
IODA Goals

• Solidify the interface
• Allows us to modify the implementation without thrashing the clients of the 

interface

• Move toward an SQL-like database
• Start with simple Fortran structures (linked list of vectors)
• Move to C++ structures (Boost::MultiIndex)
• Move to database (ODB, SQLite, ?)



IODA Interface

ObsData

MetaData

Temperature

Moisture

Zonal Wind

Meridional Wind

Latitude
Longitude
Date/Time
Height
Station ID

ObsValue (y)

Locations
IDs
Etc.

ObsError
H(x)

nlocs

nvars



IODA Interface: OOPS
• C++
• Developers shouldn’t have to worry about this
• Access to an ObsData table in the data store
• ObsVector is an example of a client

• read() and save() methods call ObsSpace getObsVector() and putObsVector() methods

• ObsSpace methods

• 1st argument is name of ObsData table (eg, ”ObsValue”, “HofX”)
• 2nd argument is a vector holding the data



IODA Interface: UFO
• Fortran
• Developers of Obs Operators will use these
• Access to an individual row in the data store

• Ie, a row from either of the ObsData or MetaData tables
• ObsSpace methods

• obss argument is a C pointer to an ObsSpace object
• group argument is a Fortran string with the table (group) name

• Eg., “ObsValue”, “HofX”
• vname argument is a Fortran string with the variable (row) name

• Eg., “air_temperature”, “eastward_wind”
• vect argument is a Fortran 1D array (vector) of doubles
• length argument is the size of the 1D array given by vect



IODA Fortran interface usage
• It is the client’s responsibility to allocate memory for the vector data
• Rows of the tables are nlocs in length



IODA Interface notes

• Bookkeeping quantities
• nlocs

• Number of unique locations
• Size of a Locations object or MdataVector object

• nvars
• Number of variables in the obs data table

• nobs
• Number of unique locations
• Size of an ObsVector object
• Equal to nvars * nlocs

• Individual channels on satellite instruments are treated as separate 
variables
• One channel per row in the ObsData table

• Missing values
• Not all locations have all variables (t,q,u,v) for radiosonde and aircraft
• Run-time QC can create missing values (ie, throw out some obs)



IODA Interface: Future

• Add a mechanism for selecting “records”

• A record is an atomic unit that should not be broken down any further

• Eg, a single radiosonde sounding

• A record is preserved when distributing across multiple process elements

• Bookkeeping

• nrecs

• Number of unique records

• Used during MPI distribution and QC filtering

• Add a second type of MetaData table to store information on a 

variable-by-variable basis

• Eg. Frequencies associated with each satellite channel


