UFO tutorial: implement an observation operator ## The exercise for today is: Implement radiosonde temperature observation operator. ### Things that need to be implemented: - ufo radiosonde mod.F90: - subroutine ufo_radiosonde_t_eqv to calculate H(x) - ufo radiosonde tlad mod.F90: - ufo_radiosonde_tlad data type (for saving whatever you may need from "trajectory") - subroutine ufo_radiosonde_tlad_settraj to set trajectory and fill in the above data type - subroutine ufo_radiosonde_tlad_t_eqv_tl to calculate TL (using trajectory from the data type and the dx geovals on input) - subroutine ufo_radiosonde_tlad_t_eqv_ad to calculate AD (using trajectory from the data type and the dy obsvector on input) - subroutine ufo_radiosonde_tlad_delete to destruct ufo_radiosonde_tlad data type if needed #### Some comments - H(x) here is vertical interpolation (linear in log pressure) of virtual temperature. - GeoVaLs should contain "atmosphere_In_pressure_coordinate" and "virtual_temperature" (see ObsRadiosonde.h and ObsRadiosondeTLAD.h) - Observation files should have pressure of the observations ("Pressure") - Note: different units of pressure are used in geovals and obs (this is to be fixed). For now one has to divide obs pressure by 10 to be in the same units - You may use vertical interpolation routines from ufo/src/ufo/atmosphere/utils/vert_interp.F90 #### **Tests** - The tests are already added to ufo tests, see test/Cmakelists.txt, tests test_ufo_radiosonde and test_ufo_obsop_rsonde_tlad. - Those tests will invoke tests from oops: - ObsOperator: https://github.com/JCSDA/oops/blob/develop-nicas/src/test/interface/ObsOperator.h - LinearObsOperator: https://github.com/JCSDA/oops/blob/develop-nicas/src/test/interface/LinearObsOperator.h