Vertical balance operator implementation in BUMP

Benjamin Menetrier, IRIT, Toulouse, France (benjamin.menetrier@irit.fr)

$$
\text { JEDI meeting - 12 th September } 2019
$$

Formulation

The control variable \mathbf{x} is multivariate (e.g. with 3 subvectors):

$$
x=\left(\begin{array}{l}
x_{1} \tag{1}\\
x_{2} \\
x_{3}
\end{array}\right)
$$

The vertical balance operator K transforms the unbalanced control variable \mathbf{v} into \mathbf{x} :

$$
\begin{equation*}
x=K v \tag{2}
\end{equation*}
$$

K is generally built as a lower diagonal block matrix, with identity diagonal blocks:

$$
\mathbf{K}=\left(\begin{array}{ccc}
\mathbf{I} & 0 & 0 \tag{3}\\
\mathbf{K}_{2,1} & \mathbf{I} & 0 \\
\mathbf{K}_{3,1} & \mathbf{K}_{3,2} & \mathbf{I}
\end{array}\right)
$$

Formulation

The adjoint of K is straightforward:

$$
\mathbf{K}^{\mathrm{T}}=\left(\begin{array}{ccc}
\mathbf{I} & \mathbf{K}_{2,1}^{\mathrm{T}} & \mathbf{K}_{3,1}^{\mathrm{T}} \tag{4}\\
0 & \mathbf{I} & \mathbf{K}_{3,2}^{\mathrm{T}} \\
0 & 0 & \mathbf{I}
\end{array}\right)
$$

and the inverse of K :

$$
\begin{equation*}
\mathbf{v}=\mathrm{K}^{-1} \mathbf{x} \tag{5}
\end{equation*}
$$

can be computed recursively:

$$
\begin{align*}
& \mathbf{v}_{1}=\mathrm{x}_{1} \tag{6}\\
& \mathbf{v}_{2}=\mathrm{x}_{2}-\mathrm{K}_{2,1} \mathrm{v}_{1} \tag{7}\\
& \mathbf{v}_{3}=\mathrm{x}_{3}-\mathrm{K}_{3,1} \mathrm{v}_{1}-\mathrm{K}_{3,2} \mathrm{v}_{2} \tag{8}
\end{align*}
$$

The inverse of $\mathrm{K}_{i, j}$ blocks is not required!

Estimation

By definition, \mathbf{v} is unbalanced, which means that its subvectors have zero cross-covariances:

$$
\operatorname{cov}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\left\{\begin{array}{rll}
\mathbf{C}_{i} & \text { if } & i=j \tag{9}\\
0 & \text { if } & i \neq j
\end{array}\right.
$$

Blocks are estimated successively, each row at a time, and the unbalanced subvectors are computed simultaneously:

- First row: $\mathrm{v}_{1}=\mathrm{x}_{1}$
- Second row:

$$
\begin{align*}
& \operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=0 \tag{10}\\
\Leftrightarrow & \operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{x}_{2}-\mathrm{K}_{2,1} \mathbf{v}_{1}\right)=0 \tag{11}\\
\Leftrightarrow & \mathrm{~K}_{2,1}=\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{x}_{2}\right)\left[\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{v}_{1}\right)\right]^{-1} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{v}_{2}=\mathbf{x}_{2}-\mathrm{K}_{2,1} \mathbf{v}_{1} \tag{13}
\end{equation*}
$$

Estimation

Three steps are required to compute $\mathrm{K}_{2,1}$:

- Step 1: estimate the cross-covariance $\operatorname{cov}\left(\mathbf{v}_{1}, \mathrm{x}_{2}\right)$ and the auto-covariance $\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{v}_{1}\right)$
- Step 2: invert the auto-covariance to get $\left[\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{v}_{1}\right)\right]^{-1}$
- Step 3: compute $\mathbf{K}_{2,1}=\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{x}_{2}\right)\left[\operatorname{cov}\left(\mathbf{v}_{1}, \mathbf{v}_{1}\right)\right]^{-1}$

Remarks:

- The nature and order of physical variables in x is crucial. Several choices are possible (psi/chi/T, vor/div/T, etc.).
- For a vertical balance operator, all the matrices are $n \times n$, where n is the number of vertical levels.
- However, it is possible to introduce a horizontal dependency: one specific K can be computed for each given "bin" (latitude band, local neighborhood, specific area, etc.).

BUMP implementation

- Variables are provided by the user via the UnstructuredGrid.
- An ensemble is used to estimate vertical covariances for a subset of columns Sc1.
- For another subset Sc2, these covariances are averaged locally over a given radius.

- To apply the vertical balance operator at any grid point, regression values of subset Sc2 are linearly interpolated.
- The subsets can take boundaries and masks into account.
- The auto-covariance inversion uses a Cholesky decomposition.

BUMP implementation

SABER branch feature/improved_Ict_calculation (PR \#24).
Namelist / YAML keys to set:

- new vbal to activate the vertical balance estimation.
- load _vbal to load an existing vertical balance operator.
- write_vbal to write the vertical balance estimation.
- check_vbal to test the operator inverse and adjoint.
- vbal_block (vector) to separately activate blocks $\mathrm{K}_{2,1}, \mathrm{~K}_{3,1}$, $\mathrm{K}_{3,2}, \mathrm{~K}_{4,1}$, etc.
- vbal_rad to set the averaging radius (in m).
- vbal_diag_auto (vector) to use a diagonal estimation of the auto-covariance, easily invertible, for given blocks.
Code:
- SABER source code: saber/bump/type_vbal.F90
- OOPS interface: oops/generic/StatsVariableChange.h

To do with the current code:

- Test the scientific relevance of the local neighborhood and interpolation approach.
- Play with the radius/mask possibilities.
- Test the numerical efficiency of the estimation and of the application.

To do in the future:

- Improve the regressions estimation scalability.
- Add an option to get fully diagonal regressions (as for psi/chi in WRFDA).
- Any other idea?

