Move operations and rvalue references
Wojciech Smigaj

February 13, 2020

Met Office

1/10



Motivation: unnecessary copies in C++03

Z Met Office

In C++03, appending to a full vector causes a lot of copy operations.

std::vector<std::string> v(4, "Exeter");

v.push_back("Boulder");

4

—1

—

Exeter |<1—

Exeter |¢1—

Exeter |4

Exeter |<1—

Boulder [«1—

2/10



Motivation: unnecessary copies in C++03

Z Met Office

In C++03, appending to a full vector causes a lot of copy operations.

std::vector<std::string> v(4, "Exeter");

v.push_back("Boulder");

4

—1

—

Exeter |<1—

Exeter |1

Exeter |«

Exeter |<1—

Boulder |«1—

2/10



Motivation: unnecessary copies in C++03 = MetOffice

In C++03, appending to a full vector causes a lot of copy operations.

std::vector<std::string> v(4, "Exeter");
v.push_back("Boulder");

4 L I

Boulder |«1—

copies

Boulder [«

2/10



Motivation: unnecessary copies in C++03

Z Met Office

In C++03, appending to a full vector causes a lot of copy operations.

std::vector<std::string> v(4, "Exeter");

v.push_back("Boulder");

5

\

Exeter |<1—

Exeter |1

Exeter |«

Exeter |<1—

Exeter |<1—

Exeter |«

Exeter |«

Exeter |«

Boulder [«

Boulder |«1—

2/10



Motivation: unnecessary copies in C++03 = MetOffice

In C++03, appending to a full vector causes a lot of copy operations.

std::vector<std::string> v(4, "Exeter");
v.push_back("Boulder");

il I

Exeter [«
Exeter |<1—
Exeter |«
Exeter |<1—
Boulder [«

2/10



Motivation: unnecessary copies in C++03

Z Met Office

It would be more efficient to move the strings to the newly allocated block.

std::vector<std::string> v(4, "Exeter");

v.push_back("Boulder");

4

—1

—

Exeter |<1—

Exeter |¢1—

Exeter |4

Exeter |<1—

Boulder [«1—

3/10



Motivation: unnecessary copies in C++03

Z Met Office

It would be more efficient to move the strings to the newly allocated block.

std::vector<std::string> v(4, "Exeter");

v.push_back("Boulder");

4

—1

—

Exeter |<1—

Exeter |1

Exeter |«

Exeter |<1—

Boulder |«1—

3/10



Motivation: unnecessary copies in C++03 = MetOffice

It would be more efficient to move the strings to the newly allocated block.

std::vector<std::string> v(4, "Exeter");
v.push_back("Boulder");

4 L I

Boulder

——| Exeter
—| Exeter
——| Exeter
—| Exeter

3/10



Motivation: unnecessary copies in C++03 = MetOffice

It would be more efficient to move the strings to the newly allocated block.

std::vector<std::string> v(4, "Exeter");
v.push_back("Boulder");

il EAN

Boulder

——| Exeter
——| Exeter
——| Exeter
——| Exeter

3/10



Motivation: unnecessary copies in C++03 = MetOffice

It would be more efficient to move the strings to the newly allocated block.

std::vector<std::string> v(4, "Exeter");
v.push_back("Boulder");

il I

Boulder

——| Exeter
——| Exeter
——| Exeter
——| Exeter

3/10



C++11 Z= Met Office

C++11 introduces the concept of rvalue references, making it possible to
recognise and profit from move opportunities.

4/10



Value categories 2 Met Office

> Expressions in C++ are either lvalues or rvalues.

> Lvalue expressions evaluate to persistent values whose address can be
taken, such as

» names of variables
> calls to functions returning lvalue references (T&, const T&)

size_ t i = 5;
std::vector<int> v(10);
const size_t &ref = i;
v.at(ref) = 25;

> All other expressions are rvalues. Intuitively, rvalues are typically
unnamed temporary objects.

int a 1, b = 2;
int c = (a + b);
double x = std::cos(0.0);

> In general, value movement is safe only if the source is an rvalue.

5/10



Rvalue references 2= Met Office

C++11 introduces the concept of rvalue references. Unlike “normal”
references (lvalue references), they may be bound only to rvalues.

Example: Move constructors.
class C {

public:

C(const C §other);

C(C &&other) noexcept;

s
C makeC();

int main() {
C c1;
C c2(c1);
C c3(makeC());
C c4(std::move(c1));

}

6/10



Move constructors 2 Met Office

It is very uncommon to have to implement a move constructor or
assignment operator manually. The compiler automatically generates them
for each class that fulfils certain conditions, and the default implementation
typically does the right thing.

class Person {
public:
std::string name_;
int age_;
b

The compiler-generated move constructor looks like this:
Person: :Person(Person &§other) noexcept
: name_(std::move(other.name_)),

age_(std::move(other.age_))

{}

7/10



Requirements 2= Met Office

Neither a move constructor nor an assignment operator are automatically
generated if:

> the class has any user-declared copy constructors, copy assignment
operators or destructors

> the class has any data members that can’t be moved
> any base class can’t be moved.

This restriction applies even if the user-declared special functions are
empty or declared as = default!

8/10



Consequences for JEDI 2= Met Office

A lot of classes in JEDI declare
> an empty destructor and/or

> a copy constructor that prints a tracing message in addition to copying
data members

and are thus non-movable.

Examples: oops::Variables, eckit::LocalConfiguration,
ioda::0ObsVector.

9/10



Guidelines 2= Met Office

Rule of zero
Avoid having to implement any of the special member functions.

Rule of five
If you have to declare any of the following special member functions:

>
>
>
>
>

destructor

copy constructor

move constructor

copy assignment operator
move assignment operator

you should normally declare all of them (possibly as = default or
= delete).

10/10



