Interface between Observations and Model

S ObsVector
ate x H(x)
With this interface, ObsOperator would be model-specific.

One of the JEDI goals:

Share observation operators between JCSDA partners and reduce
duplication of work




Interface between Observations and Model
GetValues ObsOperator

ObsVector
H(x)

(model-aware (model-agnostic

obs operator-agnostic) obs operator-aware)

Each model implements GetValues (interpolation of requested
variables).

Observation operators are then independent of the model and can o

easily be shared, exchanged, compared

State x




Interface between Observations and Model

GetValues ObsOperator
ObsVector
H(x)

(model-aware (model-agnostic

obs operator-agnostic) obs operator-aware)

Viodel (or grid)-aware part: interpolation of state variables that
ObsOperator needs to compute H(x). °
Model-agnostic part: everything that ObsOperator needs to do after

getting model fields interpolated to observation location.

State x




Observer postprocessor

initialize

processing

finalize

Setup variables to be requested from the

model
Allocate GeoValLs for the full assimilation

window

Fill in GeoValLs for the obs within the
current time window (tl1, t2]

Run all Prior Filters
Calculate H(x)
Run all Posterior Filters




Interface between Observations and Model

GetValues ObsOperator

ObsVector
H(x)

(model-agnostic

State x

(model-aware
obs operator-agnostic) obs operator-aware)

Pull request oops#514 separates GetValues into a class
(instead of method on State) °

This will require refactoring changes in all models.



https://github.com/JCSDA/oops/pull/514

Why change interfaces?

* Clear separation from State and Increment classes allows to have
several GetValues classes in a model.

* In the [near] future different GetValues classes can be used with
different ObsOperators. See branch feature/observerfactory in oops
for implementation in oops and use in the toy models (no examples
of using different GetValues yet).



https://github.com/JCSDA/oops/compare/feature/getvalues...feature/observerfactory

Why change interfaces? Some benefits:

* CRTM operator can use GetValues that work with SimpleLocations
(lat/lon/time) or with SlantPathLocations. Different GetValues would
be used for those different Locations.

* There could be GetValues that does vertical interpolation:

e HorizonatlinterpGetValues for SimpleLocations + AtmVertinterp ObsOperator
* HorVertinterpGetValues for 4DLocations + |dentity ObsOperator

* One could implement and use GetValues that do time interpolation or
time accumulation.



GetValues: new interfaces

class GetValues {
/// Constructor (called once per H(x) computation through window)
GetValues(const Geometry_ &, const Locations_ & all);
/// Get state values at observation locations (called at every timestep)
/// replaces State::getValues(const Locations_ & subset,
/// const Variables &, GeoValLs & all)
void compute(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoValLs & all) const;



Differences in interfaces

State::getValues(const Locations_ & subset_t1_t2, const Variables &,
GeoValLs & all) const;

GetValues::compute(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoValLs_ & all) const;

* Variables no longer passed to GetValues (GeoVals has information on Variables)

* Passing t1, t2 instead of Locations(tl, t2): GetValues class has information on all
Locations (from the constructor) and can find all relevant locations (t1, t2]



LinearGetValues: new interface

class LinearGetValues {
/// Constructor (called once per H(x) computation through window)
LinearGetValues(const Geometry_ &, const Locations_ & all);
/// Sets trajectory for current subwindow (called at every timestep)
/// Replaces State::getValues(const Locations_ & subset, const Variables &,
/// GeoValLs_ & all, InterpolatorTraj_ &);
void setTrajectory(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoValLs_ & all);
/// Replaces Increment::getValuesTL & Increment::getValuesAD (called at every timestep)
void computeTL(const Increment_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoValLs_ & all) const;
void computeAD(Increment_ & current, const util::DateTime & t1,
const util::DateTime & t2, const GeoVaLs_ & all) const;



Differences in interfaces

State::getValues(const Locations_ & subset, const Variables §&,
GeoValLs_ & all, InterpolatorTraj_ &);
LinearGetValues::setTrajectory(const State_ & current,

const util::DateTime & t1, const util::DateTime & t2,
GeoValLs_ & all);

* InterpolatorTraj class is removed — trajectory can now be saved in LinearGetValues instead

* Previously InterpolatorTraj was created for each (t1, t2] subwindow, now LinearGetValues
is created for the whole window.



