
JEDI Academy – 4-7 June 2018

Collaborative Tools 2
Documentation

http://starwars.com

Outline

‣ Sphinx / ReadTheDocs
✦Publicly available
✦Geared toward users as well as developers

‣ Doxygen
✦ Low-level documentation of specific code components

(classes, functions, modules, etc)
✦ Commands embedded in the code
✦ Html output (also optionally pdf, man pages)

‣ JEDI Wiki
✦ Targeted at developers
✦ Discussion of current progress, issues
✦Resources for workshops and other events (e.g. code sprints)

Sphinx/ReadtheDocs

Sphinx/ReadtheDocs

https://jointcenterforsatellitedataassimilation-
jedi-docs.readthedocs-hosted.com/en/latest/

Sphinx/ReadtheDocs

Sphinx/ReadtheDocs

Sphinx

‣ Sphinx
✦The real workhorse behind the documents
✦Python package
✦Source code written with Restructured text

‣ Distribution plan
✦ReadtheDocs for now to publish
✦Sphinx Source code on GitHub (jedi-docs)
✦Tagged versions of the doc repos will be linked to JEDI

releases

For more on Sphinx:

[JEDI ReadtheDocs page about Sphinx (in Developer tools and
Practices)]
http://www.sphinx-doc.org/en/master/index.html
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

http://www.sphinx-doc.org/en/master/index.html
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Doxygen

Used in JEDI for:

‣ Documenting functions and subroutines (C++ and F90)

‣ Documenting classes and structures (C++ and F90)

‣ Viewing namespaces and modules

‣ Generating Class Hierarchies

‣ Generating Call diagrams

‣ Any other documentation that involves specific blocks of code

Whenever you add code to any JEDI Repo, please
document it with Doxygen

Documenting C++ Source Code

// ---
/*! \brief Example function
*
* \details **myfunction()** takes a and b as arguments and miraculously creates c.
* I could add many more details here if I chose to do so. I can even make a list:
* * item 1
* * item 2
* * item 3
*
* \param[in] a this is one input parameter
* \param[in] b this is another
* \param[out] c and this is the output
*
* \date A long, long, time ago: Created by L. Skywalker (JCSDA)
*
* \warning This isn't a real function!
*
*/
void myfunction(int& a, int& b, double& c) {
 [...]

Documenting Fortran Source Code

! ! ——
!> \brief Example function
!!
!! \details **myfunction()** takes a and b as arguments and miraculously creates c.
!! I could add many more details here if I chose to do so. I can even make a list:
!! * item 1
!! * item 2
!! * item 3
!!
!! \date A long, long, time ago: Created by L. Skywalker (JCSDA)
!!
!! \warning This isn't a real function!
!!
subroutine myfunction(a, b, c)
 integer, intent(in) :: a !< this is one input parameter
 integer, intent(in) :: b !< this is another
 real(kind=kind_rea), intent(out) :: c !< and this is the output
 [...]

Useful Doxygen Commands

‣ \brief

‣ \details

‣ \param

‣ \return

‣ \author

‣ \date

‣ \note

‣ \attention

‣ \warning

‣ \bug

‣ \class <name> [<header-file>]

‣ \mainpage

‣ \f$ … \f$ (inline formula)

‣ \f[… \f] (formula block)

‣ \em (or * … *)

‣ \sa (see also)

‣ \typedef

‣ \todo

‣ \version

‣ \namespace

‣ … (url)

‣ \image

‣ \var

‣ \throws (exception description)

Many more described here:

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Doxygen Implementation Plan

‣ User/Developers (this means you!)
✦Please place appropriate Doxygen comments in source files
✦ (optionally) test functionality by compiling with Doxygen config files

provided by JEDI team (feel free to customize, but please don’t
commit your changes)

- Find Doxyfile (the plan is to have one in the Documents directory
of every repo)

> doxygen
- View results in html directory

‣ JEDI Core Team
✦Will supply the Doxyfile config files
✦Will publish html files for develop and master versions of repos

(generated automatically, triggered by pull requests)
✦Tagged versions linked to releases
✦Please be patient - We’re still working on this

Doxygen Installation (Mac)

> brew install doxygen

You may be prompted to also install Doxywizard and
Graphviz - we recommend you say yes to both… If Graphviz
does not install for some reason, you can install it manually:

> brew install graphviz

This puts dot in /usr/local/bin
You’ll need this for generating graphs

Sample output: “man page”

Corresponding code
// ---
/*! \brief Interpolation test
 *
 * \details **testStateInterpolation()** tests the interpolation for a given
 * model. The conceptual steps are as follows:
 * 1. Initialize the JEDI State object based on idealized analytic formulae
 * 2. Interpolate the State variables onto selected "observation" locations
 * using the getValues() method of the State object. The result is
 * placed in a JEDI GeoVaLs object
 * 3. Compute the correct solution by applying the analytic formulae directly
 * at the observation locations.
 * 4. Assess the accuracy of the interpolation by comparing the interpolated
 * values from Step 2 with the exact values from Step 3
 *
 * The interpolated state values are compared to the analytic solution for
 * a series of **locations** which includes values optionally specified by the
 * user in the "StateTest" section of the config file in addition to a
 * randomly-generated list of **Nrandom** random locations. Nrandom is also
 * specified by the user in the "StateTest" section of the config file, as is the
 * (nondimensional) tolerence level (**interp_tolerance**) to be used for the tests.
[…]

Corresponding code (cont.)

[…]
 *
 * This is an equation:
 * \f[\zeta = \left(\frac{x-x_0}{\lambda}\right)^{2/3} \f]
 *
 * Relevant parameters in the **State* section of the config file include
 *
 * * **norm-gen** Normalization test for the generated State
 * * **interp_tolerance** tolerance for the interpolation test
 *
 * \date April, 2018: M. Miesch (JCSDA) adapted a preliminary version in the
 * feature/interp branch
 *
 * \warning Since this model compares the interpolated state values to an exact analytic
 * solution, it requires that the "analytic_init" option be implemented in the model and
 * selected in the "State.StateGenerate" section of the config file.
 */

Sample output: class hierarchy

Sample output: inheritance, call graphs

Clickable boxes!

Sample output: caller graphs

Note that these traces end in _c (this is a Fortran routine)
Doxygen has trouble with C++ / Fortran binding
Look for corresponding _f90 routine to follow further

Sample output: include files

Can get complicated!

Other documentation

In a few cases, other sorts of
documentation (often pdf) may
be available in the Documents
directory of a repo

Example: oops

Generally, we plan to link to
these pdfs from the Doxygen
pages

JEDI Wiki

JEDI Wiki

Where developers can
collaborate on active projects

JEDI Wiki

Where developers can
collaborate on active projects

Less polished than ReadtheDocs
(no guarantee that everything is up to date)

JEDI Wiki

JEDI Wiki: Weekly Meeting Notes

Doxygen Resources

JEDI Doxygen page

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/doxygen.html

Doxygen Users Manual
http://www.stack.nl/~dimitri/doxygen/manual/index.html

Installation? Already installed in the JEDI singularity container

Binaries available for download on:
http://www.stack.nl/~dimitri/doxygen/download.html

Or, on a Mac:

brew install doxygen

