
Mark Miesch

(JCSDA)
JEDI Academy – 4-7 June 2018

Collaborative Tools 1
Project Management and Workflow

The Way of a JEDI

‣ Collaborative

✦ A Joint Center (JCSDA)
- Partners, collaborators, stakeholders, community

✦ A Joint Effort (JEDI)
- Distributed team of software developers, with

varying objectives and time commitments
‣ Agile

✦Innovative

✦Flexible and Limitless (future-proof)

✦Responsive to users and developers

✦Continuous delivery of functional software

Outline

‣ git/GitHub
✦ Version control
✦ Enhancements and bug fixes immediately available to

distributed community of developers
✦Code review, issue tracking
✦Community exports (Code distribution)

…and imports (ecbuild, eckit, fckit)

‣ Git-Flow
✦ Innovation
✦ Continuous Delivery

‣ ZenHub
✦ Agile project management
✦ Enhances GitHub’s issue tracking and code review

functionality

GitHub

GitHub Teams

GitHub Teams

git/GitHub (JEDI tips)

‣ Work with JEDI bundles
✦Clone bundle repo
✦Let ecbuild do the rest
✦If that doesn’t work, read the README file
✦Get in the habit of running make update after ecbuild
✦Edit the CMakeLists.txt file to use your local version

#ecbuild_bundle(PROJECT ufo GIT "https://github.com/JCSDA/ufo.git" BRANCH develop UPDATE)
ecbuild_bundle(PROJECT ufo SOURCE "~/jedi/src/ufo-bundle/ufo")

‣ Cache your GitHub credentials

git config --global credential.helper 'cache --timeout=3600'

Git-LFS

‣ LFS = Large File service
✦Increases GitHub size limits for individual files from 100

MB to 2GB
✦Cumulative storage purchased in 50 GB data packs
✦Used for anything that isn’t code (data files, restart files, etc)

‣ Transparent to the user
✦When you push to GitHub, any files that are tracked by LFS

will go to a remote server (the LFS Store)
✦The GitHub repo will only contain a pointer to that file
✦When you fetch/pull/clone an LFS-enabled repo from

GitHub, LFS will check to see if you have the large files on
your computer (local LFS cache). If not, it will retrieve
them from the LFS Store as needed.

Using Git-LFS

1) Extension to git
‣ brew install git-lfs

2) See if git-lfs is already enabled for that repo
‣ git lfs track

3) If not already sufficient, then add appropriate tracking patterns
‣ git lfs install # only if step 2 returns nothing
‣ git lfs track *.nc4

4) Add your large files to the repo

5) Make sure your files and patterns are tracked by git
‣ git add .gittattributes
‣ git add * # new files

6) commit, push, pull, fetch, clone and proceed as you would with
any other repo

Git-Flow

A state of mind,
git-flow is

Git Flow is:

‣ A Philosophy

✦ Optimal for Agile Software Development
- Innovation
- Continuous Delivery

‣ A Working Principle

✦ Enforcement of branch naming
conventions soon to come

‣ An Application (extension to git)

✦ Already installed in Singularity Container

✦ brew install git-flow-avh # (Mac)
✦ sudo apt-get install git-flow # (linux)
✦ https://github.com/petervanderdoes/gitflow-avh

The Git-Flow Manifesto

Vincent Driessen (2010)

Highly Recommended!
Ti
m
e

release
branches masterdevelop hotfixes

feature
branches

Feature
for future

release

Tag

1.0

Major
feature for

next release

From this point on,
“next release”

means the release
after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bugfix in
develop

Only
bugfixes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-succesful-git-branching-model

License: Creative Commons BY-SA

http://nvie.com/posts/a-successful-git-branching-model/

The Git-Flow Manifesto: Takaways

‣ master is for releases only

‣ develop
- Not ready for pubic consumption but compiles and passes all tests

‣ Feature branches
- Where most development happens
- Branch off of develop
- Merge into develop

‣ Release branches
- Branch off of develop
- Merge into master and develop

‣ Hotfix
- Branch off of master
- Merge into master and develop

‣ Bugfix
- Branch off of develop
- Merge into develop

Life Cycle of a Feature branch

1) Enable git flow for the repo
‣ git flow init -d

2) Start the feature branch
‣ git flow feature start newstuff
‣ Creates a new branch called feature/newstuff that branches off of develop

3) Push it to GitHub for the first time
‣ Make changes and commit them locally
‣ git flow feature publish newstuff

4) Additional (normal) commits and pushes as needed
‣ git commit -a
‣ git push

5) Bring it up to date with develop (to minimize big changes on the ensuing pull request)
‣ git checkout develop
‣ git pull origin develop
‣ git checkout feature/newstuff
‣ git merge develop

6) Finish the feature branch (don’t use git flow feature finish)
‣ Do a pull request on GitHub from feature/newstuff to develop
‣ When successfully merged the remote branch will be deleted
‣ git remote update -p
‣ git branch -d feature/newstuff

Git-Flow: Lingering Questions

‣ What about forks?

✦ For now, developers can work off the central repo
✦ As the project grows, each parter/collaborator institution will

maintain a fork (merge with central repo as needed)
✦ Forking may also be useful for public releases

‣ What if I can’t install git-flow?

✦ Just be sure to use the proper naming and branching
conventions

- feature/mybranch
- release/mybranch
- bugfix/mybranch
- hotfix/mybranch

‣ More?

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

✔

✔

✔ ✔✔

✔ ✔ ✔

Git-Flow helps with many of these
For the rest, we have ZenHub

ZenHub (Sample board)

ZenHub Features

‣ Customizable Project boards
✦ Prioritize and organize tasks
✦ Reviews/Feedback
✦ Sprints (Milestones) and Epics

‣ Closely integrated with GitHub
✦ Access boards directly from GitHub repos
✦ ZenHub tasks are GitHub issues and vice versa

‣ Tasks/Issues
✦ Assign up to 10 individuals
✦ Labels, difficulty estimates, etc.
✦ Can be linked to pull requests
✦ Markdown supported (boldface, checklists…)

‣ Monitoring progress
✦ Burndown charts
✦ Velocity tracking
✦ Release reports

- Time estimate to deliver a specified set of features

ZenHub Pipelines

‣ New Issues
✦ Default landing spot
✦ Issues should not stay here long

‣ Backlog
✦ Main “To Do” List
✦ Arrange in order of priority (reviewed regularly by teams)

‣ IceBox
✦ Low-priority items that should be done at some point but do not

require immediate attention

‣ In Progress
✦ Lets others know what you are doing to promote collaboration

and avoid redundancy

‣ Review/QA
✦ Solicit feedback before you mark something as…

‣ Closed

ZenHub Issues/Tasks

ZenHub Issues/Tasks

Suggestion:
1 unit = 1/2 day
dedicated work

ZenHub Issues/Tasks

Suggestion:
1 unit = 1/2 day
dedicated work

ZenHub Issues/Tasks

Suggestion:
1 unit = 1/2 day
dedicated work

ZenHub: Milestones and Epics

‣ Milestones (Sprints)
✦Short-term (~ 2 weeks)
✦Focused work, often on 1-2 repos
✦Deliverables = specific functionality/features

‣ Epics
✦Long-term (indefinite)
✦Typically span multiple repos
✦Deliverables = releases, guiding vision

Project boards include filters to view only issues associated with Milestones,
Epics or other attributes (assignee, label, repo, release…)

ZenHub: Sprint Retrospective

Sprint Retrospectives
and other agile

workflow components
(Sprint Review,

Release Planning, etc)
are best done face-

to-face, but one could
in principle dedicate
an issue or a pipeline

to solicit further
perspectives

ZenHub: Burndown chart

ZenHub: Release Report

Resources: ZenHub/GitHub

ZenHub Guides
https://www.zenhub.com/guides

Lots of Great Github Cheat Sheets
https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png

Extensive GitHub documentation & tutorials
https://help.github.com

https://www.zenhub.com/guides
https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png
https://help.github.com

Resources: Git-Flow

JEDI Git Flow page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/
en/latest/developer/developer_tools/getting-started-with-gitflow.html

The Git Flow manifesto (all you need to know about the philosophy):
http://nvie.com/posts/a-successful-git-branching-model/

Git Flow cheat sheet:
https://danielkummer.github.io/git-flow-cheatsheet/

Git avh (a fork of the original, with added features):
https://github.com/petervanderdoes/gitflow-avh

Atlassian git-flow tutorial (philosophy and application):
https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
http://nvie.com/posts/a-successful-git-branching-model/
https://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/petervanderdoes/gitflow-avh
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Resources: Git-LFS

JEDI Git-LFS page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/gitlfs.html

GitHub’s Help page:
https://help.github.com/articles/about-git-large-file-storage/

Binaries available for download on:
https://git-lfs.github.com

Or, on a Mac:

brew install git-lfs

Installation? Already installed in the JEDI singularity container

Tutorial:
https://github.com/git-lfs/git-lfs/wiki/Tutorial

