
Interface between Observations and Model

ObsVector
!(#)

With this interface, ObsOperator would be model-specific.

One of the JEDI goals:
Share observation operators between JCSDA partners and reduce
duplication of work

!(#)

MODEL

State #

Interface between Observations and Model

ObsVector
!(#)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

Each model implements GetValues (interpolation of requested
variables).

Observation operators are then independent of the model and can
easily be shared, exchanged, compared

(model-aware
obs operator-agnostic)

(model-agnostic
obs operator-aware)

Interface between Observations and Model

ObsVector
!(#)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

(model-aware
obs operator-agnostic)

(model-agnostic
obs operator-aware)

Model (or grid)-aware part: interpolation of state variables that
ObsOperator needs to compute !(#).
Model-agnostic part: everything that ObsOperator needs to do after
getting model fields interpolated to observation location.

Observer postprocessor

initialize

processing

finalize

• Setup variables to be requested from the
model

• Allocate GeoVaLs for the full assimilation
window

• Fill in GeoVaLs for the obs within the
current time window (t1, t2]

• Run all Prior Filters
• Calculate H(x)
• Run all Posterior Filters

Interface between Observations and Model

ObsVector
!(#)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

(model-aware
obs operator-agnostic)

(model-agnostic
obs operator-aware)

Pull request oops#514 separates GetValues into a class
(instead of method on State)

This will require refactoring changes in all models.

https://github.com/JCSDA/oops/pull/514

Why change interfaces?

• Clear separation from State and Increment classes allows to have
several GetValues classes in a model.
• In the [near] future different GetValues classes can be used with

different ObsOperators. See branch feature/observerfactory in oops
for implementation in oops and use in the toy models (no examples
of using different GetValues yet).

https://github.com/JCSDA/oops/compare/feature/getvalues...feature/observerfactory

Why change interfaces? Some benefits:

• CRTM operator can use GetValues that work with SimpleLocations
(lat/lon/time) or with SlantPathLocations. Different GetValues would
be used for those different Locations.

• There could be GetValues that does vertical interpolation:
• HorizonatlInterpGetValues for SimpleLocations + AtmVertInterp ObsOperator
• HorVertInterpGetValues for 4DLocations + Identity ObsOperator

• One could implement and use GetValues that do time interpolation or
time accumulation.

GetValues: new interfaces

class GetValues {
/// Constructor (called once per H(x) computation through window)

GetValues(const Geometry_ &, const Locations_ & all);
/// Get state values at observation locations (called at every timestep)
/// replaces State::getValues(const Locations_ & subset,
/// const Variables &, GeoVaLs & all)

void compute(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoVaLs_ & all) const;

}

Differences in interfaces

State::getValues(const Locations_ & subset_t1_t2, const Variables &,
GeoVaLs & all) const;

GetValues::compute(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoVaLs_ & all) const;

• Variables no longer passed to GetValues (GeoVaLs has information on Variables)
• Passing t1, t2 instead of Locations(t1, t2): GetValues class has information on all

Locations (from the constructor) and can find all relevant locations (t1, t2]

LinearGetValues: new interface
class LinearGetValues {
/// Constructor (called once per H(x) computation through window)

LinearGetValues(const Geometry_ &, const Locations_ & all);
/// Sets trajectory for current subwindow (called at every timestep)
/// Replaces State::getValues(const Locations_ & subset, const Variables &,
/// GeoVaLs_ & all, InterpolatorTraj_ &);

void setTrajectory(const State_ & current, const util::DateTime & t1,
const util::DateTime & t2, GeoVaLs_ & all);

/// Replaces Increment::getValuesTL & Increment::getValuesAD (called at every timestep)
void computeTL(const Increment_ & current, const util::DateTime & t1,

const util::DateTime & t2, GeoVaLs_ & all) const;
void computeAD(Increment_ & current, const util::DateTime & t1,

const util::DateTime & t2, const GeoVaLs_ & all) const;
}

Differences in interfaces

State::getValues(const Locations_ & subset, const Variables &,
GeoVaLs_ & all, InterpolatorTraj_ &);

LinearGetValues::setTrajectory(const State_ & current,
const util::DateTime & t1, const util::DateTime & t2,
GeoVaLs_ & all);

• InterpolatorTraj class is removed – trajectory can now be saved in LinearGetValues instead
• Previously InterpolatorTraj was created for each (t1, t2] subwindow, now LinearGetValues

is created for the whole window.

