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An adaptive numerical method for solving partial differential equations is devel-
oped. The method is based on the whole new class of second-generation wavelets.
Wavelet decomposition is used for grid adaptation and interpolation, while a new
O(N ) hierarchical finite difference scheme, which takes advantage of wavelet mul-
tilevel decomposition, is used for derivative calculations. The treatment of nonlinear
terms and general boundary conditions is a straightforward task due to the col-
location nature of the algorithm. In this paper we demonstrate the algorithm for
one particular choice of second-generation wavelets, namely lifted interpolating
wavelets on an interval with uniform (regular) sampling. The main advantage of
using second-generation wavelets is that wavelets can be custom designed for com-
plex domains and irregular sampling. Thus, the strength of the new method is that
it can be easily extended to the whole class of second-generation wavelets, leaving
the freedom and flexibility to choose the wavelet basis depending on the application.
c© 2000 Academic Press
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1. INTRODUCTION

Many interesting physical systems are characterized by the presence of a wide range
of spatial and temporal scales. In particular we are interested in solving problems with
localized structures or sharp transitions, which might occur intermittently anywhere in
the computational domain or change their locations and scales in space and time. The
numerical solution of such problems on uniform grids is impractical, since high-resolution
computations are required only in regions where sharp transitions occur. In order to solve
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these problems in a computationally efficient way, the computational grid should adapt
dynamically in time to reflect local changes in the solution.
Several adaptive gridding techniques exist, and this paper will concentrate on one such

class of methods, namely wavelet methods. Wavelet methods take advantage of the fact
that functions with localized regions of sharp transition are well compressed using wavelet
decomposition. The basic idea behind the wavelet decomposition is to represent a func-
tion in terms of basis functions, called wavelets, which are localized in both physical and
wavenumber spaces [1–4]. The currently existing wavelet-based numerical algorithms can
be roughly classified as either wavelet–Galerkin [5–8] or wavelet–collocation [9–16] type.
The major difference between these approaches is that wavelet–Galerkin algorithms solve
problems in wavelet coefficient space and, in general, can be considered gridless meth-
ods, while wavelet–collocation methods solve problem in physical space on a dynamically
adaptive computational grid. In wavelet–collocation methods every wavelet is uniquely
associated with a collocation point, and thus grid adaptation is simply based on the analysis
of wavelet coefficients; i.e., at any given time the computational grid consists of points
corresponding to wavelets whose coefficients are greater than a given threshold (a param-
eter that controls the accuracy of the solution). With this adaptation strategy a solution is
obtained on a near-optimal grid for a given accuracy; i.e., the compression of the solution
is performed dynamically as opposed to a posteriori as done in data analysis. The ma-
jor advantage of wavelet–collocation methods is the ease of treating the nonlinear terms.
Derivatives in wavelet–collocation methods can be computed in many ways, including ap-
plication of matrix derivative operators [11, 17], projection back and forth between wavelet
and physical space at every time step [13, 14], and use of finite difference operators [9, 10,
15, 16, 18, 19].
Although the wavelet transformwith its space/scale localization is an attractive technique

to apply to the solution of problems with localized structures, traditional, biorthogonal
wavelet transforms have difficulties dealing with boundaries. Traditionally, wavelets ψ

j
k

are defined as translates and dilates of one mother wavelet ψ ; i.e., ψ j
k (x) = ψ(2 j x − k).

Orthogonal and biorthogonal wavelet transforms have been extended to the interval [20–
22], but a better solution is to abandon the translation/dilation relationship. This leads to
what are referred to as second-generationwavelets in the literature [23]. Themain advantage
of second-generation wavelets is that wavelets are constructed in the spatial domain and
can be custom designed for complex domains and irregular sampling.
Second-generation wavelets supply the necessary freedom to deal with boundary condi-

tions, but with a cost. With the loss of translation invariance goes also the Fourier transform,
the primary tool used in the creation of most of the first-generation wavelet bases. There are
few first-generation wavelets that can be constructed without the use of Fourier techniques
developed in [24]. Interpolating wavelets, independently discovered by Donoho [25] and
Harten [9], are an example of such a family. Interpolating wavelets are based on the interpo-
lating subdivision scheme of Deslauriers and Dubuc [26] and are well suited to numerical
analysis [9, 10, 14, 16, 27]. Interpolating wavelets, however, do have their shortcomings,
which are discussed in detail in Section 2.1. It is desirable to have a larger class of second-
generation wavelets to build on. Fortunately there is a general method available for the
construction of second-generation wavelets, known as the lifting scheme [23, 28].
The main objective of this paper is to establish a general framework for construct-

ing numerical methods for solving partial differential equations, which are based on
second-generation wavelets. The beauty of second-generation wavelets is that the algorithm
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developed for one particular choice of wavelet basis can be easily extended to the whole
class of second-generation wavelets, leaving the freedom and flexibility to choose wavelets
depending on applications. In this paper we will demonstrate the method by solving a
number of one-dimensional nonlinear test problems on an interval using lifted interpolat-
ing wavelets. Extensions of the algorithm to higher dimensions, complex geometries, and
irregular sampling will be the subject of further investigation.
The rest of the paper is organized as follows. Section 2 gives a brief introduction of the

second-generation wavelets. Two major tools for constructing second-generation wavelets,
namely interpolatingwavelet transformand lifting, are discussed in detail in Sections 2.1 and
2.2. The efficient implementation of the lifted interpolating wavelet transform algorithm is
described in Section 2.3. The numerical algorithm based on the lifted interpolating wavelet
transform is introduced in Section 3. Finally, Section 4 contains numerical examples of
applications of the new method to the solution of one-dimensional Burgers and modified
Burgers equations and the one-dimensional diffusion flame problem.

2. SECOND-GENERATIONWAVELETS

Second-generation wavelets are a generalization of biorthogonal wavelets, which are
more easily applied to functions defined on domains more general than Rn . Second-
generation wavelets form a Reisz basis for some function space, with the wavelets being
local in both space and frequency and often having many vanishing polynomial moments,
but without the translation and dilation invariance of their biorthogonal cousins. Despite
the loss of two fundamental properties of wavelet bases, second-generation wavelets re-
tain many of the useful features of biorthogonal wavelets, including the existence of a fast
transform. In order to define second-generation wavelets, we start with a multiresolution
analysis adopted from [23]:

DEFINITION 2.1. A second-generation multiresolution analysis M of a function space
L consists of a sequence of closed subspacesM = {V j ⊂ L | j ∈ J } such that

1. V j ⊂ V j+1,
2.

⋃
j∈J V j is dense in L, and

3. for each j ∈ J , V j has a Reisz basis given by scaling functions {φ j
k | k ∈ K j },

where K j is some index set. For notational convenience we use the superscript to denote
the level of resolution and the subscript to denote the location in physical space at that level
of resolution. Notice that unlike the first generation case, there is no restriction on φ

j
k to be

dilates or translates of some fixed mother function.
A dual multiresolution analysis M̃ = {Ṽ j ⊂ L | j ∈ J } also exists, consisting of spaces

Ṽ j spanned by dual scaling functions φ̃
j
k which are biorthogonal to the primal scaling

functions. Since φ
j
k belongs to V j and hence to V j+1, it can be expressed as

φ
j
k =

∑

l∈K j+1

h jk,lφ
j+1
l . (1)

Thus, instead of basing a multiresolution analysis on scaling functions φ
j
k one could just as

easily define it in terms of the filter coefficients h jk,l , as long as the set of coefficients admits
a solution to Eq. (1). Note that not all filter coefficients will admit such a solution.
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Wavelets ψ
j
k are introduced the same way as in the biorthogonal case, namely as ba-

sis functions for W j , the complement of V j in V j+1; i.e., V j+1 = V j ⊕ W j , while dual
wavelets are biorthogonal to the wavelets and span the complement of Ṽ j in Ṽ j+1. By their
construction wavelets form a Reisz basis for the function space L and allow a function to
be represented by its wavelet coefficients. In the same manner as with the scaling function,
wavelets at level j can be expressed in terms of scaling functions at level j + 1 as

ψ
j
k =

∑

l

g jk,lφ
j+1
l . (2)

Also, since φ
j+1
k ∈ V j ⊕ W j , it holds that

φ
j+1
k =

∑

l

h̃ jl,kφ
j
l +

∑

m
g̃ jm,kψ

j
m . (3)

The notion of a second-generation multiresolution analysis induces a fast second-
generation wavelet transform. Given scaling function coefficients c j+1k at level j + 1, the
wavelet coefficients d j

k and scaling function coefficients c
j
k at level j are given by

d j
k =

∑

l

g̃ jk,l c
j+1
l , (4)

c jk =
∑

l

h̃ jk,l c
j+1
l . (5)

The inverse transform is then implemented by

c j+1k =
∑

m
h jm,kc

j
m +

∑

l

g jl,kd
j
l . (6)

The coefficients c jk and d
j
k are often referred to as the smooth and detail components of the

signal at level j .
It is formally useful to think of the second-generation wavelet transform in terms of filter

banks, despite the fact that the filters now act only locally and are potentially different
for each coefficient. Filter banks are a common way of representing biorthogonal wavelet
transforms. Simply put, the coefficients g̃ jk,l , h̃

j
k,l , g

j
k,l , and h

j
k,l are respectively represented

as filters G̃ j , H̃ j , G j , and H j in a filter bank, where typically H̃ j is a low-pass (smoothing)
filter and G̃ j a high-pass filter, while G j and H j are respectively low-pass and high-pass
synthesis filters. One step of the forward and inverse wavelet transforms is shown as a block
diagram in Fig. 1.

FIG. 1. Block diagram of fast wavelet transform.
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2.1. The Interpolating Wavelet Transform

Before discussing the general construction of second-generation wavelets, it is important
to consider the interpolating wavelets of Donoho and Harten, which were the inspiration
for the construction of second-generation wavelets and could be considered one of the two
main building blocks. In this section we briefly describe the standard interpolating wavelet
transform algorithm and discuss its limitations. For details we refer to [9, 23, 25].
We start in the context of first-generation wavelets, working on the real line. Interpolating

wavelets are constructed on a set of dyadic grids on the line,

G j =
{
x jk ∈ R : x jk = 2− j k, k ∈ Z

}
, j ∈ Z, (7)

where x jk are the grid (collocation) points and j is the level of resolution. Note that since
x j−1k = x j2k it easily follows that G j−1 ⊂ G j . An example of dyadic grids for j = 0, . . . , 4 is
given in Fig. 2. Interpolating wavelets can be formally introduced through the interpolating
subdivision scheme of Deslauriers andDubuc [26], which considers the problem of building
an interpolant f j (x) on a grid G j+1 for a given data sequence f (x jk ). Deslauriers and Dubuc
defined a recursive procedure interpolating the data f (x jk ) to all dyadic points in between.
The algorithm proceeds by interpolating the data f (x jk ) to the points on a grid G j+1 which
do not belong to G j . This procedure does not modify any of the existing data and thus
can be repeated until the data are interpolated to all dyadic points up to the desired level
of resolution. The interpolation is achieved by constructing local polynomials, P2N−1(x)
of order 2N − 1, which uses 2N closest points. For example, to find the value of the
interpolant at location x j+12k+1 we construct the polynomial of order 2N − 1 based on the
values of the function at locations x jk+l (l = −N + 1, . . . , N ) and evaluate it at location
x j+12k+1. Evaluating this polynomial at point x

j+1
2k+1 and substituting the values of polynomial

coefficients expressed in terms of values f (x jk ), we can easily get that

f j
(
x j+12k+1

)
=

N∑

l=−N+1
w

j
k,l f

(
x jk+l

)
. (8)

What makes the interpolating subdivision so attractive is that the values of these weights

FIG. 2. Example of the dyadic grid.
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FIG. 3. Interpolating scaling function φ(x) and its Fourier transform #(ξ) for N = 3.

are the same for evenly spaced grids. However, this procedure can be easily extended to the
nonuniform grids, which will result in location-dependent weights. The generalization of
the scheme to the intervals is also straightforward. In this case the 2N nearest points will
not be located symmetrically, but will be chosen from the points on the interval.
The interpolating scaling function φ

j
k (x) can be formally defined by setting f (x

j
l ) = δl,k ,

where δl,k is the Kronecker delta, and then performing the interpolating subdivision scheme
up to an arbitrary high level of resolution J . This procedurewill result in the scaling function
φ
j
k sampled at the locations x Jk . Now using the linear superposition, it is easy to show that

f j (x) =
∑

k

c jkφ
j
k (x), (9)

where for consistency with wavelet notation we set c jk = f (x jk ). It is easy to show that for
the regularly spaced grid G j , all scaling functions are translates and dilates of one function
φ(x) = φ00(x), called the interpolating scaling function. An example of an interpolating
scaling function φ(x) and its Fourier transform #(ξ) for N = 3 is shown in Fig. 3. It is
easy to show that the interpolating function has the following properties:

• compact support, i.e., it is exactly zero outside the interval [−2N + 1, 2N − 1];
• φ(x) is cardinal (interpolating); i.e., φ(k) = δk,0;
• linear combinations φ

j
k (x) reproduce the polynomials up to degree 2N − 1;

• φ(x) satisfies a refinement relation (1);
• φ(x) is the autocorrelation of the Daubechies scaling functions of order 2N [29].

In light of themultiresolution analysis, the function f j (x)definedbyEq. (9) belongs to the
spaceV j . Repeating the procedure for the j + 1 level of resolutionwe construct the function
f j+1(x), which belongs to V j+1. Due to the cardinal property of the interpolating wavelet it
follows that f j (x jk ) = f (x jk ). Since x

j
k = x j+12k , which simply follows from (7), is it easy to

show that f j (x j+12k ) = f j+1(x j+12k ). However, f j (x j+12k+1) '= f j+1(x j+12k+1). If we call half the
difference f j+1(x j+12k+1) − f j (x j+12k+1) a wavelet coefficient d

j
k and set ψ

j
k (x) = 2φ j+1

2k+1(x),
or ψ(x) = 2φ(2x − 1), then we can define the detail function d j (x) to be

d j (x) =
∑

m
d j
mψ j

m(x). (10)

Now it is easy to show that f j+1(x) = f j (x) + d j (x). In other words, the function d j (x)
is nothing but the difference between f j+1(x) and f j (x). Using Eqs. (9) and (10) we
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obtain
∑

k

c j+1k φ
j+1
k (x) =

∑

l

c jl φ
j
l (x) +

∑

m
d j
mψ j

m(x). (11)

Now evaluating Eq. (11) on the grid G j we can easily recover Eqs. (1)–(6) and the values
for g̃ jk,l , h̃

j
k,l , g

j
l,k , and h

j
m,k . Due to cardinal properties of interpolating wavelets, the forward

interpolating wavelet transform can be written as

d j
k = 1

2

(
c j+12k+1 −

∑

l

w
j
k,l c

j+1
2k+2l

)
, (12)

c jk = c j+12k , (13)

while the inverse wavelet interpolating transform is given by

c j+12k = c jk , (14)

c j+12k+1 = 2d j
k +

∑

l

w
j
k,l c

j
k+l , (15)

where w
j
k,l are the interpolating coefficients from even points x j+12(k+l) to odd points x

j+1
2k+1

introduced in Eq. (8).
The algorithms for constructing interpolating wavelets on an interval and on a uniform

grid are the same, except that wavelets will not be dilates and translates of each other, with
the exception of internal wavelets for regular dyadic grid. Wavelets defined on a real line
are an example of first-generation wavelets, while the extension to the irregular grids and
intervals is an example of second-generation wavelets.
Interpolating wavelets do have their shortcomings, however. The wavelet basis con-

structed using interpolating scaling functions does not provide a Reisz basis for L2, as the
wavelet itself has non-zero mean, and the dual wavelets are Dirac δ-functions which do
not belong to L2. In addition, the wavelet transform derived from interpolation introduces
considerable aliasing, since the scales are not well separated by the interpolating wavelets
(the low-pass filter is just a constant). The latter property of the interpolating wavelet trans-
form is probably the most dangerous for numerical methods, since it can lead to either
unstable or inaccurate results. In addition, wavelet coefficients cannot be used for analysis
and prediction of small-scale phenomena, since the severe aliasing completely distorts their
values and wavelet coefficients no longer represent the information in certain frequency
bands, but rather exhibit low-pass filter characteristics (see Fig. 3).
In order to illustrate the shortcomings of the interpolating wavelet transform let us con-

sider two examples. First consider the wavelet transform of a unit impulse (. . . , 0, 0,
1, 0, 0, . . .) at two different locations corresponding to the coarsest and finest levels of
resolution. The result of interpolating wavelet transform is shown in Fig. 4, where vertical
lines with the circle in the vertex represent the magnitude of the wavelet coefficient, while
the x- and y-values of the bases of these lines respectively give the wavelet (grid) locations
and levels of resolution.Note thatwhen the unit impulse is located at the point corresponding
to the finest level of resolution (right impulse), there is only one non-zero coefficient corre-
sponding to the wavelet at the location of the impulse. When the impulse (left impulse) is
located at a point corresponding to the coarsest level of resolution, the information is aliased
all the way to the coarsest level. Also note that the pattern and magnitude of wavelet coeffi-
cients remain constant at all levels except the coarsest. As a second example we consider a
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FIG. 4. Distribution of coefficients d j
k and c0k of the interpolating wavelet transform for two unit impulses.

Left and right impulses are located at the points corresponding respectively to the coarsest and finest levels of
resolution.

Gaussian envelope-modulated single-frequency signal f (x) = cos(80πx)e−64x2 , which is
shown in Fig. 5, where for fairness the frequency of the signal is chosen not to be a multiple
of the sampling frequency. The wavelet transform of this signal is given in Fig. 6, where for
better readability we show only wavelet coefficients whose magnitude exceeds 10−3. Once
again note the presence of physically meaningless large wavelet coefficients at lower levels
of resolution.

2.2. The Lifting Scheme

The lifting scheme is a tool for constructing second-generation wavelets, which are no
longer dilates and translates of one single function. In contrast to first-generation wavelets,
which used the Fourier transform for wavelet construction, a construction using lifting is
performed exclusively in spatial domain and, thus, wavelets can be custom designed for
complex domains and irregular sampling.
The basic idea behind lifting is to start with simple multiresolution analysis and gradually

build amultiresolution analysis with specific, a priori defined properties. The lifting scheme

FIG. 5. Function f (x) = cos(80πx)e−64x2 .
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FIG. 6. Distribution of coefficients d j
k and c0k of the interpolating wavelet transform of the function given in

Fig. 5. Only coefficients whose absolute values are above 10−3 are shown.

can be viewed as a process of taking an existing wavelet and modifying it by adding linear
combinations of the scaling function at the same level of resolution,

ψ(x) = ψold(x) −
∑

k

ukφ(x − k), (16)

where u (stands for update) should be chosen so that the resulting wavelet has the desired
properties. This leaves the scaling function of the multiresolution analysis unchanged, but
does change the dual scaling function and wavelet. Alternatively, one can leave the dual
scaling function unchanged and change the dual wavelet, scaling function, and wavelet.
This procedure is called dual lifting. Thus both lifting and dual lifting allow one to build a
new wavelet transform with hopefully better performance properties.
For example, consider the case of the linear interpolating wavelet transform, described in

the previous section. The interpolating wavelet in this case is simply the shifted and dilated
scaling function; i.e., ψ(x) = 2φ(2x − 1). This wavelet is a poor choice in general, as it
has no vanishing moments (its integral is non-zero). This wavelet can be lifted by using
Eq. (16). An example of the lifted interpolating wavelet and its Fourier transform is shown
in Fig. 7. Comparing Fourier transforms given in Figs. 3 and 7, we can see that the lifted

FIG. 7. Lifted interpolating wavelet ψ(x) and its Fourier transform '(ξ) for N = 3.
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FIG. 8. Block diagram of lifted wavelet transform.

wavelet has a vanishing moment. It was shown in [30] that the interpolating wavelet of
order N can be lifted so that the resulting wavelet has N vanishing moments.
It is much easier to think about lifting from the filter bank standpoint. Then lifting can

be viewed as the insertion of a new filter coupling the high- and low-pass channels of the
filter bank as shown in Fig. 8. This modifies the old filters to new ones as follows:

h jk,l = hold jk,l , (17)

g jm,l = gold jm,l −
∑

k

u jk,mh
j
k,l , (18)

h̃ jk,l = h̃old jk,l +
∑

m
u jk,mg̃

j
m,l , (19)

g̃ jk,l = g̃old jk,l . (20)

This can be interpreted as simply presmoothing wavelet coefficients before applying the
old transform. The actual computation of the fast wavelet transform is done using

d j
m =

∑

l

g̃old jm,l c
j+1
l , (21)

c jm =
∑

l

h̃old jk,l c
j+1
l +

∑

m
u jk,md

j
m, (22)

with the inverse

c j+1k =
∑

l

hold jk,l

(
c jl −

∑

m
u jk,md

j
m

)
+

∑

k

gold jk,l d j
k . (23)

Note that the coefficients g̃old jk,l , h̃
old j
k,l , g

old j
l,k , hold jm,k , and u

j
k,m are respectively represented as

filters G̃ j
old, H̃

j
old, G

j
old, H

j
old, andU j in the filter bank shown in Fig. 8, where H̃ j

old is a low-
pass filter, G̃ j

old is a high-pass filter,U j is the lifting filter, andG j
old and H

j
old are respectively

low-pass and high-pass synthesis filters. Note that if the lifting scheme is applied to wavelet
construction on infinite or periodic domains, then the filter will be global, while in the
case of finite domains, irregular sampling, or complex domains all filters will be local.
Also note that application of lifting to infinite or periodic domains leads to construction
of first-generation wavelets, which can be alternatively obtained using Fourier techniques
developed in [24], but the lifting scheme has the following advantages:

1. Lifting allows faster (factor of 2) implementation of the wavelet transform.
2. No auxiliary memory is required and the original signal can be replaced with its

wavelet transform.
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3. With lifting, the inverse wavelet transform is the simple reversal of the order of
operations and the interchange of addition and subtraction operations.

2.3. The Lifted Interpolating Wavelet Transform

The lifting idea comes very naturally for interpolating wavelets. In fact if one looks closer
at the form of interpolating forward and inversewavelet transforms, given byEqs. (12)–(15),
it is easy to see the underlying dual lifting scheme. The block diagram for the interpolating
wavelet transform written as dual lifting is shown in Fig. 9, where S and S−1 denote
respectively the delay and advance operators, i.e., S fk = fk−1 and S−1 fk = fk+1, while
W j denotes local interpolating operators. The only difference from regular lifting is that
the lifting is applied to obtain the high-pass filter coefficient. We recall that filter weights of
the operatorW j are constructed from 2N − 1 order polynomial interpolation involving 2N
neighboring even points, which makes it straightforward to extend the algorithm to finite
domains and irregular sampling.
The interpolating wavelet transform can be considerably improved if one applies an

additional lifting step in the manner discussed in Section 2.2. In particular, lifting results
in wavelets that have zero moments and well-defined dual wavelet and scaling functions
that belong to L2. To ensure that the resulting wavelets have zero mean, it is enough to
impose the constraint on the transform that the average of a function f j (x) is the same for
all levels of resolution. In this case it is easy to show (see [23]) that u jk,m = w̃

j
k,m−k , where

w̃
j
k,l are the interpolating coefficients from odd points x

j+1
2k+2l+1 to even points x

j+1
2k . Note

that a different constraint would lead to a different choice of the lifting filter u jk,m .
After application of the additional lifting step, the lifted interpolating wavelet transform

becomes

d j
k = 1

2

(
c j+12k+1 −

∑

l

w
j
k,l c

j+1
2k+2l

)
, (24)

c jk = c j+12k +
∑

l

w̃
j
k,ld

j
k+l , (25)

while the inverse wavelet interpolating transform is given by

c j+12k = c jk −
∑

l

w̃
j
k,ld

j
k+l , (26)

c j+12k+1 = 2d j
k +

∑

l

w
j
k,l c

j+1
2k+2l , (27)

where w
j
k,l and w̃

j
k,l were defined earlier. The block diagram of the lifted interpolating

wavelet transform is given in Fig. 10.

FIG. 9. Block diagram of interpolating wavelet transform.
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FIG. 10. Block diagram of lifted interpolating wavelet transform.

Note that the order of the interpolating polynomial from odd to even points does not need
to be the same as in the case of even-to-odd interpolation. Thus filter weights w̃

j
k,l can be

constructed from (2Ñ − 1)-order polynomial interpolation involving 2Ñ neighboring odd
points. As a result the lifted interpolating wavelet transform is controlled by two parameters
N and Ñ . It was shown by Sweldens [23, 30] that parameter N controls the number of
zero moments in the interpolating scaling function, while Ñ controls the number of zero
moments of interpolating wavelets. In particular it can be shown that

∫

D
x pφ(x) dx = δp,0 for 0 ≤ p ≤ 2N − 1, (28)

∫

D
x pψ(x) dx = 0 for 0 ≤ p ≤ 2Ñ − 1, (29)

where
∫
D denotes integration over the (finite or infinite) domain for which the wavelets

are constructed. Thus in order to reach the highest compression it is recommended to
have Ñ = N . An example of a lifted interpolating wavelet for Ñ = N = 3 and its Fourier
transform is shown in Fig. 7. We also note that by setting Ñ = 0 we automatically recover
the standard interpolating wavelet transform given by Eqs. (12)–(15).
In order to illustrate the advantages of lifted interpolating wavelets we apply the lifted

interpolating transform to the examples considered in Section 2.1. The result of the lifted
interpolating wavelet transform of two unit impulses is shown in Fig. 11. In contrast to

FIG. 11. Distribution of coefficients d j
k and c0k of the lifted interpolating wavelet transform for two unit

impulses. Left and right impulses are located at the points corresponding respectively to the coarsest and finest
levels of resolution.
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FIG. 12. Distribution of coefficients d j
k and c0k of the lifted interpolating wavelet transform of the function

given in Fig. 5. Only coefficients whose absolute values are above 10−3 are shown.

the standard interpolating wavelet transform the information is not aliased to the coarser
levels and the distribution of wavelet coefficients is very similar. The result of the lifted
interpolating wavelet transform of a Gaussian envelope-modulated single-frequency signal
is presented in Fig. 12, where for better readability we show only wavelet coefficients
whose magnitude exceeds 10−3. Once again note that no information is aliased to the
scales below the scale corresponding to the scale of the envelope. These two examples
illustrate the considerable improvement of lifted interpolating wavelets over the standard
ones. Adding the flexibility of the second-generation wavelets and the ability to physically
interpret wavelet coefficients gives us a pretty flexible framework of constructing numerical
algorithms for solving partial differential equations, which will be discussed next.

3. NUMERICAL METHOD

The most general form of a system of partial differential equations arising in many fields
of physics and engineering can be written as

∂u
∂t

= F(x, t, u, ∇u), (30)

0 = #(x, t, u, ∇u), (31)

where Eq. (30) describes the time evolution of a vector function u and Eq. (31) represents
boundary conditions and possibly algebraic/differential constraints.
The numerical method is formally derived by evaluating the governing partial differential

equations at collocation points, which results in a system of nonlinear ordinary differential–
algebraic equations describing the evolution of the solution at these collocation points. In
order for the algorithm to resolve all the structures appearing in the solution and yet be
efficient in terms of minimizing the number of unknowns, the computational grid should
adapt dynamically in time to reflect local changes in the solution; i.e., high-resolution
computations should be carried out only in those regions where sharp transitions occur.
With a collocation method the computational cost of calculating nonlinear terms and

incorporating general boundary conditions (Dirichlet, Neumann, and mixed type) is low.
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Thus the overall computational cost of the numerical method is roughly determined by the
following three factors:

1. Computational cost of the dynamic grid adaptation.
2. Computational cost of calculating spatial derivatives of a function on an adaptive grid.
3. Computational cost of the time integration procedure.

This paper will deal with the first two issues, while construction of an efficient time integra-
tion algorithm, which takes into account the multilevel character of wavelet approximation,
will be the subject of further investigation. In the next two sections we will develop efficient
procedures for the dynamic grid adaptation and calculation of spatial derivatives.

3.1. Grid Adaptation

Grid adaptation occurs quite naturally in wavelet methods, e.g., [5, 9]. To illustrate the
algorithm, let us consider a function f (x), defined on a closed interval). As we discussed
in Section 2, interpolating wavelets are constructed on a set of grids,

G j =
{
x jk ∈ ) : k ∈ K j}, j ∈ Z, (32)

where grid points x jk can be uniformly or nonuniformly spaced. The only restriction is that
x jk = x j+12k , which guarantees the nestedness of the grids; i.e., G j ⊂ G j+1. Following the
construction of second-generation wavelets described in Section 2.3, we construct scaling
functions φ

j
k (x) (k ∈ K j ) and waveletsψ

j
l (x) (l ∈ L j ) such that on each level of resolution

J the function f (x) can be approximated as

f J (x) =
∑

k∈K0

c0kφ
0
k (x) +

J−1∑

j=0

∑

l∈L j

d j
l ψ

j
l (x). (33)

The strength of the wavelet approach now appears. For functions which contain isolated
small scales on a large-scale background, most wavelet coefficients will be small; thus we
can retain good approximation even after discarding a large number of wavelets with small
coefficients. Intuitively, the coefficient d j

l will be small unless the f has variation on the
scale of j at the location xkl .
More precisely, if we rewrite the approximation (33) as a sum of two terms composed

respectively of wavelets whose amplitude is above and below some prescribed threshold ε,

f J (x) = f J≥ (x) + f J<(x), (34)

where

f J≥ (x) =
∑

k∈K0

c0kφ
0
k (x) +

J−1∑

j=0

∑

l∈L j

|d jl |≥ε

d j
l ψ

j
l (x), (35)

f J<(x) =
J−1∑

j=0

∑

l∈L j

|d jl |<ε

d j
l ψ

j
l (x), (36)
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FIG. 13. The test function f (x) = −tanh( x+x02ν ) + exp(−642(x − x0)2) with x0 = 1/3 and ν = 10−2.

then following [25], it can be shown that
∣∣ f J (x) − f J≥ (x)

∣∣ ≤ C1ε (37)

and the number of significant wavelet coefficientsN is bounded by ε as

N ≤ C2ε−1/2N , (38)

where coefficientsCi depend on f J (x). CombiningEqs. (37) and (38)we have the following
bound on an error in terms of N :

∣∣ f J (x) − f J≥ (x)
∣∣ ≤ C3N−2N . (39)

This relation was numerically verified for the test function shown in Fig. 13 and conver-
gence results are presented in Fig. 14 for different choices of N and Ñ . Note that if the

FIG. 14. Convergence of thresholded interpolant f J≥ (x) (J = 15) for the test function shown in Fig. 13 for
different choices of parameters N and Ñ : N = Ñ = 2 (!); N = 2, Ñ = 0 (+); N = Ñ = 3 ("); N = Ñ = 4 (!).
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level of resolution J is high enough so that all the scales are properly resolved, i.e., the
error ‖ f J (x) − f (x)‖∞ is negligible, then the bound (39) can be used to measure the
approximation of the function f (x). In fact, for the case presented in Fig. 14, J is cho-
sen so that the error ‖ f J (x) − f (x)‖∞ is of the same order as the truncation error of the
machine.
Relation (39) gives us the framework for representing a function with significantly fewer

degrees of freedom, while still retaining the good approximation. However, in order to
realize all the benefits of wavelet compression, we need to have the ability to reconstruct
the f J≥ (x) from the subset of N grid points. We recall that every scaling function φ

j
k (x)

is uniquely associated with x jk , while each wavelet ψ
j
l (x) is uniquely associated with an

x j2l+1 collocation point. So once the wavelet decomposition is performed each grid point
on the finest level of resolution J is uniquely associated either with the wavelet or with
the scaling function at the coarsest level of resolution. Consequently, the collocation point
should be omitted from the computational grid if the associated wavelet is omitted from the
approximation. Note that for the stability of the reconstruction algorithm we will need to
keep all the grid points associatedwith the scaling function at the coarsest level of resolution.
This procedure will result in a set of nested adaptive computational grids G j

≥ ⊂ G j , such
that G j

≥ ⊂ G j+1
≥ for any j < J − 1 .

Removal of collocation points in this manner presents a potential problem. Since coef-
ficient information about f J≥ (x) at all locations in space is no longer available, the recon-
struction of this function from the available coefficient information may not be possible.
This potential difficulty can be easily overcome, thanks to lifting, as long as one ensures
that all grid points required for the recursive computation of the wavelet coefficients d j

l
using Eqs. (24) and (25) are available.
The most crucial feature of the lifting scheme, which allows us to build a stable recon-

struction algorithm, is the ability to find wavelet coefficients on each level of resolution
independently. To illustrate this, let us consider one step forward wavelet transform given
by Eqs. (24) and (25). In order to find wavelet coefficient d j

l we need to know only the
values of c j+1k at the grid points associated with the wavelet ψ j

l (x), i.e., x j+12l+1, and the 2N
nearest even grid points x j+12l+2n . However, in order to calculate c

j
k we only need the non-zero

values of d j
l . Thus, if we know a prioriwhat wavelet coefficients are zero, we can disregard

the values of the function at that point. Then finding the grid points that need to be included
in an adaptive grid proceeds as follows:

1. Given a function f (x), sample it on a grid G J .
2. Perform the forward wavelet transform to get all values c0k (k ∈ K0) and d j

l (l ∈ L j ,
0 ≤ j ≤ J − 1).
3. Analyzewavelet coefficients d j

l and create amaskM for the grid points x Jk , associated
with wavelets for which |d j

l | ≥ ε.
4. Include into the mask M all grid points associated with scaling functions at the

coarsest level of resolution.
5. Starting from the j = J − 1 level of resolution, recursively extend themask to include

grid points at the coarser level of resolution necessary for calculating wavelet coefficients
at level j that are marked by maskM.

At the end of this procedure we will have the complete maskM, from which we can easily
construct a set of nested adaptive computational gridsG j

≥. Performing the wavelet transform
on that adaptive grid will guarantee that all wavelet coefficients will be exactly the same
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as by performing the wavelet transform of f J≥ (x) on the complete grid and then setting
to zero the ones that do not belong to the adaptive grid. We call this criterion the perfect
reconstruction criterion. The procedure for adding additional grid points to an adaptive
grid, so that the resulting grid satisfies the perfect reconstruction criterion, will be called
the perfect reconstruction check. Requirement (5) may potentially result in less efficient
compression of f , but in practice, with lifted interpolating wavelets, this increase in storage
is negligible.
In solving evolution equations, additional criteria for grid adaptation should be added. In

particular, as suggested by Liandrat and Tchamitchian [5], the computational grid should
consist of grid points associatedwithwaveletswhose coefficients are or can possibly become
significant during the period of time when the grid remains unchanged. In other words, at
any instant in time, the computational grid should include points associated with wavelets
belonging to an adjacent zone of wavelets for which the magnitude of their coefficients is
greater than an a priori prescribed threshold. We say that the wavelet ψ j ′

l (x) belongs to the
adjacent zone of wavelet ψ j

k (x) if the following relations are satisfied,

| j − j ′| ≤ L , |2 j ′− j k − l| ≤ M, (40)

where L determines the extent to which coarser and finer scales are included into the
adjacent zone and M defines the width of the adjacent zone in physical space. The adjacent
zone satisfying criteria (40) will be called the type I adjacent zone. The values of L and M
affect the total number of collocation points present in the grid G≥ at any instant of time
and the time interval during which the calculations can be carried out without modifying
the computational grid. For efficiency we want to keep the number of collocation points
as small as possible, while at the same time we would like to minimize changes in the
collocation grid. We found that the most optimal values are L = M = 1; in other words the
adjacent zone includes the nearest points at the same, one above, and one below levels of
resolution.
The perfect reconstruction check procedure should be performed after inclusion of all

adjacent wavelets into the mask. If one takes advantage of perfect reconstruction check
procedure, then the adjacent zone criteria can be substantially simplified to include only
wavelets at the finer levels of resolution, since perfect reconstruction criteria will automat-
ically add all adjacent wavelets at the coarser levels of resolution. For example if d j

k ≥ ε,
then the mask should be extended to include points x j+12k±1. This kind of adjacent zone will
be called type II.
The process of grid adaptation for the solution of partial differential equations consists

of the following five steps:

1. Knowing the values of the solution uJk (t) atG t≥ computational grid, compute the values
of wavelet coefficients corresponding to each component of the solution using forward
wavelet transform.
2. Analyzewavelet coefficients d j

l and create amaskM for the grid points x Jk , associated
with wavelets for which |d j

l | ≥ ε.
3. Extend the maskM with grid points associated with type I or II adjacent wavelets.
4. Perform the reconstruction check procedure, which results in a complete maskM.
5. Construct the new computational grid G t+,t

≥ , which will be used for next step of time
integration.
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3.2. Calculation of Spatial Derivatives on an Adaptive Grid

When solving partial differential equations numerically, it is important to obtain deriva-
tives of a function from its values at collocation points. Three different approaches of finding
derivatives at collocation points have been previously suggested:

1. Differentiating Eq. (35) and evaluating it at the grid points G≥ as in [14, 17].
2. Performing finite difference differentiation on an irregular grid as in [15, 18].
3. Interpolating solution to the finest level of resolution and performing finite difference

differentiation on uniform grid as in [16].

The main disadvantage of the first approach is that is requires non-recursive evaluation of
contribution of wavelets at all scales and the effectiveness of wavelet transform is lost. In
particular, the cost of calculating derivatives is O(J NdN ), where N is the order of the
wavelet and d is the dimensionality of the problem, which makes the algorithm very slow
for three-dimensional problems. The main disadvantage of the second approach is that it
requires construction of local finite difference operators which are different at locations
where grid density changes. In addition, the second approach does not use wavelet trans-
form for interpolation (only for grid adaptation) and thus does not take full advantage of
multiresolution properties of wavelet decomposition. The main disadvantage of the third
approach is that it requires interpolation to the finest level of resolution, and thus introduces
additional overhead.
In this section we describe an efficient procedure for calculating spatial derivatives, that

takes advantage of the multiresolution wavelet decomposition, fast wavelet transform, and
uses finite difference differentiation. In other words wemakewavelets dowhat they dowell:
compress and interpolate. We make finite difference do the rest: differentiate polynomials.
We note that the differentiation procedure introduced in this section is similar in spirit to
the procedure used in the wavelet–Galerkin method by Walden [19].
The differentiation procedure is based on the interpolating properties of second-

generation wavelets. We recall that wavelet coefficients d j
k measure the difference between

the approximation of the function at the j + 1 level of resolution and its representation at
the j level of resolution. Thus if there are no points in the immediate vicinity of a grid point
x jk , i.e., |d

j
k+l | < ε (l = −1, 0), and if points x j+12k±1 are not present in G

j+1
≥ , then there exists

some neighborhood of x jk , )
j
k where the actual function is well approximated by the local

piecewise polynomial based on c jl (l ∈ K j ); i.e.,
∣∣∣∣ f (x) −

∑

l∈K j

c jl φ
j
l (x)

∣∣∣∣ ≤ C4ε, x ∈ )
j
k . (41)

Thus differentiating this local piecewise polynomial will give us the value of the derivative
of the function at that particular location. Let us denote by D j

≥ a collection of such points
at each level of resolution. Then the procedure for finding derivatives at all grid points will
consists of the following steps:

1. Knowing the values of a function on an adaptive computational grid G≥, perform the
wavelet transform.
2. Recursively reconstruct the function starting from the coarsest level of resolution.

On each level of resolution j find derivatives of the function at grid points that belong to
D j

≥.
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FIG. 15. Convergence of derivative of thresholded interpolant f J≥ (x) for the test function shown in Fig. 13 for
different choices of parameters N and Ñ : N = Ñ = 2 (!); N = 2, Ñ = 0 (+); N = Ñ = 3 ("); N = Ñ = 4 (!).

At the end of the inverse wavelet transform we will have derivatives of the function at all
grid points. The computational cost of calculating spatial derivatives will be roughly the
same as the cost of forward and inverse wavelet transforms.
Next let us examine the accuracy of the differentiation procedure.Assume thatwe perform

local differentiation at a point x jk ∈ D j andh j is the quantity describing the local grid spacing
at that point (it is constant for a uniform grid). Then from construction, the local truncation
error of the interpolation scheme is (h j )2N = O(ε). Numerical differentiation will reduce
the order of the scheme by 1 and make it (h j )2N−1 = O(ε(2N−1)/2N ). Hence in light of
Eq. (38) we have the error bound on the derivative

∣∣Df J (x) − Df J≥ (x)
∣∣ ≤ C5N−2N+1, (42)

where D stands for the derivative operator. This relationwas verified numerically for the test
function shown in Fig. 13 and the convergence results are presented in Fig. 15 for different
choices of N and Ñ .

3.3. Numerical Algorithm

Both grid adaptation and derivative computation procedures can easily be extended to
second-generation wavelets defined in complex domains. Since the objective of the paper
is to present the general framework for the second-generation wavelet collocation method,
we will not discuss the extensions of the algorithm to higher dimensions and complex
geometries, but leave it to be the subject of further investigation. However, with appropriate
modifications, the numerical algorithm for solving problems with localized structures will
consist of three steps regardless of the dimensionality of the problem:

1. Knowing the values of the solution uJk (t), we compute the values of wavelet coeffi-
cients corresponding to each component of the solution using the fast wavelet transform.
For a given threshold ε we adjust G t+,t

≥ based on the magnitude of the wavelet coefficients,
assigning a value d j

k = 0 for the new grid points.
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2. If there is no change between computational grids G t≥ and G t+,t
≥ at time t and t + ,t ,

we go directly to step 3. Otherwise, we compute the values of the solution at the collocation
points G t+,t

≥ , which are not included in G t≥.
3. We integrate the resulting system of ordinary differential equations to obtain new

values uJk (t + ,t) at positions on the irregular grid G t+,t
≥ and go back to step 1.

We use bold symbols to denote n-dimensional vectors u≡ (u1, . . . , un) and k≡
(k1, . . . , kn).
With such an algorithm the grid of collocation points is dynamically adapted in time and

follows the local structures that appear in the solution. Note that by omitting wavelets with
coefficients below a threshold parameter ε we automatically control the error of approxi-
mation. Thus the wavelet collocation method has another important feature: active control
of the accuracy of the solution. The smaller ε is chosen to be, the smaller the error of the
solution is. In typical applications the value of ε varies between 10−3 and 10−6, assuming
that the unknown dependent variables have been properly normalized. As the value of ε

increases, fewer grid points are used in the solution.
The algorithm can utilize different criteria for adaptation of the collocation grid. For ex-

ample, one can compose a computational grid based on the analysis of wavelet coefficients
of both the function and its derivatives. If a system of equations is solved, the adaptation
of the computational grid G t≥ should be based on the analysis of wavelet coefficients as-
sociated with all dependent variables. The adaptive grid G t≥ can be constructed as a union
of irregular grids corresponding to each dependent variable. Note that the algorithm can
be easily extended to the case where each variable is treated on a separate computational
grid. The mapping from one grid to another can be achieved via wavelet interpolation. This
may be very important for problems where scales associated with different variables are
considerably different.

4. RESULTS AND DISCUSSION

In order to illustrate the accuracy and efficiency of the proposed numerical method, we
will apply it to the solution of two well-known test problems used in the past to study
first-generation wavelet methods [11, 14, 17]. Then we will illustrate the ability of the new
method to be successfully applied to more complicated problems. In all examples presented
in this paper we use a fifth-order Gear implicit time integration algorithm implemented in
the IMSL routine IVPAG.

4.1. Problem Formulations

I. Burgers equation. For the first test problem we consider the Burgers equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

, x ∈ (−1, 1), t > 0, (43)

with initial and boundary conditions

u(x, 0) = −sin(πx), u(±1, t) = 0, (44)
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whose analytical solution is known and given by

u(x, t) = −
∫ +∞

−∞ sin(π(x − η)) exp(−cos(π(x − η))/2πν) exp(−η2/4νt) dη
∫ +∞

−∞ exp(−cos(π(x − η))/2πν) exp(−η2/4νt) dη
. (45)

The problem is solved for ν = 10−2/π and 0 ≤ t ≤ 2/π .

II. Modified Burgers equation. As a second test problem we consider the modified
Burgers equation

∂u
∂t

+ (v + u)
∂u
∂x

= ν
∂2u
∂x2

, x ∈ (−∞, +∞), t > 0, (46)

where v is a constant. The initial and boundary conditions are

u(x, 0) = −tanh
(
x − x0
2ν

)
, u(±∞, t) = ∓1. (47)

The analytical solution of this problem is a shock wave moving with the uniform velocity
v given by

u(x, t) = −tanh
(
x − x0 − vt

2ν

)
. (48)

For numerical purposes, due to the exponential decay of the solution at infinity, the problem
can be considered in a finite domain. Thus for ν = 10−2, x0 = −1/2, v = 1, and 0 ≤ t ≤ 1,
it is legitimate to consider the problem in the domain x ∈ [−1, 1] with Dirichlet boundary
conditions.

III. Diffusion flame. As a third problem we consider a one-dimensional diffusion flame
problem containing fuel and oxidizer on either side of the flame. The chemical mechanism
we consider is represented by a single reaction between fuel and oxidizer,

F+ O = P, (49)

where unity stoichiometric coefficients were assumed for simplicity. The reaction rate be-
haves according to the Arrhenius form

ẇ = KρYFρYO exp
(

−Tac
T

)
, (50)

where ρ is the density, Tac is the activation temperature, K is the pre-exponential factor,
and YF and YO are the fuel and oxidizer mass fractions.
The characteristic scales are the length scale L∗, the speed of sound c∗

0, and the den-
sity ρ∗

0 . The subscript 0 refers to the reference value at some location, and superscript ∗
denotes dimensional quantities. The reference state is that of the unburned gas; the refer-
ence temperature T ∗

ref = (γ − 1)T ∗
0 is obtained from the equation of state, where γ is the

ratio of specific heats γ = cp/cv . With this normalization, the non-dimensional governing
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equations are given by [31]

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (51)

∂ρu
∂t

+ ∂

∂x
(ρuu) = −∂P

∂x
+ ∂τ

∂x
, (52)

∂e
∂t

+ ∂

∂x
[(e + P)u] = 1

Re
∂

∂x
(uτ ) + 1

Re Pr
∂

∂x

(
µ

∂T
∂x

)
+ ẇe, (53)

∂ρYF
∂t

+ ∂

∂x
(ρYFu) = + 1

Re ScF
∂

∂x

(
µ

∂YF
∂x

)
− ξẇe, (54)

∂ρYO
∂t

+ ∂

∂x
(ρYOu) = 1

Re ScO
∂

∂x

(
µ

∂YO
∂x

)
− ξ#ẇe, (55)

P = γ − 1
γ

ρT, (56)

where

τ = 4
3
µ

∂u
∂x

, (57)

µ = [(γ − 1)T ]a, (58)

e = 1
2
ρu2 + P

γ − 1
, (59)

ẇe = 1ρ2YFYO exp
(

− β(1− θ)

1− α(1− θ)

)
, (60)

θ = 1− α

α
((γ − 1)T − 1), (61)

α = Tf − T0
Tf

, (62)

β = α
Tac
Tf

, (63)

ξ = 1
1+ #

1− α

α
(γ − 1), (64)

a = 0.76,1 is the pre-exponential factor, Tf is the adiabatic flame temperature, and# is the
equivalence ratio. Note that Eq. (61) is the non-dimensional version of Eq. (50), rewritten in
a form suggested byWilliams [32]. The independent non-dimensional parameters appearing
in the equations are

Re = ρ∗
0c∗
0L∗

µ∗
0

, Pr = µ∗c∗
P

λ∗ , ScF = µ∗

ρ∗D∗
F
, ScO = µ∗

ρ∗D∗
O

, (65)

where µ∗ is dynamic viscosity, λ∗ is thermal conductivity, and D∗
F and D∗

O are fuel and
oxidizer diffusivities, respectively. It is assumed that the Prandtl number Pr and the Schmidt
numbers ScF and ScO are constant throughout the flow.
The initial conditions are given by

ρ(x1, x2, 0) = 1, (66)
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u(x, 0) = 0, (67)

T (x, 0) = 1
γ − 1

(68)

YF(x, 0) = YF,∞
(
1
2

− 1
2
erf

(
x
,

))
, (69)

YO(x, 0) = YO,∞

(
1
2

+ 1
2
erf

(
x
,

))
, (70)

where erf(x) = 2π−1/2 ∫ x
0 e

−ξ 2dξ . The domain is chosen to be [−L , L], and the initial
flame is located at x = 0. The boundary conditions are non-reflecting outflow boundary
conditions of Poinsot and Lele [33].
The problem is solved for the following set of parameters:

Re = 103, Pr = 1, ScF = ScO = 1, γ = 1.4, L = 4, , = 10−2,

α = 0.6, β = 4, 1 = 103, # = 1, YF,∞ = YO,∞ = 1.

4.2. Numerical Results

4.2.1. Problems I and II

The first problem tests the ability of themethod to resolve a one-dimensional shockwhich
is fixed in space but whose gradient changes in time. The second problem tests its ability to
resolve amoving one-dimensional shock. The dynamic adaptation of the computational grid
G t≥ is illustrated in Figs. 16 and 17 for the first and second problems, respectively. In both
cases we use threshold parameter ε = 10−5 and N = Ñ = 3. The evolution of the solution
of the Burgers equation from the uniformly smooth distribution to the shock structure results
in the growth of the wavelet coefficients corresponding to the smaller scales, which in turn
results in the refinement of the grid. Figure 16 illustrates the progressive refinement of
the computational grid G t≥ with the decrease of the shock thickness. In the second test
problem we demonstrate that the algorithm dynamically adapts to the moving structure
(shock). Figure 17 shows that the region of collocation points associated with the small
scales moves with the shock, thus permitting continuous proper resolution of the shock
structure.
In order to demonstrate the tremendous savings of the adaptive algorithm we need to

compare the number of grid points used in the adaptive and nonadaptive methods. This
can be easily measured by the compression coefficient C = N J/N which measures the
ratio of the total number of collocation points N J required for the nonadaptive algorithm
to solve the same problem with the comparable resolution and the actual number of grid
pointsN used in the calculations. The larger the compression coefficient, the more efficient
the adaptive algorithm. Time evolution of the compression coefficients for both Problems
I and II is shown in Fig. 18. Note that since the resolution requirements are determined
by the minimum shock thickness, the compression coefficient for Problem I is very high
at the beginning of the computations, since the solution is very smooth for small values
of t . The compression coefficient for the Burgers problem decreases with the increase of
the shock gradient at the origin and reaches its minimum when the gradient at the origin
is at its maximum. The compression coefficient for the moving shock problem remains on
the same level as expected, since the shock just changes its location in space.
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FIG. 16. Evolution of the solution (left column) and computational grid G t
≥ (right column) for Problem I

(ε = 10−5, N = Ñ = 3).
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FIG. 17. Evolution of the solution (left column) and computational grid G t
≥ (right column) for Problem II

(ε = 10−5, N = Ñ = 3).
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FIG. 18. Time evolution of the compression coefficient C for (a) Problem I and (b) Problem II (ε = 10−5,
N = Ñ = 3).

Next we study the convergence of the numerical method on the example of the first two
test problems.We emphasize that the convergence study for the adaptive wavelet algorithms
with ε '= 0 should be distinguished from the refinement study. The latter is done by setting
ε to zero and progressively refining the computational grid, i.e., increasing the maximum
allowable level of resolution J . In the convergence study the maximum allowable level of
resolution is not fixed and can be as high as needed. The convergence study is performed
by progressively decreasing the threshold parameter ε. The decrease of ε will result in an
increase of the number of grid points and level of resolution. It was shown in Sections
3.1 and 3.2 that the threshold parameter ε controls the accuracy of the approximation of a
function and its derivative. However, it does not automatically guarantee that the error of the
time-dependent solution will remain bounded and controlled by ε as well. For that reason
we introduce the notions of adjacent zone and grid adaptation strategy. If the numerical
method is convergent, then the computational error of the time-dependent solution should
decrease with the decrease of ε. In order to eliminate the computational error associated
with the time integration procedure, the time integration step for the system is chosen so
that the truncation error associated with the time integration algorithm is considerably less
than ε. In the refinement study if we assume that the time integration scheme is at least
as accurate as the space discretization, then we can find an estimate for the error bound.
In the convergence study of adaptive wavelet methods the task of finding an error bound
is not that trivial. One cannot simply assume the progressive accumulation of the error of
the order ε. In addition, the task of finding an error bound is complicated by inclusion of
the adjacent zone, continuous thresholding (adding and omitting wavelets), and possible
time history effects of wavelet thresholding. The complicated nature of error dependence
is illustrated in Fig. 19, where time evolution of the computational error for Problems I and
II is shown. Because of the above-mentioned difficulties we were not able to find a good
analytical error bound of the solution.
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FIG. 19. Time evolution of the pointwise L∞-error of the solution of (a) Problem I and (b) Problem II
(ε = 10−5 and N = Ñ = 3).

The results of the convergence study for the test problems are presented in Figs. 20
and 21, where the pointwise L∞-error of the solutions at the final time of integration is
shown. On these figures the dependence of the number of grid points N on the values of
the threshold parameter ε is shown as well. These figures clearly indicate the convergence
of the numerical method with the decrease of ε. Note that the actual error of the solution is
larger than ε, but is of the same order. Thus prescribing the value of ε we can actively control
the accuracy of the solution. The results in Figs. 20 and 21 show considerable improvement

FIG. 20. The pointwise L∞-error of the solution (solid line) of Problem I at time t = 2/π for different choices
of ε, N , and Ñ : N = Ñ = 2 (!); N = 2, Ñ = 0 (+); N = Ñ = 3 ("); N = Ñ = 4 (!). The dashed line shows the
value of ε as a function of N .
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FIG. 21. The pointwise L∞-error of the solution (solid line) of Problem II at time t = 1 for different choices
of ε, N , and Ñ : N = Ñ = 2 (!); N = 2, Ñ = 0 (+); N = Ñ = 3 ("); N = Ñ = 4 (!). The dashed line shows the
value of ε as a function of N .

in accuracy when compared to the wavelet collocation method described in [14, 17], for
which the error did not monotonically decrease to the truncation error of the machine but
rather saturated at a certain value that depended on the order of the wavelet.

4.2.2. Problem III

This problem illustrates the ability to solve a system of nonlinear partial differential
equations and deal with very complicated boundary conditions. Let us briefly describe the
evolution of the solution. The model problem involves a simple one-dimensional diffusion
flame containing fuel and oxidizer on either side of theflame.The parameters for the problem
were chosen so that the mixing layer was initially cold. As time progresses, the energy
released due to the chemical reaction heats the gas, which in turn increases the reaction rate
and eventually leads to self ignition of the flame. The chemical parameters were chosen so
that the ignition delay time would be relatively short. The autoignition occurs so rapidly that
it creates two shock waves propagating away from the diffusion flame. The reaction zone
associated with the diffusion flame is very narrow and requires a very fine grid for adequate
resolution. The propagating shocks also have very large gradients and to adequately resolve
them would also require a fine resolution. The solution of the problem and the associated
computational grid are shown in Figs. 22–24 for three different times respectively: before,
during, and after ignition. The problem is solved with ε = 10−7 and N = Ñ = 3. This
problem illustrates the ability of the algorithm to accurately approximate a solution that
changes drastically in time.
In contrast to the previous two problems, which are described by a single equation with

one dependent variable, the diffusion flame problem involves five unknowns, five partial
differential equations (51)–(55), and the equation of state (56). Thus the adaptation of the
computational grid should be based on the analysis of all dependent variables. In addition
to properly resolving all dependent variables, one needs to accurately model the reaction
rate. Thus for this problem the adaptation of the computational grid Gt≥ is based on the
analysis of coefficients associated with all five dependent variables and the chemical source
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FIG. 22. The solution and computational grid G t
≥ for Problem III at time t = 2.5 (ε = 10−7, N = Ñ = 3).
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FIG. 23. The solution and computational grid G t
≥ for Problem III at time t = 3.425 (ε = 10−7, N = Ñ = 3).
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FIG. 24. The solution and computational grid G t
≥ for Problem III at time t = 6.0 (ε = 10−7, N = Ñ = 3).
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FIG. 25. Time evolution of (a) the number of grid pointsN and (b) the compression coefficient C for Problem
III (ε = 10−7, N = Ñ = 3).

term ẇe given by Eq. (60). The irregular grid G t≥ is constructed as a union of irregular grids
corresponding to each dependent variable and reaction rate term.
The efficiency of the grid adaptation is demonstrated in Fig. 25, which shows the time

evolution in the number of grid points used in the calculations as well as the compression
coefficient. In the present calculations we used up to 12 levels of resolution with an effective
resolution (the resolution of the non-adaptive computational grid needed to perform the same
calculation) of 32,769 grid points. We see an increase in the number of grid points and a
drop in the compression coefficient at t ≈ 3.4, which is associated with the autoignition
and creation of two traveling shock waves.

5. CONCLUSIONS

A general framework for constructing adaptive numerical methods for solving partial dif-
ferential equations, which are based on second-generation wavelets, is developed. Wavelet
decomposition is used for grid adaptation and interpolation, while a new O(N ) hierarchi-
cal finite difference scheme, which takes advantage of wavelet multilevel decomposition,
is used for derivative calculations. In this paper the method is demonstrated by solving the
one-dimensional Burgers and the modified Burgers equations with small viscosities and the
laminar diffusion flame problem. The results indicate that the computational grid and asso-
ciated wavelets can very efficiently adapt to the local irregularities of the solution in order
to resolve regions of large gradients. Furthermore, a solution is obtained on a near optimal
grid for a given accuracy; i.e., the compression of the solution is performed dynamically as
opposed to a posteriori as done in data analysis. Additional strengths of the algorithm are:

1. Wavelet transform can be performed on an adaptive grid with no auxiliary memory;
i.e., the original signal is replaced with its wavelet transform.
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2. The method can easily be extended to the whole class of second-generation wavelets,
leaving the freedom and flexibility to choose wavelet basis depending on applications.
3. The method can handle general boundary conditions and nonlinearities.

Future areas of research include the implementation of the algorithm in higher dimen-
sions, complex geometries, and irregular sampling. This work is currently underway.
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13. J. Fröhlich and K. Schneider, An adaptive wavelet–vaguelette algorithm for the solution of pdes, J. Comput.

Phys. 130, 174 (1997).
14. O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs,

J. Comput. Phys. 125, 16 (1997).
15. L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method, SIAM J. Sci.

Comput. 19, 1980 (1998).
16. M. Holmstrom, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput. 21, 405 (1999).
17. O. V. Vasilyev and S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving

partial differential equations in a finite domain, J. Comput. Phys. 125, 498 (1996).
18. L. Jameson, Wavelets and Numerical Methods, Ph.D. thesis (Brown University, Providence, RI, 1993).
19. J. Walden, Filter bank methods for hyperbolic PDEs, SIAM J. Numer. Anal. 36, 1183 (1999).
20. C. K. Chui and E. Quak, Wavelets on a bounded interval, in Numerical Methods of Approximation Theory,

edited byD. Braess and L. L. Schumaker, International Series of NumericalMathematics (Birkhäuser Verlag,
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