
Observation operators in JEDI

Unified Forward Operator (UFO)

• The idea is to have observation operators as independent from the models as
possible, so the UFOs can be easily shared
• As a result, the part of the observation operator that is grid/model-specific has to

be implemented outside of UFO (simple example is horizontal interpolation)

• If the “full” observation operator !"#$$ (that takes full state on input) can be
written as

!"#$$ %"#$$ = ! '() %"#$$ = !(%$+,)
where '() is horizontal interpolation (to obs lat-lon) operator,
then UFO ObsOperator is the ! part, %"#$$ is the full State, and %$+, is the
interpolated to observation location state (called GeoVaLs in UFO)

UFO ObsOperator

State
Obs.

Operators

Obs.
Locations

Variables

State Values
at Locations

Observation
Space

ObsOperator to compute ! " :
Needs to know:
- a list of variables to get from the model state
- some observation space information:

- observations locations
- maybe some observation metadata

On the output is ObsVector – vector in
observation space (size nobs)

Obs. Vector

MODEL

IODA

UFO

Example of C++ level of ObsOperator in UFO

https://github.com/JCSDA/ufo-
training/blob/develop/src/ufo/atmosphere/radiosonde/ObsRadiosonde.h

https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/atmosphere/radiosonde/ObsRadiosonde.h

Tangent-linear and adjoint observation
operator
• Separate C++ class for TL and AD observation operator
• Three important methods:
• Set trajectory: calculate the Jacobian ! = #$%

$& &'&(
. Input: GeoVaLs)*. ! is

then saved internally for future use in the TL and/or AD.
• Calculate tangent-linear !+). Input: GeoVaLs +), output: ObsVector !+)
• Calculate adjoint !,+-. Input: ObsVector +-, output: GeoVals !,+-

• Note: to call TL or AD, first have to call the method that calculates !

Example of C++ level of ObsOperatorTLAD in
UFO
https://github.com/JCSDA/ufo-
training/blob/develop/src/ufo/atmosphere/radiosonde/ObsRadiosondeTLA
D.h

https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/atmosphere/radiosonde/ObsRadiosondeTLAD.h

GeoVaLs: state interpolated to obs locations

• C++ level:
https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/GeoVaLs.h and
https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/GeoVaLs.cc
• Fortran level:
• https://github.com/JCSDA/ufo-

training/blob/develop/src/ufo/GeoVaLs.interface.F90 , mostly getting
objects from the keys and passing to the routines in
• https://github.com/JCSDA/ufo-

training/blob/develop/src/ufo/ufo_geovals_mod.F90

https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/GeoVaLs.h
https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/GeoVaLs.cc
https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/GeoVaLs.interface.F90
https://github.com/JCSDA/ufo-training/blob/develop/src/ufo/ufo_geovals_mod.F90

GeoVaLs data structure (Fortran)

type :: ufo_geovals
integer :: nobs !< number of observations
integer :: nvar !< number of variables (supposed to be

! The same for same obs operator

type(ufo_geoval), allocatable :: geovals(:) !< array of interpolated
! vertical profiles
! for all obs (nvar)

type(ufo_vars) :: variables !< variables list

logical :: lalloc !< .true. if type was initialized and
! allocated (only geovals are allocated,
! not the arrays inside of the ufo_geoval

logical :: linit !< .true. if all the ufo_geoval arrays
! inside geovals were allocated and have
! data

end type ufo_geovals

GeoVaLs data structure (Fortran)

type :: ufo_geovals

integer :: nobs
integer :: nvar

type(ufo_geoval), allocatable :: geovals(:)

type(ufo_vars) :: variables

logical :: lalloc
logical :: linit

end type ufo_geovals

One element of this array size(nvar) is
for one model variable (e.g.,
temperature vertical profile, humidity
vertical profile, SST, surface wind, etc)

Variables names

Single “geoval” (one variable) structure

type :: ufo_geoval

real(kind_real), allocatable :: vals(:,:)

integer :: nval

integer :: nobs

end type ufo_geoval

Useful function: ufo_geovals_get_var, returns a pointer to ufo_geoval for a given
variable

Number of values in one ”profile”, can vary depending on application:
= number of model levels for variables like atmospheric temperature
= 1 for surface variables like SST, surface wind, etc
= number of ice categories for variables like sea ice concentration in
sea ice model

GeoVaLs for a specific variable, size(nval, nobs)

