
Joint Effort for Data assimilation Integration

Object Oriented Prediction System (OOPS)

Yannick Trémolet

JCSDA

04 June 2018



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



Evolution of Forecasting

• The expectations of society for better weather (and related) forecasts are
pushing us to account for more of the Earth system.

• Science and models have progressed in many areas:

– Atmosphere,
– Land surface,
– Ocean,
– Sea ice,
– Atmospheric composition...

• Each model is becoming more and more complex as science progresses.

• The models are becoming more and more coupled to account for interactions
between all these aspects.

Y. Trémolet JEDI - OOPS 1 / 18



Earth System Data Assimilation

• Data assimilation systems have been developped for each model.

• Coupled data assimilation requires some common infrastructure.

Y. Trémolet JEDI - OOPS 2 / 18



Evolution of Data Assimilation

• Data assimilation algorithms have become very complex over the years:

– Number and types of observations,
– Minimisation and preconditioning,
– Observation bias correction,
– Sophisticated TL/AD models,
– Sophisticated observation operators,
– Wavelet Jb...
– It is still being developped and improved (weak constraint).

• Today’s best data assimilation algorithms are hybrid.

– Ensemble DA (EDA, 4D-En-Var, EVIL, EnKF) system for computing
background error covariances and initializing ensemble forecasts,

– Variational DA system to provide the high resolution (or best) analysis.

• Data assimilation systems have become so complex that comparing all
options is almost impossible.

Y. Trémolet JEDI - OOPS 3 / 18



Scalability

Scalability is the ability of a system, network, or process to handle a growing
amount of work in a capable manner or its ability to be enlarged to
accommodate that growth (wikipedia)

• This applies to running on increasly large number of processors

• It also applies to:

– the number of code units
– the number of developers/users/institutions involved

Y. Trémolet JEDI - OOPS 4 / 18



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



Flexible

• It should be easy to modify the system (new science, new functionality,
better scalability...)

• A requirement is that a change to one aspect should not imply changes all
over the place.

– No code duplication: same modification in many places but also difficult to
find and leads to bugs.

– No global variables: a modification might have unforeseen consequences
anywhere.

– Think of it in terms of locality in the source code (as opposed to discontinous
code that jumps all over the place).

Y. Trémolet JEDI - OOPS 5 / 18



Reliable

• The code must run without crashing.

• Additional aspects of reliablity are application dependent. For a complex
system, the code must do what the user thinks it does:

– Many experiments are wasted because it is not always the case.
– The code must run with the user supplied value (namelist, json, yaml...) or

abort.

• A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

• Lots of testing:

– Internal consistency and correctness of results (this is not meteorological
evaluation),

– Mecanism to run all the tests easily,
– Tests run automatically on push to source repository.

Y. Trémolet JEDI - OOPS 6 / 18



Modular

• The weather forecasting problem can be broken into manageable pieces:

– Data assimilation (or ensemble prediction) can be described without knowing
the specifics of a model or observations.

– Minimisation algorithms can be written without knowing the details of the
matrices and vectors involved.

– Development of a dynamical core on a new model grid should not require
knowledge of the data assimilation algorithm.

• Separation of concerns:

– All aspects exist but scientists focus on one aspect at a time.
– Different concepts should be treated in different parts of the code.

• Unfortunately, in most cases, Fortran modules don’t lead to modular codes.

Y. Trémolet JEDI - OOPS 7 / 18



Object-Oriented Programming

• We need a very flexible, reliable, efficient, readable and modular code.

– Readability improves staff efficiency: it is as important as computational
efficiency (it’s just more difficult to measure).

– Modularity improves staff scalability: it is as important as computational
scalability (it’s just more difficult to measure).

• This is not specific to the IFS: the techniques that have emerged in the
software industry to answer these needs are called generic and
object-oriented programming.

• Object-oriented programming does not solve scientific problems in itself: it
provides a more powerful way to tell the computer what to do.

Y. Trémolet JEDI - OOPS 8 / 18



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States :

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations :

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States :

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations :

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States :

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations :

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States properties:

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations :

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States properties:

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations properties:

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

• What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

• States properties:

– Input, output (raw or post-processed).
– Access values.
– Move forward in time (using the model).
– Copy, assign.

• Observations properties:

– Input, output.
– Simulate observation from a state (observation operator).
– Copy, assign.

• We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet JEDI - OOPS 9 / 18



OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

• Increments:

– Basic linear algebra operators,
– Evolve forward in time linearly and backwards with adjoint.
– Compute as difference between states, add to state.

• Departures:

– Basic linear algebra operators,
– Compute as difference between observations, add to observations,
– Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
– Output (for diagnostics).

• Covariance matrices:

– Setup,
– Multiply by matrix (and possibly its inverse).

Y. Trémolet JEDI - OOPS 10 / 18



OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

• Increments:

– Basic linear algebra operators,
– Evolve forward in time linearly and backwards with adjoint.
– Compute as difference between states, add to state.

• Departures:

– Basic linear algebra operators,
– Compute as difference between observations, add to observations,
– Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
– Output (for diagnostics).

• Covariance matrices:

– Setup,
– Multiply by matrix (and possibly its inverse).

Y. Trémolet JEDI - OOPS 10 / 18



OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

• Increments:

– Basic linear algebra operators,
– Evolve forward in time linearly and backwards with adjoint.
– Compute as difference between states, add to state.

• Departures:

– Basic linear algebra operators,
– Compute as difference between observations, add to observations,
– Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
– Output (for diagnostics).

• Covariance matrices:

– Setup,
– Multiply by matrix (and possibly its inverse).

Y. Trémolet JEDI - OOPS 10 / 18



OOPS Abstract Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

• The 4D-Var problem, and the algorithm to solve it, can be described with a
very limited number of entities:

– Vectors: x, y, g and δx.
– Covariances matrices: B, R (and eventually Q).
– Two operators and their linearised counterparts: M, M, MT , H, H, HT .

• All data assimilation schemes manipulate the same limited number of entities.

• For future (unknown) developments these entities should be easily available
and reusable.

• We have not mentioned any details about how any of the operations are
performed, how data is stored or what the model represents.

Y. Trémolet JEDI - OOPS 11 / 18



OOPS Abstract Design

• OOPS is independent of the model and the physical system it represents.

• Flexibility (including yet unknown future development) requires that this goes
both ways.

• The Models do not know about the high level algorithm currently being run:

– All actions are driven by the top level code,
– All data, input and output, is passed by arguments.

• Models interfaces must be general enough to cater for all cases, and detailed
enough to be able to perform the required actions.

• OOPS currently stops at the level of the calls to the forecast model and
observation operators but the same principle could be applied at any level.

Y. Trémolet JEDI - OOPS 12 / 18



OOPS Abstract Design

Applications Building Blocks Models

●States
●Observations
●Covariances
●Increments...

●Forecast
●4D-Var
●EDA
●EPS
●EnKF...

●Lorenz 95
●QG
●IFS
●NEMO
●Surface...

OOPS

• The high levels Applications use abstract building blocks.

• The Models implement the building blocks.

• OOPS is independent of the Model being driven.

Y. Trémolet JEDI - OOPS 13 / 18



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



State-Observations Interactions

• Two classes make the link between the model and observation spaces:

– Locations
– ModelAtLocations

• The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

• Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

• The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

• Preserves encapsulation (model grid not visible in observation operator).

• But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet JEDI - OOPS 14 / 18



State-Observations Interactions

• Two classes make the link between the model and observation spaces:

– Locations
– ModelAtLocations

• The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

• Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

• The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

• Preserves encapsulation (model grid not visible in observation operator).

• But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet JEDI - OOPS 14 / 18



State-Observations Interactions

• Two classes make the link between the model and observation spaces:

– Locations
– ModelAtLocations

• The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

• Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

• The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

• Preserves encapsulation (model grid not visible in observation operator).

• But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet JEDI - OOPS 14 / 18



Cost Function Design

• Naive approach:

– One object for each term of the cost function.
– Compute each term (or gradient) and add them together.
– Problem: The model is run several times (Jo , Jc , Jq)

• Another naive approach:

– Run the model once and store the full 4D state.
– Compute each term (or gradient) and add them together.
– Problem: The full 4D state is too big (for us).

• A feasible approach:

– Run the model once.
– Compute each term (or gradient) on the fly while the model is running.
– Add all the terms together.

Y. Trémolet JEDI - OOPS 15 / 18



Cost Function Design

• Naive approach:

– One object for each term of the cost function.
– Compute each term (or gradient) and add them together.
– Problem: The model is run several times (Jo , Jc , Jq)

• Another naive approach:

– Run the model once and store the full 4D state.
– Compute each term (or gradient) and add them together.
– Problem: The full 4D state is too big (for us).

• A feasible approach:

– Run the model once.
– Compute each term (or gradient) on the fly while the model is running.
– Add all the terms together.

Y. Trémolet JEDI - OOPS 15 / 18



Cost Function Design

• Naive approach:

– One object for each term of the cost function.
– Compute each term (or gradient) and add them together.
– Problem: The model is run several times (Jo , Jc , Jq)

• Another naive approach:

– Run the model once and store the full 4D state.
– Compute each term (or gradient) and add them together.
– Problem: The full 4D state is too big (for us).

• A feasible approach:

– Run the model once.
– Compute each term (or gradient) on the fly while the model is running.
– Add all the terms together.

Y. Trémolet JEDI - OOPS 15 / 18



Cost Function Implementation

• One class for each term (more flexible).

• Call a method on each object on the fly while the model is running.

– Uses the PostProcessor structure already in place (observer pattern).
– Finalize each term and add the terms together at the end.
– Saving the model linearization trajectory is also the responsibility of a

PostProcessor.

• Each formulation derives from an abstract CostFunction base class.

– Code duplication between strong and weak constraint 4D-Var: use in the same
derived class (weak constraint) or write the weak constraint 4D-Var as a sum
of strong constraint terms for each sub-window.

– It was decided to keep 3D-Var and 4D-Var for readability reasons.

• The terms can be re-used (or not), 4D-Ens-Var was added in a few hours.

– OO is not magic and will not solve scientific questions by itself.
– Scientific questions (localization) remain but scientific work can start.
– Weeks of work would have been necessary in the IFS.

Y. Trémolet JEDI - OOPS 16 / 18



Generic UFO

• Classes have to be compatible

• Generic but not polymorphic

Y. Trémolet JEDI - OOPS 17 / 18



Outline

1 Scalability and Complexity

2 What can we do?

3 OOPS design
OOPS Design: Abstract Level
Implementing the Abstract Design: Applications

4 From old to new

Y. Trémolet JEDI - OOPS



From (IFS, GSI, NavDAS...) to (OOPS, JEDI)

• The main idea is to keep the computational parts of the existing code and
reuse them in a re-designed flexible structure.

• This can be achieved by a top-down and bottom-up approach.

– From the top: Develop a new, modern, flexible structure (C++).
– From the bottom: Progressively create self-contained units of code (Fortran).
– Put the two together: Extract self-contained parts of the IFS and plug them

into OOPS.

• From a Fortran point of view, this implies:

– No global variables,
– Control via interfaces (derived types passed by arguments).

• This is done at high level in the code.

– It complements work on code optimisation done at lower level.

• The OO layer developed for the simple models is not only a proof of concept:
the same code is re-used to drive the IFS (generic).

Y. Trémolet JEDI - OOPS 18 / 18


	Scalability and Complexity
	What can we do?
	OOPS design
	OOPS Design: Abstract Level
	Implementing the Abstract Design: Applications

	From old to new

