns

May need some adjacent
information available.

Physics (CCPP) Requirements
CCPP = Common Community Physics Packages
Intent is NCAR will support it’s own ‘subset’ of these for the community

ID Class Type Item Reason Source

C1 P 1 Parameterizations in the
CCPP are required to
conform to the standard
variables used in the
Driver.

In order to avoid being
intrusive to the
parameterizations, if
necessary suites will have
an associated pre/post
interface to convert from
variables used in the driver
to variables used in the
parameterization.

GMTB

C2

D
U

2 Multiple
parameterizations of
each category coexist in
the CCPP.

A single package can
support all NCEP needs
(including research and
development).

GMTB

C3

P
U

N/A Objective and
transparent criteria are
used to guide number
and choice of
parameterizations
included in CCPP.

A Physics Review
Committee reviews test
results and ensures quality
control of parameterizations
and has authority over
portfolio of supported
parameterizations.
Maintenance is kept to a
manageable level while
focusing on operational and
research applications.

GMTB

C4 P
U

3 Standard and
documented testing
procedures and metrics
applied by all physics

The Physics Review
Committee defines
minimum testing
procedures and metrics.

EMC

developers. This may include specific
codes/tools to be employed
in the test harness.

C5

P
U

2 Standard and
documented observation
and model databases for
testing.

Both observation and
model-generated datasets
need to be selected and
available for testing. This
ensures that the Review
Committee has material that
is easy to judge. Tools to
subset or process data may
be part of this, as
necessary.

EMC

C6

D
P
U

3 Parameterizations
expose all parameters
that are necessary for
tuning to a particular
model or application.

Tunable aspects of
parameterizations will be
configurable by run-time
settings, e.g. Fortran
namelists, allowing a single
software instance of a
parameterization to satisfy
all foreseeable models and
applications.

GMTB

C7

D
P

1 Capability to share same
instance of physical
constants with all model
components (dycore,
Driver,
parameterizations).

 GMTB

C8

P 1 Code management is
designed so community
scientists can use and
propose contributions to
the CCPP.

Meets the NCEP goals for
community modeling and
enhances R2O.

GMTB

C9

D
P
U

3 Availability of
documentation including
references, functional
descriptions of code,
information on
inputs/outputs to
parameterizations, and
guidance on how to add
new parameterizations.

 GMTB

C10

D
P
U

3 Employs modern and
robust coding standards
supporting portability,
computational
performance, usability,
maintainability, and
flexibility and follow
coding guidelines listed
in the ​Coding Standards​.

 GMTB
and
various,
including
modified
Kalnay
rules

C11 1 Parameterizations may
read non-decomposed
data (such as look-up
tables), and other arrays
that do not have scope
outside of the physics
scheme.

 NCAR

C12 3 Parameterizations must
pass a return code to
the driver to indicate
success or failure.

This allows status
communication without the
parameterization trying to
write log messages.

NCAR

C13 P 2 The system that
translates the
parameterization
metadata cap into a
driver-callable interface
must produce Fortran
code as part of the
preprocess step.

Scientists and performance
engineers must be able to
inspect the code that is part
of the model run.

NCAR

C14 P 2 A physics
parameterization must
be able to conditionally
compute a diagnostic
field depending on
whether or not the field
will be output.

Some diagnostic
calculations are expensive.

NCAR

C15 P 1 Physics schemes must
not implement
parallelism (OpenMP,
MPI) internally

Threading in individual
schemes would preclude
any sane threading
mechanism in the CPD.
Task parallelism in a
scheme may interfere with
MPI at the model level.

NCAR

https://docs.google.com/document/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.21je8qtnh1hj

C16 P 1 Every physics scheme
entry point (interface
routine) is documented
with specially formatted
metadata.

The metadata is used to
build “cap” routines to be
called by the framework.

NCAR

C17 P 2-3 Physics schemes are
1-d /
column-independent

We have no idea how to
handle schemes that
influence neighboring
columns that may then
need to be communicated

NCAR

C18 P 1 Schemes must follow
standardized naming for
entry points

Calls to schemes may be
automatically constructed,
and we’d need to be able to
identify, e.g., the init,
compute, and finalize entry
points

NCAR

C19 P 1 Parameterizations can
specify to the driver
what fields it requires,
which it generates (or
modifies), and which
fields it ‘owns’ (if any).

Some parameterizations
provide data for other
parameterizations. but
require that other
parameterizations do not
modify the field.

NCAR

C20 P 1 Driver must have
knowledge of its internal
vertical level and
indexing (e.g., index 1
equals model top). It
must either use the
model vertical level or
convert to a ‘standard’
vertical level. In either
case, this level
information must be
communicated to the
parameterizations in
case they use a different
vertical scheme.

Models have different
vertical schemes as do
physics parameterizations.
Parameterizations must
know the vertical scheme of
its interface fields so that
they can convert if they use
a different scheme.

NCAR

C21 P 1 A parameterization
needs the ability to
specify to the host
model which species
will be transported.

A chemistry package may
have species which are not
to be advected.

NCAR

C22 P 3 Parameterization
metadata should allow a
field specifying allowed
field ranges.

As an example, a
temperature field could
generate an error if outside
the range of 100K -- 345K.
Could be used with D39.

NCAR

