# IODA Status and Test Results

Stephen Herbener and Steven Vahl
01/23/2020

Thanks to the JEDI partners and core team for contributions to the development of IODA

# IODA Requirements

| ID        | Name                             | Description                                                                                                                               |  |
|-----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| IodaReq1  | Flexible                         | Handle many obs types, accommodate new obs types, usable by research and operations                                                       |  |
| IodaReq2  | Access to data and meta data     | Efficient query/filter based on data and/or meta data values                                                                              |  |
| IodaReq3  | Efficient I/O                    | Sufficient speed and volume                                                                                                               |  |
| IodaReq4  | Efficient compression            | Economical with archive storage space                                                                                                     |  |
| IodaReq5  | Portable                         | Run on many hardware platforms/compilers, minimize reliance on 3 <sup>rd</sup> part libraries, support for multiple programming languages |  |
| IodaReq6  | Security                         | Navy classified, EMC private                                                                                                              |  |
| IodaReq7  | Support analysis                 | Enable use of diagnostic tools to analyze/visualize the performance of the system                                                         |  |
| IodaReq8  | Data import                      | Handle various raw obs file types (BUFR, ODB, netcdf, etc.), handle various data schema (NCEP prepBUFR, Met Office ODB, etc.)             |  |
| IodaReq9  | Ease of use                      | Intuitive, familiar, consistent interfaces for both developers and users                                                                  |  |
| IodaReq10 | Reliability                      | For operations it cannot break down                                                                                                       |  |
| IodaReq11 | Replicate existing functionality | Enable comparison with other DA systems (GSI, e.g.)                                                                                       |  |

## Current state of IODA



### IodalO Class Structure



## H(x) from a Sample 3DVar Run









Satwind, u-component of wind

Aircraft, u-component of wind

- Nonlinear Jo(Satwind) = 104373, nobs = 700843, Jo/n = 0.148925, err = 2.46613e+06 Nonlinear Jo(Scatwind) = 33398.5, nobs = 430259, Jo/n = 0.0776243, err = 3.5 Nonlinear Jo(Vadwind) = 29368.5, nobs = 32858, Jo/n = 0.893801, err = 1.74811
- Nonlinear Jo(Satwind) = 104373, nobs = 700843, Jo/n = 0.148925, err = 2.46613e+06 Nonlinear Jo(Scatwind) = 33398.5, nobs = 430259, Jo/n = 0.0776243, err = 3.5 Nonlinear Jo(Vadwind) = 29368.5, nobs = 32858, Jo/n = 0.893801, err = 1.74811
- FV3-GFS, 3DVar, C192, 1865188 observations assimilated
- S4, Intel compilers, Intel MPI (impi), 864 MPI Tasks

## **IODA Status**

Gray: Not heavily tested/measured yet

Red: Focus for today's discussion

| Requirement                      | IODA Status                                                                                                                                                                              |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flexible                         | Running DA tasks with ~30 obs types (10 conv, 20 radiance)                                                                                                                               |  |
| Access to data and meta data     | Providing support for $\sim$ 20 filter operations (constructed from generic filter ops in UFO), plus support for obs operators for the $\sim$ 30 obs types                               |  |
| Efficient I/O                    | Testing larger DA runs using millions of observations                                                                                                                                    |  |
| Efficient compression            | Testing the construction of obs data archive                                                                                                                                             |  |
| Portable                         | GNU, Intel and Clang compilers; OpenMPI, MPICH2, IMPI MPI implementations<br>Running on supercomputers (Hera, Discover, Cheyenne, S4), AWS EC2 instances, and on laptops<br>(mac, linux) |  |
| Security                         | Installation/execution can be done behind firewalls                                                                                                                                      |  |
| Support analysis                 | Have capability to write netcdf and ODB formats giving access to a variety of diagnostic tools                                                                                           |  |
| Data import                      | Currently handle Netcdf, ODB, BUFR, Marine binary profile file types, from various sources including GSI, NCEP, Met Office, GODAS and GODAE                                              |  |
| Ease of use                      | Simple interface (get, put) for direct access by obs operators, and access via obs vectors                                                                                               |  |
| Reliability                      | Testing larger DA runs using millions of observations                                                                                                                                    |  |
| Replicate existing functionality | GSI conversion path includes extraction of $H(x)$ and filtering results from GSI runs for comparison with JEDI results, all obs assimilated by GSI have been converted for use in JEDI   |  |

## **IODA** tests

- Comparing ODB and netCDF file formats
- Created a matching set of ODB obs files from the existing set of netCDF obs files
- Collected stats from various test cases
  - H(x) runs
  - FV3-GFS 3Dvar runs
  - ObsSpace constructor/destructor runs (Ioda IO Read/Write)
- ObsSpace tests
  - Started with IASI obs data (616 obs per location)
  - Read/Write 1000 locations (616,000 obs), 2000 locations, 4000 locations, etc. up to 256000 locations (157 million obs)
  - Repeated each case 10 times and averaged the constructor (read) and destructor (write) times reported by OOPS

### **IodalO Execution Time**



- Read and write percentages are comparable between netCDF and ODB
- Opportunities exist to improve these numbers
  - Eg, Each MPI task only reads the portion of the file that it uses

#### **Test Cases**

- 3DVar
  - FV3-GFS, C192, 1865188 obs
  - Averages from 2 runs using netCDF and 2 runs using ODB.
- c12 cosmic
  - H(x)
  - Desktop, c12, cosmic observation data,
  - Averages from 4 runs using netCDF and 4 runs using ODB
- c48\_cosmic
  - Same as c12\_cosmic, except c48 resolution
- c48\_gsi
  - Same as c48\_cosmic, except obs collected from GSI ncdiag output

## Ioda IO Timing





- IASI observation data
- ODB tends to be faster for both read and write (but netCDF\_Write times are comparable)
- netCDF\_Read can likely be tuned to go faster

### **IODA** File Size





- All file pairs contain same number of observations
- For the larger files, ODB tends to be smaller than netCDF
- For the smaller files, netCDF tends to be smaller than ODB

## Summary

- Work needs to be done (and opportunities exist) to speed up Ioda IO
- At this point netCDF and ODB seem comparable in speed and size
  - ODB has a slight edge in the particular test cases that we have

# Backup

# Observation Types

| <b>Conventional Observation Types</b> | Radiance Observation Types |            |  |
|---------------------------------------|----------------------------|------------|--|
| Aircraft                              | AMSU-A                     | SEVERI     |  |
| Radiosonde                            | ABI                        | SNDR       |  |
| Radar                                 | AHI                        | Satwind    |  |
| Sfc                                   | AIRS                       | Scatwind   |  |
| SfcShip                               | ATMS                       | SMAP       |  |
| VAD wind                              | CRIS                       | Marine SST |  |
| Wind profiler                         | GNSSRO                     |            |  |
| Marine insitu temp                    | HIRS-4                     |            |  |
| Marine profilier                      | IASI                       |            |  |
| Marine SST                            | MHS                        |            |  |
|                                       | SBUV-2                     |            |  |
|                                       | VIIRS AOD                  |            |  |
|                                       | Cryosat                    |            |  |
|                                       | ICEC                       |            |  |

# Generic filter building blocks

| Generic filter    |  |  |  |  |
|-------------------|--|--|--|--|
| Bounds check      |  |  |  |  |
| Background check  |  |  |  |  |
| Blacklisting      |  |  |  |  |
| Thinning          |  |  |  |  |
| Gaussian thinning |  |  |  |  |
| Domain check      |  |  |  |  |
| Difference check  |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |
|                   |  |  |  |  |

## **IODA** Converters

| Obs category | Language        | Input file type      | Obs types                                              |
|--------------|-----------------|----------------------|--------------------------------------------------------|
| ODB          | Python          | Met office ODB2      | Aircraft, Radiosonde, AMSU-A                           |
| GNSSRO       | Fortran         | BUFR                 | GNSSRO                                                 |
| GSI          | Python          | Ncdiag               | Conventional, Radiance (all types handled by GSI)      |
| Marine       | Python          | Netcdf, BUFR, Binary | ArgoClim2, SST, Profile, Ship, Trak, ADT, In-situ, SSS |
| NCEP         | Python, Fortran | BUFR, prepBUFR       | Aircraft, Radiosonde, AMSU-A                           |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |
|              |                 |                      |                                                        |