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Stochastic coherent adaptive large eddy simulation (SCALES) is an extension of large
eddy simulation that uses a wavelet filter-based dynamic grid adaptation strategy to solve
for the most energetic coherent structures in a turbulent flow field, while modeling the effect of
the less energetic ones. A localized dynamic subgrid scale model is needed to fully exploit the
ability of the method to track coherent structures. In this paper, new local Lagrangian models
based on a modified Germano dynamic procedure, redefined in terms of wavelet thresholding
filters, are proposed. These models extend the original path-line formulation of Meneveau et al.
[J. Fluid Mech. 319 (1996)] in two ways: as Lagrangian path-line diffusive and Lagrangian
path-tube averaging procedures. The proposed models are tested for freely decaying homoge-
neous turbulence with initial Reλ = 72. It is shown that the SCALES results, obtained with
less than 0.4% of the total non-adaptive nodes required for a DNS with the same wavelet
solver, closely match reference DNS data. In contrast to classical LES, this agreement holds
not only for large scale global statistical quantities, but also for energy and, more importantly,
enstrophy spectra up to the dissipative wavenumber range.

1. Introduction

Although turbulence is common in engineering applications, a solution to the fundamental equa-
tions that govern turbulent flow still eludes the scientific community. Due to the prohibitively
large disparity of spatial and temporal scales, direct numerical simulation (DNS) of turbulent
flows of engineering interest is impossible, even with the aid of the fastest supercomputers that
exist or will be available in the foreseeable future. Large eddy simulation (LES) is often viewed
as a feasible alternative for turbulent flow modeling, e.g., [1]. The main idea behind LES is to
resolve only the large-scale motions, while modeling the effect of the unresolved subgrid scale
(SGS) eddies.

When dealing with complex turbulent flows, current LES methods rely on, at best, a zonal grid
adaptation strategy to minimize the computational cost. This mesh is typically non-adaptive and
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2 O.V. Vasilyev et al.

chosen in a somewhat ad hoc manner to adequately resolve the flow. While an improvement over
the use of regular grids, these methods fail to resolve the high wavenumber components of the
spatially and temporarily intermittent coherent structures characteristic of turbulent flows, thus
neglecting valuable physical information. At the same time, the flow is over-resolved in regions
between the coherent structures, which wastes computational resources. Finally, as pointed out
by [2], the local filter width in LES implementations is typically proportional to local mesh size,
which makes LES results highly dependent on the computational grid.

We have recently introduced a novel approach to turbulent flow simulation, called stochastic
coherent adaptive large eddy simulation (SCALES) [3, 4]. This method addresses the above-
mentioned shortcomings of LES by using a wavelet thresholding filter to dynamically resolve
and track the most energetic coherent structures during the simulation, while modeling the effect
of the unresolved less energetic modes. We showed that the residual motions are composed of
a small number of coherent modes that dominate the total SGS dissipation and a large number
of incoherent modes that, due to their decorrelation with the resolved modes, add little to the
total subgrid scale dissipation [3, 5]. Therefore, in this work, as in much of classical LES,
only the coherent part of the unresolved modes is modeled using a deterministic SGS stress
model.

The first step toward the construction of SGS models for SCALES was undertaken in [4],
where we developed a global dynamic Smagorinsky eddy viscosity model based on the classical
Germano procedure redefined in terms of two wavelet thresholding filters. The main drawback
of this formulation is the use of a global (spatially non-variable) model coefficient. The use
of a global dynamic model unnecessarily limits the SCALES approach to flows with at least
one homogeneous direction. This is unfortunate since the dynamic adaptability of SCALES is
ideally suited to fully inhomogeneous flows. In this paper, a local dynamic model is developed to
extend SCALES to fully inhomogeneous turbulent flows. The proposed models are based on two
different extensions of the original Lagrangian path-line formulation of [6], namely Lagrangian
path-line diffusive and Lagrangian path-tube averaging procedures.

The paper is organized as follows. The SCALES methodology for the numerical solution
of turbulent flows is reviewed briefly in Section 2. The local dynamic Smagorinsky model
with Lagrangian path-line/tube averaging is discussed in detail in Section 3. The results for the
numerical simulations are presented in Section 4 and, finally, some concluding remarks are made
in Section 5.

2. Stochastic coherent adaptive large eddy simulation

2.1. Wavelet thresholding filter

Let us very briefly outline the main features of the wavelet thresholding filter. More details can
be found, for instance, in [7]. A velocity field ui(x) can be represented in terms of wavelet basis
functions as

ui(x) =
∑

l∈L0

c0
l φ

0
l (x) +

+∞∑

j= 0

2n−1∑

µ=1

∑

k∈Kµ,j

d
µ,j
k ψ

µ,j
k (x), (1)

where φ0
l and ψ

µ,j
k are n-dimensional scaling functions and wavelets of different families and

levels of resolution, indexed with µ and j , respectively. One way to think of a wavelet decompo-
sition is as a multi-level or multi-resolution representation of ui , where each level of resolution j
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Journal of Turbulence 3

(except the coarsest one) consists of a family of wavelets ψµ,j
k having the same scale but located

at different positions. Scaling function coefficients represent the averaged values of the field,
while the wavelet coefficients represent the details of the field at different scales.

Wavelet filtering is performed in wavelet space using wavelet coefficient thresholding, which is
a nonlinear filter that depends on each flow realization. The wavelet thresholding filter is defined
by,

ui
>ε(x) =

∑

l∈L0

c0
l φ

0
l (x) +

+∞∑

j= 0

2n−1∑

µ=1

∑

k∈Kµ,j

|dµ,j
k |>ε‖ui ‖WTF

d
µ,j
k ψ

µ,j
k (x), (2)

where ε > 0 stands for the non-dimensional (relative) threshold parameter, ‖ · ‖WTF being the
wavelet threshold filtering (WTF) norm that provides the (absolute) dimensional velocity scale in
the ith direction. For instance, the (absolute) dimensional scaling can be specified as the L2 norm
(‖ui‖WTF = ‖ui‖2) or the L∞ norm (‖ui‖WTF = ‖ui‖∞). Note that once the WTF-norm ‖ · ‖WTF is
specified, the wavelet thresholding filter (2) is uniquely defined by the non-dimensional threshold
parameter, ε. Also note that for simulation of homogeneous turbulence the same scaling is used
in all three directions, e.g. ‖ui‖WTF = ‖u‖2.

The major strength of wavelet filtering is its ability to compress the solution. For turbulent
fields, which contain isolated high-energy coherent structures on a low-energy background, most
wavelet coefficients are small. Thus, a good approximation can be retained even after discarding
a large number of wavelets with small coefficients. Intuitively, in the wavelet decomposition (1),
the coefficient d

µ,j
k is small unless ui has significant variation on the level of resolution (scale) j ,

in the immediate vicinity of wavelet ψµ,j
k (x).

2.2. Wavelet-filtered Navier-Stokes equations

When applying the wavelet thresholding filter to the Navier-Stokes equations, each variable
should be filtered, according to (2), with a corresponding absolute scale. However, this would
lead to numerical complications due to the one-to-one correspondence between wavelet locations
and grid points. In particular, each variable would be solved on a different numerical grid. In
order to avoid this difficulty, the coupled wavelet thresholding strategy is used in the present
study. Namely, after constructing the masks of significant wavelet coefficients for each primary
variable, the union of these masks results in a global thresholding mask that is used for filtering
each term. Note that additional variables, e.g. vorticity or strain rate, can be used to construct the
global mask.

Once the global mask is constructed, one can view the wavelet thresholding procedure as local
low-pass filtering. Such an interpretation highlights the similarity between SCALES and classical
LES approaches. However, the wavelet filter is drastically different from the LES filters because
it adapts dynamically to the solution. This generates an adaptive computational grid that tracks
the areas of locally significant energy in physical space as illustrated, for instance, in Figure 1
where the volume rendered vorticity magnitude and the corresponding computational grid used
in SCALES simulations are shown.

Therefore, the SCALES equations for incompressible flow, which describe the evolution of
the most energetic coherent structures, are obtained by applying the wavelet thresholding filter to
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4 O.V. Vasilyev et al.

Figure 1. Volume rendered vorticity magnitude (left) and corresponding computational grid (right) for
SCALES simulations. Points of different levels of resolution are shown in different color.

the incompressible Navier–Stokes equations:

∂ui
>ε

∂xi

= 0, (3)

∂ui
>ε

∂t
+ ∂(ui

>ε uj
>ε)

∂xj

= − 1
ρ

∂p>ε

∂xi

+ ν
∂2ui

>ε

∂xj∂xj

− ∂τij

∂xj

, (4)

where ρ, ν are the constant density and kinematic viscosity, and p stands for the pressure. As a
result of the filtering process, the unresolved quantities

τij = uiu
>ε
j − u>ε

i u>ε
j , (5)

commonly referred to as SGS stresses, are introduced. They represent the effect of unresolved
(less energetic) coherent and incoherent eddies on the resolved (energetic) coherent vortices. As
usual in a LES approach, in order to close Equations (4), a closure model is needed to express the
unknown SGS stresses in terms of the resolved wavelet-filtered field. Note that analogous to LES
with a non-uniform filter width [8–10] there is a commutation error between wavelet filtering and
derivative operators, the effect of which is not considered in this paper. However, a significant
number of wavelets below the thresholding level, ε‖ui‖WTF , are retained due to the adjacent zone
and reconstruction check procedures [11–13] in the regions of the energetic vortices, which results
in a significant reduction of the commutation error.

2.3. Numerical implementation

The SCALES methodology is implemented using the adaptive wavelet collocation method
(AWCM), e.g. [11]. The wavelet collocation method employs wavelet compression as an in-
tegral part of the numerical algorithm such that the solution is obtained with the minimum
number of grid points for a given accuracy.

Briefly, the AWCM is an adaptive, variable-order method for solving partial differential equa-
tions with localized structures that change their location and scale. Since the computational grid
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Journal of Turbulence 5

automatically adapts to the solution, both in position and scale, the regions of high gradients
or localized structures do not need to be known a priori. Also, the method is based on second-
generation wavelets [14], which allow the order of the wavelet (and hence of the numerical
method) to be varied easily. The method has a computational complexity O(N ), where N is the
number of wavelets1 retained in the calculation, i.e. those wavelets with significant coefficients
plus nearest neighbors. As far as computational cost is concerned, it should be noted that the
adaptive wavelet collocation code is about 2–3 times slower per grid point than the non-adaptive
finite difference code, so a compression factor of 260 (that is retaining 0.385% of the total non-
adaptive nodes) as reported in Section 4 represents an acceleration of about 90 times with respect
to the non-adaptive case.

3. Lagrangian dynamic SGS model

The main objective of the current work is to develop a local SGS model for SCALES of inho-
mogeneous turbulent flows. One way to achieve this goal would be to use the local Smagorinsky
model based on a modified Germano dynamic procedure, redefined in terms of the wavelet thresh-
olding filters introduced in [4]. However, as in the classical LES approach, e.g., [15], the local
formulation would lead to numerical instability. The volume averaging procedure, introduced in
[4] to stabilize the solution, leads to the definition of a global (spatially non-variable) coefficient.
This limits the applicability of the model to flows with at least one homogeneous direction.

We now extend the Lagrangian dynamic path-line averaging approach of [6] and apply it to
SCALES. Following [4], where the SGS stresses (5) were shown to scale like ε2, the deviatoric
part (hereafter noted with a star) of the SGS stress tensor is approximated by the Smagorinsky
eddy-viscosity model

τ ∗
ij

∼= −2CS)
2ε2|S>ε |Sij

>ε
, (6)

where Sij
>ε = 1/2(∂ui

>ε/∂xj + ∂uj
>ε/∂xi) is the resolved rate-of-strain tensor,

|S>ε | = (2Sij
>ε

Sij
>ε

)1/2, and )(x, t) is the local characteristic filter length scale. The lat-
ter is the key parameter in the SCALES formulation as it strictly reflects the adaptive nature of
the method. Once a wavelet threshold is given, the corresponding thresholding mask implicitly
defines a point-wise time-dependent filter width. This is different from classical LES where the
local, possibly non-uniform, filter width is defined a priori and does not depend on the actual
flow realization.

Following the modified dynamic procedure of [4], the residual stress tensor at the test-filter
level is defined as

Tij = uiuj
>2ε − ui

>2ε uj
>2ε, (7)

where (·)>2ε
corresponds to the wavelet test filter at twice the threshold, i.e. the test filter is defined

by Equation (2) with ε replaced by 2ε. Since the wavelet filter is a projection operator it satisfies

(·)>ε>2ε
≡ (·)>2ε

. Therefore, by filtering (5) at the test filter level and combining it with (7), the

1N is also the number of grid points due to one-to-one correspondence between wavelet locations and
grid points.
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6 O.V. Vasilyev et al.

following modified Germano identity for the Leonard stresses is obtained:

Lij ≡ Tij − τij
>2ε = ui

>εuj
>ε>2ε − ui

>2ε uj
>2ε . (8)

Exploiting the model (6) and the analogous relation for the test filtered SGS stresses

T ∗
ij

∼= −2CS)
2 (2ε)2 |S>2ε |Sij

>2ε
, (9)

one obtains

2CS)2ε2|S>ε |Sij
>ε>2ε

− 2CS)
2 (2ε)2 |S>2ε |Sij

>2ε = L∗
ij . (10)

As in classical dynamic LES, a least square solution to (10) leads to the following local Smagorin-
sky model coefficient definition:

CS(x, t)ε2 =
L∗

ijMij

MhkMhk

, (11)

where

Mij ≡ 2)2
[
|S>ε |Sij

>ε>2ε
− 4|S>2ε |Sij

>2ε
]
. (12)

The coefficient CS can be actually positive or negative, which allows for local backscatter of
energy from unresolved to resolved modes. However, it has been found that negative values of
CS cause numerical instabilities. To avoid this, the Lagrangian dynamic model formulation of [6]
is exploited by taking the following statistical averages along the trajectory of a fluid particle:

ILM (x, t) = 1
T

∫ t

−∞
e

τ−t
T Lij (x (τ ) , τ ) Mij (x (τ ) , τ ) dτ, (13)

IMM (x, t) = 1
T

∫ t

−∞
e

τ−t
T Mhk (x (τ ) , τ ) Mhk (x (τ ) , τ ) dτ. (14)

This leads to the definition of the local Smagorinsky model coefficient:

CS(x, t)ε2 = ILM

IMM

. (15)

To avoid the computationally expensive procedure of Lagrangian path-line averaging, (13) and
(14) are differentiated with respect to time leading to the evolution equations for ILM and
IMM :

∂ILM

∂t
+ u>ε

m

∂ILM

∂xm

= 1
T

(LijMij − ILM ), (16)

∂IMM

∂t
+ u>ε

m

∂IMM

∂xm

= 1
T

(MhkMhk − IMM ). (17)
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The relaxation time scale T is defined as T (x, t) = θ) (ILMIMM )−1/8, where θ is a
dimensionless parameter of order unity, which is one of the options suggested by [6].

Equations (16) and (17) should be solved together with the governing equations, (3) and (4),
resulting in the availability of the local Smagorinsky model coefficient at every time step. It
should be noted that both ILM and IMM have higher frequency content when compared to the
velocity field. This is due to two main factors: the quartic character of nonlinearity of ILM and
IMM with respect to velocity and the creation of small scales due to chaotic convective mixing.
One way to deal with this problem is to use the original formulation of Meneveau et al. [6] that
does not solve Equations (16) and (17) directly. Instead the linearized version of characteristics
is used to solve Equations. (16) and (17), which introduces sufficient numerical diffusion that no
stabilization is necessary. Since AWCM uses high-order central difference scheme for derivative
operators, the resulting numerical approach does not have numerical diffusion and in order to
adequately resolve both ILM and IMM , one would need to have a substantially finer computational
mesh than the that required by the velocity field, which is impractical. To by-pass this problem
we consider two different extensions of the original Lagrangian path-line averaging procedure:
Lagrangian path-tube averaging and Lagrangian path-line diffusive averaging.

The Lagrangian path-tube averaging consists of taking the statistically filtered averages over
the trajectory of a fluid particle:

ILM (x, t) = 1
T

∫ t

−∞

∫∫∫

D

e
τ−t
T G( y − x(τ ), x(τ ))Lij ( y, τ ) Mij ( y, τ ) dτd y, (18)

IMM (x, t) = 1
T

∫ t

−∞

∫∫∫

D

e
τ−t
T G( y − x(τ ), x (τ ))Mhk ( y, τ ) Mhk ( y, τ ) dτd y, (19)

where G (ξ , x) is the local, location dependent, low-pass filter with the second variable denoting
filter location. Note that the low-pass filter averages the values in the neighborhood of the path-
line, effectively making it path-tube averaging. Also note that if G (ξ , x) = 1, i.e. no additional
spatial filter is applied, the formulations are identical to that in [6]. This modified averaging
procedure leads to the following evolution equations for the auxiliary variables ILM and IMM :

∂ILM

∂t
+ u>ε

l

∂ILM

∂xl

= 1
T

(
LijMij

LP
− ILM

)
, (20)

∂IMM

∂t
+ u>ε

m

∂IMM

∂xm

= 1
T

(
MhkMhk

LP
− IMM

)
, (21)

where (·)
LP

denotes low-pass filtering based on G (ξ , x).
In the Lagrangian path-line diffusive averaging approach an additional artificial diffusion term

is added to the evolution equations:

∂ILM

∂t
+ u>ε

l

∂ILM

∂xl

= 1
T

(LijMij − ILM ) + DI
∂2ILM

∂xl∂xl

, (22)

∂IMM

∂t
+ u>ε

m

∂IMM

∂xm

= 1
T

(MhkMhk − IMM ) + DI
∂2IMM

∂xm∂xm

. (23)

To avoid the creation of small scales, the diffusion time scale, )2/DI , should be smaller than the
convective time scale associated with local strain, i.e. |S>ε |−1, which results in DI = CI)

2|S>ε |,
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8 O.V. Vasilyev et al.

where CI is a dimensionless parameter of order unity. Note that the Lagrangian path-line diffusive
averaging procedure can be formally derived by using differential implicit filters described in
Appendix 1. Substituting the implicit integro-differential form (1.11) of the Lagrangian path-
tube averaging into Equations. (18) and (19) and assuming, for simplicity, DILM

= DIMM
= DI

one can derive Equations (22) and (23).
Combining these two approaches results in the Lagrangian path-line/tube diffusive averaged

equations:

∂ILM

∂t
+ u>ε

l

∂ILM

∂xl

= 1
T

(
LijMij

LP
− ILM

)
+ DI

∂2ILM

∂xl∂xl

, (24)

∂IMM

∂t
+ u>ε

m

∂IMM

∂xm

= 1
T

(
MhkMhk

LP
− IMM

)
+ DI

∂2IMM

∂xm∂xm

. (25)

Note that the case G = 1 and CI = 0 is equivalent to the original Lagrangian formulation of [6].

4. Results

In this section we apply the proposed SCALES model to incompressible isotropic decaying
turbulence. Though the proposed localized models are specifically designed to simulate complex
inhomogeneous turbulent flows, it is nevertheless enlightening to test them for a case for which
well-known theoretical and experimental results exist. In addition, homogeneous turbulence
case allows a detailed comparison with the existing reference solutions for DNS, LES and
SCALES (with global dynamic model). Moreover, decaying turbulence is a challenging example
of statistically unsteady flow that stands for a good test-case for a posteriori verifying the accuracy
of the proposed SGS stress model. The initial velocity field is a realization of a statistically
stationary turbulent flow at Reλ = 72 (λ being the Taylor microscale) that is provided by a fully
de-aliased pseudo-spectral DNS with 1283 Fourier modes [5]. Due to the finite difference nature
of the AWCM solver, the initial SCALES resolution in each direction must be doubled in order to
retain the spectral energy content. In other words, SCALES is run using a maximum resolution
corresponding to 2563 grid points. Note that due to the nature of the decaying turbulence, 2563

resolution is only required during initial times with gradual decrease of the maximum level of
resolution as turbulence kinetic energy decays and Taylor microscale Reynolds number decreases.

The choice of the thresholding parameter, ε, in (2) is somewhat arbitrary: the smaller it is,
the weaker the SGS dissipation is, with SCALES approaching coherent vortex simulation [16, 4]
and wavelet-based DNS for even smaller values of ε ≤ 10−3. On the other hand, when ε is
too large, too many modes are discarded and the energy cascade is no longer captured. All
the SCALES results reported in this paper have been obtained using the wavelet thresholding
parameter ε = 0.43 as a compromise between these limits.

The Lagrangian local modeling variables are initialized as IMM = MhkMhk and
ILM = C̄sε

2IMM , where C̄s is the volume averaged Smagorinsky model coefficient (11). For
the relaxation time scale, the value θ = 0.75 suggested by [6] is chosen. For Lagrangian path
- line diffusive averaging, a diffusion coefficient CI ≥ 5 has been found to produce acceptable
results while approaching the global dynamic model for very large values of the coefficient. In
the case of Lagrangian path - tube averaging, the same stabilizing effect is obtained by means of
local volume averaging along the path-line, provided that the linear cross-sectional dimensions
of the path-tube are not smaller than the local characteristic filter width, ).
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Figure 2. Energy decay for SCALES with the Lagrangian path-line diffusive ( ) and path-tube
averaging ( ) models, SCALES with global dynamic model ( ), SCALES with no model ( ),
reference LES with global dynamic model ( ), and wavelet filtered DNS (◦).

In Figures 2–4 the resolved kinetic energy decay, grid compression (percentage of the discarded
grid points) and modeled SGS dissipation (percentage of the total dissipation) for proposed
SCALES are compared to a posteriori wavelet filtered DNS, classical LES, SCALES with global
dynamic model and SCALES with no model. The LES is performed using the non-adaptive
wavelet collocation solver on a regular 643 grid. The solution is de-aliased by performing a
wavelet transform on the velocity field and zeroing the highest level wavelet coefficients for each
time step. As to Figure 2, the resolved kinetic energy is normalized with respect to the initial
unfiltered DNS energy content. The grid compression is evaluated with respect to the maximum
field resolution. The time scale used to report the results corresponds to approximately 10 initial
eddy-turnover times.

As can be seen from the energy decay plot in Figure 2, the case of SCALES with no model is
only slightly under-dissipative. From Figure 5 we see that this case accurately captures the energy
and enstrophy spectra. By examining the grid compression reported in Figure 3 we can see that
due to the adaptive nature of the numerical algorithm, the absence of SGS dissipation results
in energy transfer to the small scales, where the energy is dissipated by viscous stresses. This
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Figure 3. Field compression: SCALES with the Lagrangian path line diffusive ( ) and path tube
averaging ( ) models, SCALES with global dynamic model ( ) and SCALES with no model
( ).
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Figure 4. Percentage of SGS (modelled) dissipation: SCALES with the Lagrangian path-line diffusive
( ) and path-tube averaging ( ) models, SCALES with global dynamic model ( ) and
reference LES with global dynamic model ( ).

process results in an increase in the number of the degrees of freedom and causes the solution
to approach CVS [4]. This effect would be more pronounced for higher Reynolds number flows,
since SCALES with no model would have to resolve all the scales up to Kolmogorov scale and
would rely on molecular viscosity as the only dissipative mechanism. The adaptive nature of
the AWCM makes comparison of simulations tricky because the algorithm itself attempts to add
resolution if the physical problem is under-resolved. In this case good results are obtained at
the cost of increased resolution. Another interesting observation is that despite the similar initial
compression, the local Lagrangian models show a higher level of SGS dissipation because they
capture the local structure of the flow rather than simply providing the necessary mean energy
dissipation (as in the case of both the global dynamic model and LES). This, in turn, results
in higher compression for larger times. It is worth noting that the level of SGS dissipation of
SCALES closely matches that of the global model and reference LES.

Another crucial feature of the SCALES approach is seen in the energy and, more importantly,
enstrophy spectra, which are shown respectively in Figures 5 and 6 for two different times. In
contrast to classical LES, the SCALES results match not only in terms of temporal evolution of
the total resolved turbulent kinetic energy, but also in terms of the DNS energy and enstrophy
density spectra up to the dissipative wavenumber range. It is important to emphasize that this
close match is achieved using less than 0.4% of the total non-adaptive nodes required for a DNS
with the same wavelet solver. To highlight the significance of such a close match, it is interesting
to compare these results with those of an LES with the global dynamic Smagorinsky model.
Despite the fact that LES uses almost four times the number of modes (1.56%), it fails to capture
the small-scale features of the spectrum. In addition, the total resolved LES kinetic energy is
noticeably below the filtered DNS curve for moderate and high wavenumbers. These differences
are even more pronounced for the enstrophy spectra.

It is worth stressing the unique feature of the SCALES approach, namely the coupling of
modeled SGS dissipation to grid compression: more grid points are used for models with lower
levels of SGS dissipation. In other words, the SCALES approach compensates for inadequate SGS
dissipation by increasing the local resolution and, hence, the level of resolved viscous dissipation.
This can be seen clearly by comparing to the SCALES results with no SGS model.

As stated earlier, the absence of SGS dissipation results in the transfer of energy from low
to high wavenumbers, filling the entire wavenumber range, bringing the energy and enstrophy
spectra close to the wavelet filtered DNS spectrum. This process continues until the lack of SGS
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Figure 5. Energy density spectra at t = 0.08 (left) and t = 0.16 (right): SCALES with the Lagrangian
path-line diffusive ( ) and path-tube averaging ( ) models, SCALES with global dynamic model
( ), SCALES with no model ( ), spectral DNS ( ), wavelet filtered DNS (◦) and reference
LES with global dynamic model ( ).

dissipation is balanced by the viscous dissipation. Recall that enstrophy and viscous dissipation
spectra are identical if properly normalized. Thus, an accurate enstrophy spectrum ensures proper
viscous dissipation. On the other hand, the increase of energy in high wavenumber range results
in an increase of degrees of freedom (active wavelet coefficients or grid points), as seen in
Figure 3. The energy and enstrophy spectra for SCALES with local Lagrangian models closely
match each other and agree reasonably well with the spectra for filtered DNS. The non-local
character of the dissipation of the global dynamic model results in over-dissipation at small scales
and, subsequently, smaller wavelet coefficients on the finest level of resolution, which ultimately
results in the earlier removal of the finest level of resolution from the adaptive computational
grid.

Finally, SCALES with the local dynamic Smagorinsky model with both types of Lagrangian
averaging are virtually identical, which highlights the similarities of both averaging approaches.
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Figure 6. Enstrophy density spectra at t = 0.08 (left) and t = 0.16 (right): SCALES with the Lagrangian
path-line diffusive ( ) and path-tube averaging ( ) models, SCALES with global dynamic model
( ), SCALES with no model ( ), spectral DNS ( ), wavelet filtered DNS (◦), and reference
LES with global dynamic model ( ).
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5. Conclusions

The development of local SGS models is unavoidable for the application of SCALES to practical
engineering flows. In this work, new local SCALES models based on Lagrangian path-line
diffusive and path-tube averaging are developed and assessed in terms of accuracy and efficiency.
The results in this work show that localized Lagrangian dynamic SGS models can be successfully
used with the SCALES approach. Further studies for strongly inhomogeneous higher Reynolds
number flows are currently underway and will be reported in a future publication.
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Appendix 1. Differential filters

The Lagrangian path-line diffusive averaging approach can also be derived by using differential
filters. To illustrate the derivation, for simplicity let us consider one-dimensional spatial filtering

φ
LP

(x, t) =
∫

D

G (y − x, x)φ (y, t) dy. (1.1)

Performing Taylor series expansion of φ (y, t) around x yields

φ(y, t) =
+∞∑

k=0

(y − x)k

k!
∂kφ

∂xk
(x, t) . (1.2)

Substituting Equation (1.2) into Equation (1.1) and changing the order of integration and sum-
mation one can obtain

φ
LP

(x, t) =
+∞∑

k=0

(∫

D

(y − x)k

k!
G (y − x, x) dy

)
∂kφ

∂xk
(x, t) . (1.3)

Denoting the term in parenthesis as differential filter coefficient Mk and taking into account that
M0 = 1, filter (1.1) can be rewritten as an explicit differential filter

φ
LP

(x, t) = φ(x, t) +
+∞∑

k=1

Mk

∂kφ

∂xk
(x, t) . (1.4)
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This infinite series can be inverted and the differential filter can be rewritten in implicit (Pade)
differential form

φ
LP

(x, t) = φ(x, t) +
+∞∑

k=1

Dk

∂kφ
LP

∂xk
(x, t) , (1.5)

where Dk are the implicit differential filter coefficients. This analysis can be easily extended to
multiple dimensions, e.g. [8, 9, 10]. Note that since the first moments for most of the low-pass
filters are always zero, the simplest inhomogeneous implicit multi-dimensional differential filter
is given by

φ
LP

(x, t) = φ(x, t) + D2 (x, t)
∂2φ

LP

∂xk∂xk

(x, t) , (1.6)

where repeated indices imply the summation.
The Lagrangian path-tube averaging along the trajectory of a fluid particle, x(t), for the field

variable φ(x, t) can be written as

Iφ (x, t) = 1
T

∫ t

−∞

∫∫∫

D

e
τ−t
T G( y − x(τ ), x(τ ))φ( y, τ )dτd y (1.7)

or using low-pass filter notation as

Iφ (x, t) = 1
T

∫ t

−∞
e

τ−t
T φ

LP
(x (τ ) , τ )dτ. (1.8)

Substituting inhomogeneous differential implicit filter (1.6) into (1.8) yields

Iφ (x, t) = 1
T

∫ t

−∞
e

τ−t
T



φ(x (τ ) , τ ) + D2(x (τ ) , τ )
∂2φ

LP

∂xk∂xk

(x (τ ) , τ )



 dτ. (1.9)

The deconvoluted implicit filter coefficient DIφ can be introduced using the following definition:

∫ t

−∞
e

τ−t
T DIφ (x (τ ) , τ )

∂2Iφ
∂xk∂xk

∣∣∣∣
x(τ ),τ

dτ =
∫ t

−∞
e

τ−t
T D2(x (τ ) , τ )

∂2φ
LP

∂xk∂xk

∣∣∣∣∣∣
x(τ ),τ

dτ. (1.10)

Finally, with this definition Equation (1.9) can be rewritten in the following implicit integro-
differential form:

Iφ (x, t) = 1
T

∫ t

−∞
e

τ−t
T

(
φ(x (τ ) , τ ) + DIφ (x (τ ) , τ )

∂2Iφ
∂xk∂xk

(x (τ ) , τ )
)

dτ. (1.11)
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