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A dynamically adaptive numerical method for solving multi-dimensional evolution problems with
localized structures is developed. The method is based on the general class of multi-dimensional
second-generation wavelets and is an extension of the second-generation wavelet collocation method of
Vasilyev and Bowman to two and higher dimensions and irregular sampling intervals. Wavelet
decomposition is used for grid adaptation and interpolation, while O(N) hierarchical finite difference
scheme, which takes advantage of wavelet multilevel decomposition, is used for derivative
calculations. The prowess and computational efficiency of the method are demonstrated for the solution
of a number of two-dimensional test problems.
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INTRODUCTION

The past decade has witnessed the development of wavelet
analysis, a brand new mathematical tool, which has been
quickly adopted by diverse fields in science and
engineering. In the brief period, it has reached a certain
level of maturity as a well-defined mathematical subject
with a strong interdisciplinary character, which has
certainly begun to make impact in many areas, including
signal processing, data and image compression, and
solution of partial differential equations in modeling
multi-scale phenomena. The currently existing wavelet-
based numerical algorithms can be roughly classified as
either a wavelet-Galerkin (Liandrat and Tchamitchian,
1990; Bacry et al., 1992; Beylkin and Keiser, 1997;
Holmstrom and Walden, 1998) or a wavelet-collocation
(Harten, 1994; Harten, 1995; Cai and Wang, 1996;
Vasilyev and Paolucci, 1996a; Vasilyev and Paolucci,
1997; Fröhlich and Schneider, 1997; Jameson, 1998;
Holmstrom, 1999; Vasilyev and Bowman, 2000) type.
The major difference between these approaches is that
wavelet-Galerkin algorithms solve problems in wavelet
coefficient space and, in general, can be considered as
gridless methods, while wavelet-collocation methods
solve problems in physical space on a dynamically
adaptive computational grid. Two major difficulties
associated with wavelet-Galerkin algorithms are the
treatment of non-linearities and general boundary
conditions, even though different possibilities of dealing
with these problems have been studied (Bacry et al., 1992;

Beylkin, 1992; Maday and Ravel, 1992; Xu and Shann,
1992; Cohen and Daubechies, 1993a; Andersson et al.,
1994). Wavelet-collocation methods on the other hand do
not have these difficulties and the treatment of non-
linearities and general boundary conditions is a relatively
straightforward task.

The major strength of wavelet-collocation methods is
their ability to adapt the computational grid according to
the temporal evolution of the solution. In wavelet-
collocation methods every wavelet is uniquely associated
with a collocation point, and thus grid adaptation is simply
based on the analysis of wavelet coefficients, i.e. at any
given time the computational grid consists of points
corresponding to wavelets whose coefficients are greater
than a given threshold (a parameter that controls the
accuracy of the solution). With this adaptation strategy, a
solution is obtained on a near optimal grid for a given
accuracy, i.e. the compression of the solution is performed
dynamically as opposed to a posteriori as done in data
analysis. The main advantage of the adaptive wavelet
collocation methods, when compared to conventional
(non-wavelet) numerical algorithms, is that they use far
fewer grid points than the other algorithms when applied
to problems with a great diversity of spatial-temporal
scales (Vasilyev and Paolucci, 1996a,b; Vasilyev and
Paolucci, 1997; Vasilyev et al., 1997a,b; Vasilyev and
Bowman, 2000). We emphasize here that the adaptation of
the computational grid does not require additional effort
and consists merely in turning on and off wavelets at
different locations and scales. Furthermore, grid adaptation
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is achieved by analyzing the solution and not on ad hoc
assumptions very often used in conventional numerical
algorithms (Babuska et al., 1984; Flaherty, 1989).

Traditionally, wavelet-based numerical methods make
use of first generation wavelets that are constructed by
discrete (typically dyadic) dilation and translation of a
single mother wavelet c(x ). This results in construction of
first generation wavelets (Daubechies, 1988; Cohen et al.,
1992) that are defined either in infinite or periodic
domains. It is desirable in many engineering applications
to have a larger class of wavelets that can be defined in
general domains and/or on irregular sampling intervals. In
order to achieve this, the translation–dilation relations of
the first generation wavelets must be abandoned and
wavelets should be constructed in physical, rather than in
Fourier space. Recently, a whole new class of wavelets,
currently referred to as second generation wavelets
(Sweldens, 1998), has come to the fore. The main
advantage of second generation wavelets is that wavelets
are constructed in the spatial domain and can be custom
designed for complex geometry and non-uniform
sampling intervals commonly found in many engineering
and physical applications.

An adaptive second generation wavelet collocation
method for solving one-dimensional evolution problems
has been recently proposed by Vasilyev and Bowman
(2000). Vasilyev and Bowman established the general
framework of the second-generation wavelet collocation
method and demonstrated it for a number of one-dimen-
sional problems on evenly spaced grids. The objective of
the present work is to extend the method to higher
dimensions and non-uniform sampling intervals.

The rest of this paper is organized as follows. The second
section gives a brief introduction to the second generation
wavelets and their construction in multiple dimensions.
The numerical algorithm based on the multi-dimensional
second-generation wavelet transform is introduced in the
third section. Finally, the fourth section contains numerical
examples of applications of the method to the solution of
the two-dimensional linear advection problem, the quasi
two-dimensional Burgers equation, and the two-dimen-
sional laminar flame–vortex interaction problem.

SECOND GENERATION WAVELETS

Second generation wavelets are a generalization of
biorthogonal wavelets which are more easily applied to
functions defined on domains more general than R n.
Second generation wavelets form a Reisz basis for some
function space, with the wavelets being local in both space
and frequency, and often having many vanishing
polynomial moments, but without the translation and
dilation invariance of their biorthogonal cousins. Despite
the loss of two fundamental properties of wavelet bases,
second generation wavelets retain many of the useful
features of biorthogonal wavelets, including the existence
of a fast transform. In order to define second generation

wavelets, we start with a multiresolution analysis adopted
from Sweldens (1998):

Definition 1. A second generation multiresolution
analysis M of a function space L consists of a sequence
of closed subspaces M ¼ {V j , Ljj [ J} such that

1. V j , V jþ1;
2. <j[JV

j is dense in L, and
3. for each j [ J; V j has a Reisz basis given by scaling

functions {f j
kjk [ K j};

where K j is some index set. For notational con-
venience, we use the superscript to denote the level of
resolution and the subscript to denote the location in
physical space at that level of resolution. Notice that unlike
the first generation case, there is no restriction on f j

k to be
dilates or translates of some fixed mother function.

A dual multiresolution analysis ~M ¼ { ~V j , Ljj [ J}
also exists, consisting of spaces ~V j spanned by dual
scaling functions ~f

j

k which are biorthogonal to the primal
scaling functions. Since f j

k belongs to V j and hence to
V jþ1, it can be expressed as

f j
k ¼

l[K jþ1

X

h j
k;lf

jþ1
l : ð2:1Þ

Thus, instead of basing a multiresolution analysis on
scaling functions f j

k one could just as easily define it in
terms of the filter coefficients h j

k;l, as long as the set of
coefficients admits a solution to Eq. (2.1). Note that not all
filter coefficients will admit such a solution.

Wavelets c j
k are introduced the same way as in the

biorthogonal case, namely as basis functions for W j, the
complement ofV j inV jþ1, i.e. V jþ1 ¼ V j%W j; while
dual wavelets are biorthogonal to the wavelets and span
the complement of ~V j in ~V jþ1: By their construction
wavelets form a Reisz basis for the function space L and
allow a function to be represented by its wavelet
coefficients. In the same manner as with the scaling
function, wavelets at level j can be expressed in terms of
scaling functions at level j þ 1 as

c j
k ¼

l

X

g j
k;lf

jþ1
l : ð2:2Þ

Also, since f jþ1
k [ V j%W j; it holds that

f jþ1
k ¼

l

X

~h
j
l;kf

j
l þ

m

X

~g j
m;kc

j
m: ð2:3Þ

The notion of a second generation multiresolution analysis
induces a fast second generation wavelet transform.
Given scaling function coefficients c jþ1

k at level j þ 1, the
wavelet coefficients d j

k and scaling function coefficients c
j
k

at level j are given by

d j
k ¼

l

X

~g j
k;lc

jþ1
l ; ð2:4Þ

c j
k ¼

l

X

~h
j

k;lc
jþ1
l : ð2:5Þ
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The inverse transform is then implemented by

c jþ1
k ¼

m

X

h j
m;kc

j
m þ

l

X

g j
l;kd

j
l : ð2:6Þ

The coefficients c j
k and d j

k are often referred to as the
smooth and detail components of the signal at level j.

Construction of Second Generation Wavelets

Second-generation wavelets can be constructed on curves,
surfaces, and manifolds. The construction procedure is
roughly the same. Here, we illustrate the construction of
second-generation wavelets on an interval V with
arbitrary distribution of grid (collocation) points. We
start by defining an arbitrary set of interpolating points,
{x j

k [ V}; which are used to form a set of nested grids

G j ¼ x j
k [ V : x j

k ¼ x jþ1
2k ; k [ K j

n o

; j [ J; ð2:7Þ

where x j
k are the grid points of the j level of resolution.

Note that the restriction x j
k ¼ x jþ1

2k guarantees the
nestedness of the grids, i.e. G j , G jþ1: Examples
of uniformly and non-uniformly spaced dyadic grids for
j ¼ 0; . . .; 4 are shown in Fig. 1.

The construction of second generation wavelets consists
of two steps: Lazy wavelet transform and lifting. The so-
called Lazy wavelet transform is a procedure, which
simply consists of even and odd subsampling. Lifting can
be viewed as a process of taking an existing wavelet
and modifying it by adding on a linear combinations of

scaling functions at the same level of resolution
cðxÞ ¼ coldðxÞ2Pkukfðx2 kÞ; where u (stands for
update) should be chosen so that the resulting wavelet
has the desired properties. This leaves the scaling function
of the multiresolution analysis unchanged, but does
change the dual scaling function and wavelet. Alter-
natively, one can leave the dual scaling function
unchanged and change dual wavelet, scaling function,
and wavelet. This procedure is called dual lifting.

The block diagram for one step wavelet transform is
shown in Fig. 2, where S and S 21 denote, respectively,
the delay and advance operators, i.e. Sf k ¼ f k21 and
S21f k ¼ f kþ1; ( # 2) denotes the downsampling (deci-
mation) operator which removes odd-numbered com-
ponents from the signal, while U j and P j denote,
respectively, lifting and dual lifting operators (P stands for
predict and U stands for update). The beauty of the
transform is that filter weights wj

k;l of the operator P
j are

constructed from p2 1 order polynomial interpolation
involving p neighboring even points x j

k ðk [ K jÞ; while
filter weights ~wj

k;l of the operator U
j are constructed from

~p2 1 order polynomial interpolation involving ~p neigh-
boring odd points x jþ1

2lþ1ðl [ L jÞ: The actual computation
of the fast wavelet transform is done using

d j
k ¼

1

2
c jþ1
2kþ1 2

l

X

wj
k;lc

jþ1
2kþ2l

0

@

1

A; ð2:8Þ

c j
k ¼ c jþ1

2k þ
l

X

~wj
k;ld

j
kþl; ð2:9Þ

FIGURE 1 Example of the uniform (left) and nonuniform (right) dyadic grids.

FIGURE 2 Block diagram of lifted interpolating wavelet transform.
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with the inverse

c jþ1
2k ¼ c j

k 2
l

X

~wj
k;ld

j
kþl; ð2:10Þ

c jþ1
2kþ1 ¼ 2d j

k þ
l

X

wj
k;lc

jþ1
2kþ2l; ð2:11Þ

where wj
k;l and ~wj

k;l were defined earlier.
The second generation scaling function f j

m can be
formally defined by setting c j

k ¼ dk;m for all k [ K j and
d j 0

l ¼ 0 for all l [ L j 0 ; j 0 $ j; and then recursively
performing the inverse wavelet transform up to an
arbitrary high level of resolution J. This procedure will
result in a scaling function f j

k sampled at the locations xJk .
Analogously, second-generation wavelet c j

l can be
formally defined by assuming d j 0

m ¼ dj 0; jdl;m for all l [
L j; j 0 $ j and c j

k ¼ 0 for all k [ K j; and then
recursively performing the inverse wavelet transform up
to an arbitrary high level of resolution J. Now, using the
linear superposition, it is easy to show that on each level of
resolution J a function f(x ) can be approximated as

f JðxÞ ¼
k[K0

X

c0k f
0
kðxÞ þ

X

J21

j¼0 l[L j

X

d j
lc

j
l ðxÞ: ð2:12Þ

Note that the order of the interpolating polynomial from
odd to even points does not need to be the same as in the
case of even to odd interpolation. Thus, filter weights ~wj

k;1
can be constructed from ~p2 1 order polynomial
interpolation involving ~p neighboring odd points. As a
result, lifted interpolating wavelet transform is controlled
by two parameters p and ~p: It was shown by Sweldens
(1996, 1998) that parameter p in the predict phase of
wavelet transform controls the number of zero moments of
the interpolating scaling function, while ~p in the update
phase of wavelet transform controls the number of zero
moments of interpolating wavelets.

Wavelet construction described in this section can be
easily extended to multiple dimensions. There are two
possibilities to construct wavelets in multiple dimensions:
to use tensor product (Daubechies, 1992) or to construct
non-separable multi-dimensional wavelets (Cohen and
Daubechies, 1993b). Two-dimensional tensor product
wavelets are given by

cm; j
i;k ðxÞ ¼

c j
i ðx1Þf j

kðx2Þ m ¼ 1

f j
i ðx1Þc j

kðx2Þ m ¼ 2

c j
i ðx1Þc j

kðx2Þ m ¼ 3

8

>

>

>

<

>

>

>

:

ð2:13Þ

with two-dimensional scaling function
f j
i;kðxÞ ¼ f j

i ðx1Þf j
kðx2Þ; where c j

i ðx1Þ; c j
kðx2Þ; f j

i ðx1Þ;
f j
kðx2Þ correspond to arbitrary one-dimensional wavelets

and scaling functions and x ¼ ðx1; x2Þ: The n-dimensional
tensor product wavelets are constructed analogously, with
exception that there will be 2n 2 1 distinctive n-dimen-
sional wavelets. Note that in the case of n-dimensional

tensor product wavelets, the one step of forward wavelet
transform consists of the sequential application of one-
dimensional wavelet transform starting from x1 direction,
while the one step of inverse wavelet transform consists
of the sequential application of one-dimensional inverse
wavelet transform in reverse order starting from xn direc-
tion. The non-separable multi-dimensional wavelets can
be constructed on a general set of grid points. Once the
rules for a Lazy wavelet transform are defined, the lifting
operation is straightforward. An example of such wavelets
is given in Schröder and Sweldens (1995), where wavelets
are constructed on a sphere using triangular subdivision.
The advantage of using non-separable wavelets is that
they can be constructed in complex domains. The main
disadvantage is that the non-separable wavelet transform
is more expansive compared to tensor product wavelet
transform, especially with the increase in the wavelet
dimension. In this paper, we use the tensor product
wavelets. Extensions of the algorithm to non-separable
wavelets defined in complex geometry will be the subject
of further investigation.

NUMERICAL METHOD

The most general form of a system of partial differential
equations arising in many fields of physics and
engineering can be written in the following form:

F
›u

›t
; u;7u; x; t

! "

¼ 0 ð3:1Þ

Fðu;7u; x; tÞ ¼ 0 ð3:2Þ

where Eq. (3.1) describes the time evolution of a vector
function u and Eq. (3.2) represents boundary conditions,
definition of fluxes, and possibly algebraic/differential
constrains.

The numerical method is formally derived by evaluating
the governing partial differential equations at collocation
points, which results in a system of non-linear ordinary
differential–algebraic equations describing the evolution
of the solution at these collocation points. In order for the
algorithm to resolve all the structures appearing in
the solution and yet be efficient in terms of minimizing the
number of unknowns, the computational grid should
adapt dynamically in time to reflect local changes in
the solution, i.e. high resolution computations should be
carried out only in those regions, where sharp transitions
occur.

Grid Adaptation

Grid adaptation occurs quite naturally in wavelet methods,
e.g. Liandrat and Tchamitchian (1990) and Harten (1994).
To illustrate the algorithm, let us consider a function f(x),
defined on a closed n-dimensional rectangular domain V.
As we discussed in the “Second generation wavelets”
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section, tensor product second-generation wavelets are
constructed on a set of grids

G j ¼ {x j
k [ V : k [ K j}; j [ J; ð3:3Þ

where k ¼ ðk1; . . .; knÞ and grid points
x j
k ¼ ðx j

1;k1
; . . .; x j

n;kn
Þ are constructed as a tensor product

of uniformly or non-uniformly spaced one-dimensional
grids. Since each individual set of one-dimensional grids
is nested ðx j

m;kl
¼ x jþ1

m;2kl
; m ¼ 1; . . .; nÞ the resulting set of

three dimensional grids is nested as well, i.e. G j , G jþ1:
Following a construction of second-generation wavelets
described in the “Construction of second generation
wavelets” section, we construct scaling functions f j

kðxÞ
ðk [ K jÞ and wavelets cm; j

1 ðxÞ ðl [ Lm; jÞ such that the
function f(x) can be decomposed as

f ðxÞ ¼
k[K0

X

c0kf
0
kðxÞ þ

X

þ1

j¼0

X

2n21

m¼1 l[Lm; j

X

dm; jl cm; j
l ðxÞ: ð3:4Þ

The strength of the wavelet approach now appears. For
functions, which contain isolated small scales on a large-
scale background, most wavelet coefficients will be small,
thus we can retain good approximation even after
discarding a large number of wavelets with small
coefficients. Intuitively, the coefficient dm; jl will be small
unless the f(x) has variation on the scale of j in the
immediate vicinity of wavelet cm; j

l ðxÞ: More precisely, if
we rewrite Eq. (2.12) as a sum of two terms composed,
respectively, of wavelets whose amplitude is above and
below some prescribed threshold e,

f ðxÞ ¼ f$ðxÞ þ f,ðxÞ; ð3:5Þ
where

f$ðxÞ ¼
k[K0

X

c0kf
0
kðxÞ þ

X

þ1

j¼0

X

2n21

m¼1
jdm; j
l

j$e

l[Lm; j

X

dm; jl cm; j
l ðxÞ; ð3:6Þ

f,ðxÞ ¼
X

þ1

j¼0

X

2n21

m¼1
jdm; j
l

j$e

l[Lm; j

X

dm; jl cm; j
l ðxÞ; ð3:7Þ

then following (Donoho, 1992), it can be shown that for a
sufficiently smooth function f(x)

j f ðxÞ2 f$ðxÞj # C1e ð3:8Þ

and the number of significant wavelet coefficients N is
bounded by e as

N1=n # C2e
2ð1=pÞ ð3:9Þ

where n is the dimensionality of the problem and
coefficients Ci depend on f(x). Combining Eqs. (3.8) and
(3.9), we have the following bound on an error in terms
of N

j f ðxÞ2 f$ðxÞj # C3N
2p=n: ð3:10Þ

This error estimate is consistent with numerical
experiments for both one-dimensional (Vasilyev and
Bowman, 2000) and two-dimensional cases. For the
two-dimensional case Eq. (3.10) is numerically verified
for the test function

f ðx1; x2Þ ¼ exp 2a x1 2
1

2

! "2

þ x2 2
1

2

! "2
 ! !

2
1

5
sin ð2pxÞ sin ð2pyÞ ð3:11Þ

with a ¼ 200 and x [ ½0; 1& £ ½0; 1&: The convergence
results are presented in Fig. 3 for both uniform and non-
uniform grids and different choices of p and ~p: The non-
uniform grid is chosen to be Gauss–Lobatto grid defined
as

x j
i;k ¼

1

2
12 cos

pk

2 jMi

! "! "

; k ¼ 0; . . .; 2 jMi; ð3:12Þ

where Mi is the number of grid points at the coarsest
ðj ¼ 0Þ level of resolution in xi direction. An example of
the Gauss–Lobatto grid in one dimension is shown in
Fig. 1.

Relation (3.10) gives us the framework for representing
a function with significantly fewer degrees of freedom,

FIGURE 3 Convergence of thresholded interpolant f $ ðxÞ for the test function (3.11) for uniform and nonuniform grids and different choices of
parameters p and ~p : p ¼ ~p ¼ 4 ðWÞ; p ¼ 4; ~p ¼ 0 ðþÞ; p ¼ ~p ¼ 6 ð†Þ; p ¼ ~p ¼ 8 ðAÞ: N is the number of significant wavelet coefficients.
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while still retaining a good approximation. However, in
order to realize all the benefits of the wavelet compression,
we need to have the ability to reconstruct the f$(x) from
the subset of N grid points. We recall that every scaling
function f j

kðxÞ; k [ K j; is uniquely associated with
x j
k; while each wavelet cm; j

l ðxÞ; l [ Lm; j; is uniquely
associated with a corresponding collocation point, e.g. two-

dimensional waveletsc1; j
ðl1;l2ÞðxÞ; c

2; j
ðl1;l2ÞðxÞ; and c

3; j
ðl1;l2ÞðxÞ are,

respectively, associated with ðx jþ1
1;2l1þ1

; x j
2;l2

Þ; ðx j
1;l1

; x jþ1
2;2l2þ1Þ;

and ðx jþ1
1;2l1þ1; x

jþ1
2;2l2þ1Þ grid points. So once the wavelet

decomposition is performed, each grid point is uniquely
associated either with the wavelet or the scaling function
at the coarsest level of resolution. Consequently, the
collocation point should be omitted from the compu-
tational grid if the associated wavelet is omitted from the
approximation. Note that for the stability of a reconstruc-
tion algorithm, we will need to keep all the grid points
associated with the scaling function at the coarsest level
of resolution. This procedure will result in a set of
nested adaptive computational grids G j

$ , G j; such that
G j

$ , G jþ1
$ ; for any j , J 2 1; where J is the finest level

of resolution present in the approximation (3.6).
Removal of collocation points in this manner presents a

potential problem. Since coefficient information about
f$(x) at all locations in space is no longer available, the
reconstruction of this function from the available
coefficient information may not be possible. This potential
difficulty can be easily overcome, thanks to lifting, as long
as one requires that all grid points required for the
recursive computation of the wavelet coefficients dm; jl

present in the approximation (3.6) are available. To
illustrate this, let us consider the one step forward one-
dimensional wavelet transform given by Eqs. (2.8) and
(2.9). In order to find the wavelet coefficient d j

l ;we need to
know only values of c jþ1

k at the grid point associated with
the wavelet c j

l ðxÞ; i.e. x
jþ1
2lþ1; and the p nearest even grid

points x jþ1
2lþ2n: However, in order to calculate c j

k; we only
need to know the value c jþ1

2k and the non-zero values of d j
l :

In the higher dimensional case the situation is
analogous. The only difference is that the n-dimensional
wavelet transform consists of the sequential application of

n one-dimensional wavelet transforms in xi, i ¼ 1; . . .; n;
directions. Thus, in order to find the grid points that are
necessary for calculation of the wavelet coefficient dm; jl ;
we start with the collocation point associated with dm; jl and
recursively, i ¼ n; . . .; 1; add points that are needed to
perform one step of the one-dimensional wavelet trans-
form in the xi direction at the locations that are added
to perform the one-dimensional wavelet transforms in
xl; l ¼ iþ 1; . . .; n; directions. At the end of this recursive
procedure we will have a minimal set of grid points that
are necessary for calculation of wavelet coefficient dm; jl ;
provided that wavelet coefficients at other locations are
either zero or negligible (below an a priori prescribed
threshold). Figure 4 shows the minimal set of grid points
that are necessary for calculation of wavelet coefficient
dm; jl belonging to three different families of wavelets, i.e.
m ¼ 1; 3: Thus, if we a priori know what wavelet
coefficients are zero or negligible, we can disregard the
values of the function at these points. Then the procedure
of finding the grid points at all levels of resolution that are
needed to be included into an adaptive grid proceeds as
follows:

1. Given a function f(x), sample it on a grid GJ.
2. Perform forward wavelet transform to get all values

c0kðk [ K0Þ and dm; jl ðl [ L j; 0 # j # J 2 1Þ:
3. Analyze wavelet coefficients d j

l and create a mask M
for the grid points xJk; associated with wavelets for
which jdm; jl j $ e :

4. Include into the mask M all grid points associated
with scaling functions at the coarsest level of
resolution.

5. Starting from the j ¼ J 2 1 level of resolution
recursively extend the mask to include the minimal
set of grid points that are necessary for calculating
wavelet coefficients at level j that are marked by
mask M.

At the end of this procedure we will have the complete
mask M, from which we can easily construct a set of
nested adaptive computational grids G j

$: Performing the
wavelet transform on that adaptive grid will guarantee that

FIGURE 4 Points at the coarser j (marked ) and finer j þ 1 (marked ) levels of resolution where c jþ1
k are needed for calculation of wavelet

coefficient dm; jl ; m ¼ 1; 3 (marked ) for two-dimensional wavelet transform with p ¼ 4:
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all wavelet coefficients will be exactly the same as by
performing the wavelet transform of f$ðxÞ on the
complete grid and then setting to zero the ones that do
not belong to the adaptive grid. We call this criteria the
perfect reconstruction criteria. The procedure for adding
additional grid points to an adaptive grid, so that the
resulting grid satisfy the perfect reconstruction criteria,
will be called the perfect reconstruction check. Require-
ment (5) may potentially result in less efficient
compression of f, but in practice, the increase in storage
is negligible.

When solving evolution equations an additional criteria
for grid adaptation should be added. In particular, as
suggested by Liandrat and Tchamitchian (1990), the
computational grid should consist of grid points associated
with wavelets whose coefficients are or can possibly
become significant during the period of time when the grid
remains unchanged. In other words, at any instant in time,
the computational grid should include points associated
with wavelets belonging to an adjacent zone of wavelets
for which the magnitude of their coefficients is greater
then an a priori prescribed threshold. We say that the

wavelet cm0; j 0

l0 ðxÞ located at x j 0þ1
k0 belongs to the adjacent

zone of wavelet cm; j
l ðxÞ located at x jþ1

k if the following
relations are satisfied:

j j2 j 0j# L; j2 j 02jkm 2 k0mj#M; m¼ 1; . . .n; ð3:13Þ

where L determines the extent of which coarser and finer
scales are included into the adjacent zone and M defines
the width of the adjacent zone in physical space. The
values of L and M affect the total number of collocation
points present in the grid G$ at any instant of time and the
time interval during which the calculations can be carried
out without modifying the computational grid. For
efficiency we want to keep the number of collocation
points as small as possible, while at the same time we
would like to minimize changes in the collocation grid.
We found that the most optimal values are L¼M ¼ 1; in
other words adjacent zone includes the nearest points at
the same, one above, and one below levels of resolution.

The process of grid adaptation for the solution of
partial differential equations consists of the following
five steps:

1. Knowing the values of the solution uk(t ) at Gt
$

computational grid, we compute the values of wavelet
coefficients corresponding to each component of the
solution using forward wavelet transform.

2. Analyze wavelet coefficients dm; jl and create a mask
M for the grid points associated with wavelets for
which jdm; jl j $ e :

3. Extend the mask M with grid points associated with
adjacent wavelets.

4. Perform the reconstruction check procedure, which
results in a complete mask M.

5. Construct the new computational grid GtþDt
$ ; which

will be used for next step of time integration.

Calculation of Spatial Derivatives on An Adaptive
Grid

When solving partial differential equations numerically, it
is important to obtain derivatives of a function from its
values at collocation points. In this section we extend the
procedure developed by Vasilyev and Bowman (2000),
which takes advantage of the multiresolution wavelet
decomposition, fast wavelet transform, and finite differ-
ence differentiation. In other words we make wavelets do
what they do well: compress and interpolate and make
finite difference do the rest: differentiate polynomials.
The differentiation procedure is based on the interpolating
properties of second-generation wavelets. We recall that
wavelet coefficients dm; jl measure the difference between
the approximation of the function at the j þ 1 level of
resolution and its representation at the j level of resolution.
Thus if there are no points in the immediate vicinity of a
grid point x j

k; i.e. jdm; jm j , e for all the neighboring points,
and points x jþ1

ð2k1^1;2k2^1Þ are not present in G
jþ1
$ ; then there

exist some neighborhood of x j
k; V j

k; where the actual
function is well approximated by a wavelet interpolant
based on c j

mðm [ K jÞ; i.e.

f ðxÞ2
m[K j

X

c j
mf

j
mðxÞ

#

#

#

#

#

#

#

#

#

#

#

#

# C4e ; x [ V j
k: ð3:14Þ

Thus differentiating this interpolant will give us the value
of the derivative of the function at that particular location.
Let us denote by D j

$ a collection of such points at each
level of resolution. Then the procedure for finding
derivatives at all grid points will consists of the following
steps:

1. Knowing the values of a function on an adaptive
computational grid G$; perform wavelet transform.

2. Recursively reconstruct the function starting from the
coarsest level of resolution. On each level of resolution
j find derivatives of the function at grid points that
belong to D j

$:

At the end of the inverse wavelet transform we will have
derivatives of the function at all grid points. The
computational cost of calculating spatial derivatives will
be roughly the same as the cost of forward and inverse
wavelet transforms.

Next let us examine the accuracy of the differentiation
procedure. Assume that we perform local differentiation at
a point x j

k [ D j and h j is the quantity describing the local
grid spacing in all directions at that point. Then from
construction the local truncation error of interpolation
scheme is ðh jÞp ¼ OðeÞ: Then numerical differentiation
will reduce the order of the scheme by 1 and make it
ðh jÞp21 ¼ Oðe ðp21=pÞÞ:

Then in the light of Eq. (3.9), we have the following
error bound on the derivative

jDxi f ðxÞ2 Dxi f$ðxÞj # C5N
2ðp21Þ=n; ð3:15Þ
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where Dxi stands for the derivative operator in the xi
direction. This relation was verified numerically for the
test function (3.11) and convergence results are presented
in Fig. 5 for uniform and nonuniform grids and different
choices of p and ~p: The non-uniform grid is chosen to be
the Gauss–Lobatto grid (3.12) in both directions.

Numerical Algorithm

The numerical algorithm for solving n-dimensional
problems with localized structures is the straightforward
extension of the algorithm proposed by Vasilyev and
Bowman (2000) and consists of the following three steps:

1. Knowing the values of the solution uk(t ) on Gt
$; we

perform the wavelet transform for each component of
the solution. Using the given threshold [ , we update
GtþDt

$ based on the magnitude of the wavelet
coefficients as discussed in the “Grid adaptation”
section.

2. If there is no change between computational grids Gt
$

and GtþDt
$ ; we go directly to step 3. Otherwise, we

interpolate the solution uk(t ) to the collocation points
GtþDt

$ that are not included in Gt
$:

3. We integrate the resulting system of ordinary
differential equations to obtain new values
uk(t þ Dt ) at positions on the irregular grid GtþDt

$

and go back to step 1,where uk(t ) denotes the vector
function u evaluated at the grid points xJk [ Gt

$:

With such an algorithm the grid of collocation points is
dynamically adapted in time and follows the local
structures that appear in the solution. Note that by
omitting wavelets with coefficients below a threshold
parameter e we automatically control the error of
approximation. Thus, the wavelet collocation method
has another important feature: active control of the
accuracy of the solution. The smaller e is chosen to be, the
smaller the error of the solution is. In typical applications,
the value of e varies between 1023 and 1026, assuming

that the unknown dependent variables have been properly
normalized. As the value of e increases, fewer grid points
are used in the solution.

The algorithm can utilize different criteria for
adaptation of the collocation grid. For example, one can
compose a computational grid based on the analysis of
wavelet coefficients of both the function and its
derivatives. If a system of equations is solved, the
adaptation of the computational grid Gt

$ should be based
on the analysis of wavelet coefficients associated with all
dependent variables. The adaptive grid Gt

$ can be
constructed as a union of irregular grids corresponding
to each dependent variable. Note that the algorithm can be
easily extended to the case where each variable is treated
on a separate computational grid. The mapping from one
grid to another can be achieved via wavelet interpolation.
This may be very important for problems where scales
associated with different variables are considerably
different.

RESULTS AND DISCUSSION

In order to illustrate the accuracy and efficiency of the
proposed numerical method, we will apply it to the
solution of two well-known test problems used in the past
to study first generation wavelet methods (Vasilyev and
Paolucci, 1996a; Holmstrom, 1999). Then we will
illustrate the ability of the new method to be successfully
applied to more complicated problems. In all examples
presented in this paper, we use the stiffly stable Krylov
subspace time-integration algorithm (Edwards et al.,
1994). We choose the Krylov time-integration algorithm
for two reasons. First, the Krylov time-integration method
is stiffly stable, uses an adaptive time step, and allows the
order of accuracy of the time integration to be adjusted
easily. Secondly, the Krylov time integration algorithm
does not require explicit construction of the discretized

FIGURE 5 Convergence of derivative of thresholded interpolant f $ ðxÞ for the test function (3.11) for uniform and nonuniform grids and different
choices of parameters p and ~p : p ¼ ~p ¼ 4 ðWÞ; p ¼ 4; ~p ¼ 0 ðþÞ; p ¼ ~p ¼ 6 ð†Þ; p ¼ ~p ¼ 8 ðAÞ: N is the actual number of grid points used in the
calculations.
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linear operator, but rather evaluation of its action. The
latter property is particularly important, since the wavelet
collocation algorithm described in this paper calculates
derivatives directly without construction of discrete
spacial derivative operators.

Problem Formulations

I. Linear Advection

For the first test problem, we consider linear advection
problem

›u

›t
þ vDuu ¼ 0; x [ ½0; L1& £ ½0;L2&; t . 0; ð4:1Þ

where the operator Du is the directional derivative
defined by

Du ¼ cos u
›

›x1
þ sin u

›

›x2
ð4:2Þ

and u is the angle relative to x1 axis. The initial and
Dirichlet boundary conditions are obtained from the
analytical solution u(x1,x2,t ) given by

uðx1; x2; tÞ ¼ exp 2a x1 2
1

2
2 vt cos u

! "2
  

þ x2 2
1

2
2 vt sin u

! "2
!!

: ð4:3Þ

The problem is solved for a ¼ 200; L1 ¼ L2 ¼ 1; 0 #
t # 0:25; and u ¼ 308:

II. Quasi Two-dimensional Burgers Equation

As a second test problem, we consider the quasi two-
dimensional Burgers equation

›u

›t
þ uDuu ¼ nD2

uu;

x [ ½21; 1& £ ½21; 1&; t . 0; ð4:4Þ

where operator Du is defined by Eq. (4.2). The initial and
Dirichlet boundary conditions are obtained from the ana-
lytical solution uðx1; x2; tÞ ¼ u12Dðx1 cos uþ x2 sin u; tÞ;
where u12D is the one-dimensional solution given by

u12Dðx; tÞ ¼ 2

ðþ1

21
sinðpðx2 hÞÞexp 2

cosðpðx2 hÞÞ
2pn

! "

£ exp 2
h2

4nt

! "

dh=

£
ðþ1

21
exp 2

cosðpðx2 hÞÞ
2pn

! "

£ exp 2
h2

4nt

! "

dh: ð4:5Þ

The problem is solved for n ¼ 1021=p; 0 # t # 3=2p and
a variety of angles u.

III. Laminar Flame–vortex Interaction

The third problem involves a diffusion flame interacting
with a vortex pair in a rectangular two-dimensional
domain containing fuel and oxidizer on either side of
the flame. The chemical mechanism we consider is
represented by a single reaction between fuel and
oxidizer:

F þ O ¼ P; ð4:6Þ

where unity stoichiometric coefficients were assumed
for simplicity. The reaction rate behaves according to
the Arrhenius form:

_w ¼ KrYFrYO exp 2
Tac

T

! "

; ð4:7Þ

where r is the density, Tac is the activation temperature,
K is the pre-exponential factor, and YF and YO are the
fuel and oxidizer mass fraction.

The characteristic scales are the length scale L *, the
speed of sound c*0 ; and the density r*0 : The subscript 0
refers to the reference value at some location, and
superscript “*” denotes dimensional quantities. The
reference state is that of the unburned gas; the reference
temperature T*ref ¼ ðg2 1ÞT*0 is obtained from the
equations of state, where g is the ratio of specific heats
g ¼ cp=cv: With this normalization, the non-dimen-
sional governing equations are given by Ruetsch
(1998):

›r

›t
þ ›

›xi
ðruiÞ ¼ 0; ð4:8Þ

›rui
›t

þ ›

›xi
ðruiujÞ ¼ 2

›P

›xi
þ ›tij

›xj
; i ¼ 1; 2; ð4:9Þ

›e

›t
þ ›

›xj
½ðeþ PÞuj& ¼

1

Re

›

›xj
ðuitijÞ

þ 1

RePr

›

›xj
m
›T

›xj

! "

þ _we; ð4:10Þ

›rYF

›t
þ ›

›xj
ðrYFujÞ ¼

1

ReScF

›

›xj
m
›YF

›xj

! "

2 j _we; ð4:11Þ

›rYO

›t
þ ›

›xj
ðrYOujÞ ¼

1

ReScO

›

›xj
m
›YO

›xj

! "

2 jF _we; ð4:12Þ

P ¼ g2 1

g
rT ; ð4:13Þ
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where

tij ¼ m
›ui
›xj

þ ›uj
›xi

2
2

3

›uk
›xk

dij

! "

; ð4:14Þ

m ¼ ½ðg2 1ÞT&a; ð4:15Þ

e ¼ 1

2
ruiui þ

P

g2 1
; ð4:16Þ

_we ¼ Jr2YFYO exp 2
bð12 uÞ

12 að12 uÞ

! "

; ð4:17Þ

u ¼ 12 a

a
ððg2 1ÞT 2 1Þ; ð4:18Þ

a ¼ T f 2 T0

T f
; ð4:19Þ

b ¼ a
Tac

T f
; ð4:20Þ

j ¼ 1

1þF

12 a

a
ðg2 1Þ; ð4:21Þ

a ¼ 0:76; J is the pre-exponential factor, Tf is the
adiabatic flame temperature, and F is the equivalence
ratio. Note that Eq. (4.17) is the non-dimensional
version of the Eq. (4.7), rewritten in a form suggested
by Williams (1986). The independent non-dimensional
parameters appearing in the equations are

Re ¼ r*0 c
*
0 L

*

m*0
; Pr ¼

m*c*p

l*
;

ScF ¼ m*

r*D*F
; ScO ¼ m*

r*D*O
; ð4:22Þ

where m* is dynamic viscosity, l* is thermal con-
ductivity, and D*F and D*O are fuel and oxidizer
diffusivities, respectively. It is assumed that the Prandtl
number Pr and the Schmidt numbers ScF and ScO are
constant throughout the flow.

The initial conditions are given by

rðx1; x2; 0Þ ¼ 1; ð4:23Þ

u1ðx1; x2; 0Þ ¼ 2
X

2

i¼1

Li

s2
i

ðx2 2 x2;iÞ

£ exp 2
ðx1 2 x1;iÞ2 þ ðx2 2 x2;iÞ2

s2
i

! "

; ð4:24Þ

u2ðx1; x2; 0Þ ¼
X

2

i¼1

Li

s2
i

ðx1 2 x1;iÞ

£ exp 2
ðx1 2 x1;iÞ2 þ ðx2 2 x2;iÞ2

s2
i

! "

; ð4:25Þ

Tðx1; x2; 0Þ ¼
1

g2 1
; ð4:26Þ

YFðx1; x2; 0Þ ¼ YF;1
1

2
2

1

2
erf

x1
D

% &

! "

; ð4:27Þ

YOðx1; x2; 0Þ ¼ YO;1
1

2
þ 1

2
erf

x1
D

% &

! "

; ð4:28Þ

where Li ði ¼ 1; 2Þ are vortex intensities, (x1,i, x2,i)
ði ¼ 1; 2Þ are initial vortex locations, and
erfðxÞ ¼ 2p21=2

Ð x
0e

2j 2
dj: The domain is chosen to be

½2Lx1 ; Lx1 & £ ½2Lx2 ; Lx2 &; and the initial flame is located at
x1 ¼ 0: The boundary conditions are non-reflecting
outflow boundary conditions of Poinsot and Lele (1992)
in the x1 direction and periodic boundary conditions in the
x2 direction. A schematic diagram of the model problem
with initial and boundary conditions is shown in Fig. 6.

The problem is solved for the following set of
parameters:

Re ¼ 103; Pr ¼ 1; ScF ¼ ScO ¼ 1; g ¼ 1:4;

a ¼ 0:6; b ¼ 4; J ¼ 103; F ¼ 1;

YF;1 ¼ YO;1 ¼ 1;

Lx1 ¼ 4; Lx2 ¼ 1; D ¼ 5 £ 1022;

L1 ¼ 2L2 ¼ 5 £ 1022; s1 ¼ s2 ¼ 0:15;

ðx1;1; x2;1Þ ¼ ð20:25; 0:2Þ; ðx1;2; x2;2Þ ¼ ð20:25;20:2Þ:

Numerical Results

Problems I and II

The first problem tests the ability of the method to resolve
a moving two-dimensional localized structures. The
dynamic adaptation of the computational grid Gt

$ for the
first test problem is shown in Fig. 7. In this case, the high-
resolution region simply follows the peak in the solution,
thus permitting continuous proper resolution of the
localized structure. The computational gird is shown for
both uniform and non-uniform grids, where the non-
uniform grid corresponds to the Gauss–Lobatto grid

FIGURE 6 Schematic diagram of the flame–vortex interaction problem
and the computational boundary conditions.

   

  

O.V. VASILYEV160



(3.12) in both directions. Note that the computational grid
for the non-uniform sampling intervals looks less
symmetric compared to the uniform case.

The second test problem demonstrates the ability to
resolve a shock which is fixed in space but whose gradient
changes in time. To illustrate the flexibility of the wavelet
collocation method, we solve the problem with different
boundary conditions:

(a) u ¼ 08; Dirichlet boundary conditions at x1 ¼ ^1;
and periodic boundary condition in x2 direction,

(b) u ¼ 308; Dirichlet boundary conditions at xi ¼ ^1;
i ¼ 1; 2:

In addition, the case (a) is solved for both uniform and
non-uniform grids, where the non-uniform grid is
constructed as a tensor product of the Gauss–Lobatto
grid (3.12) in the x1 direction and the uniformly sampled
grid in the x2 direction. In all these cases, we use threshold
parameter e ¼ 1023 and p ¼ ~p ¼ 6: The solution of quasi
two-dimensional Burgers equations for u ¼ 08 and u ¼
308 and associated computational grids are shown in
Figs. 8 and 9, respectively. The evolution of the solution
from the uniformly smooth distribution to the shock
structure results in the growth of the wavelet coefficients
corresponding to the smaller scales, which in turn results
in the refinement of the grid.

In order to demonstrate the tremendous savings of the
adaptive algorithm, we need to compare the number of
grid points used in the adaptive and non-adaptive methods.
This can be easily measured by the compression
coefficient C ¼ 12 ðN=NJÞ; where N is the actual
number of grid points used in the calculations and NJ

is the number of collocation points, required for the
non-adaptive algorithm to solve the same problem with
the comparable resolution. In other words, compression
coefficient measures the percentage of grid points that are
not included to the adaptive grid Gt

$: The larger the
compression coefficient, the more efficient the adaptive
algorithm. A compression coefficient 0% indicates that
there is no adaptation. Time evolution of the compression
coefficients for both Problems I and II is shown in Figs. 10
and 11, respectively. Note that the compression coefficient
for the first test problem oscillates but remains on the same
level, 90%, as expected for both uniform and non-uniform
grid cases, even though the latter is more oscillatory. Also
note that since the resolution requirements are determined
by the minimum shock thickness, the compression for the
Problem II is very high (98% of the grid points are
discarded) at the beginning of the computations, since the
solution is very smooth for small values of t. The com-
pression for the Burgers problem decreases with the
increase of the shock gradient at the origin and reaches its
minimum (85%) when the gradient at the origin is at its
maximum.

Next, we study the convergence of the numerical
method for the first two test problems. We emphasize that
the convergence study for the adaptive wavelet algorithms
with e – 0 should be distinguished from the refinement
study. The latter is done by setting e to zero and pro-
gressively refining the computational grid, i.e. increase
the maximum allowable level of resolution J. In the
convergence study, the maximum allowable level of
resolution is not fixed and can be as high as needed. The
convergence study is performed by progressively

FIGURE 7 Evolution of the solution and computational grids Gt
$ for the Problem I ðe ¼ 1023; p ¼ ~p ¼ 6Þ:
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decreasing the threshold parameter e. The decrease of e
will result in the increase of the number of grid points and
levels of resolution. It was shown in the “Grid adaptation”
section and the “Calculation of spatial derivatives on an
adaptive grid” section that the threshold parameter e
controls the accuracy of the approximation of a function
and its derivative. However, it does not automatically

guarantee that the error of the time dependent solution will
remain bounded and controlled by e as well. For that
reason, we introduce the notion of adjacent zone and grid
adaptation strategy. If the numerical method is con-
vergent, then the computational error of the time
dependent solution should decrease with the decrease of
e. In order to eliminate the computational error associated

FIGURE 8 Evolution of the solution and computational grids Gt
$ for the Problem II with u ¼ 08 ðe ¼ 1023; p ¼ ~p ¼ 6Þ:

FIGURE 9 Evolution of the solution and computational grids Gt
$ for the Problem II with u ¼ 308 ðe ¼ 1023; p ¼ ~p ¼ 6Þ:
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with the time integration procedure, the time integration
step for the system is chosen so that the truncation error
associated with the time integration algorithm is
considerably less than e.

The results of the convergence study for the test
problems are shown in Figs. 12 and 13, where the
pointwise L1—error of the solutions at the final time of
integration is shown. On these figures, the dependence of

FIGURE 10 Time evolution of the compression coefficient C for Problem I with ðe ¼ 1023; p ¼ ~p ¼ 6Þ : (a) uniform grid; (b) nonuniform grid.

FIGURE 11 Time evolution of the compression coefficient C for Problem II with ðe ¼ 1023; p ¼ ~p ¼ 6Þ : (a) u ¼ 08; uniform grid; (b) u ¼ 08;
nonuniform grid; (c) u ¼ 308; uniform grid.
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the number of grid pointsN on the values of the threshold
parameter e is shown as well. The convergence rates and
the dependence of N on e are consistent with analytical
predictions (3.9) and (3.15). These figures clearly
demonstrate the convergence of the numerical method
with the decrease of e. Note that the actual error of the
solution is typically larger then e, but is of the same order.
Thus prescribing the value of e, we can actively control
the accuracy of the solution.

Problem III

This problem illustrates the ability to solve a system of
non-linear partial differential equations and deal with very
complicated boundary conditions. Let us briefly describe
the evolution of the solution. The model problem involves
a diffusion flame interacting with a vortex pair in a
rectangular two-dimensional domain containing fuel and
oxidizer on either side of the flame. The parameters for the

problem were chosen such that the mixing layer was
initially cold. The vortex intensities and locations were
chosen to mimic turbulent eddies. The chemical
parameters were chosen such that the ignition delay time
would be relatively short, but the layer would still be
affected by the strain induced by the vortices prior to
ignition.

In comparison with the previous two problems, which
are described by a single equations with one dependent
variable, the diffusion flame problem involves six
unknowns, six partial differential Eqs. (4.8)–(4.12) and
the equations of state Eq. (4.13). Thus, the adaptation of
the computational grid should be based on the analysis of
all dependent variables. In addition to properly resolve all
dependent variables, one needs to accurately model the
reaction rate as well. Thus for this problem the adaptation
of the computational grid Gt

$ is based on the analysis of
coefficients associated with all six dependent variables
and the chemical source term _we given by Eq. (4.17).

FIGURE 12 The pointwise L1-error of the solution of problem I at time t ¼ 0:25 for uniform and nonuniform grids and different choices of parameters
p and ~p; p ¼ ~p ¼ 4 ðWÞ; p ¼ 4; ~p ¼ 0 ðþÞ; p ¼ ~p ¼ 6 ð†Þ; p ¼ ~p ¼ 8 ðAÞ: N is the actual number of grid points used in the calculations. The dashed
line shows the value of N as a function of e.

FIGURE 13 The pointwise L1-error of the solution of Problem II for u ¼ 08 at time t ¼ 3=4p for uniform and nonuniform grids and different choices
of parameters p and ~p : p ¼ ~p ¼ 4 ðWÞ; p ¼ 4; ~p ¼ 0 ðþÞ; p ¼ ~p ¼ 6 ð†Þ; p ¼ ~p ¼ 8 ðAÞ:N is the actual number of grid points used in the calculations.
The dashed line shows the value of N as a function of e.
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The irregular grid Gt
$ is constructed as a union of irregular

grids corresponding to each dependent variable and
reaction rate term.

In Fig. 14, the reaction rate in the entire domain is
shown at several times. The autoignition of the mixing
layer occurs between t ¼ 2:50 and t ¼ 3:50 acoustic time
units. At t ¼ 3:50; the ignited diffusion flame at x1 ¼ 0 is
clear, as are two premixed flames propagating away from

the diffusion flame. It is clear that the reaction zone
associated with the diffusion flame is very narrow and
requires a very fine grid for adequate resolution. The
reaction zones associated with the two premixed flames
are quite narrow, and to adequately resolve these would
also require a fine grid; the additional challenge here is
that the reacting fronts are propagating, so refining the
mesh adaptively provides an enormous computational

FIGURE 14 Reaction rate _we evolution for the flame–vortex interaction problem ðe ¼ 1023; p ¼ ~p ¼ 4Þ:

FIGURE 15 Pressure evolution for the flame–vortex interaction problem ðe ¼ 1023; p ¼ ~p ¼ 4Þ:
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savings. In these figures, the effect of the vortex pair
appears to be almost negligible; the mixing layer still
appears to be effectively one-dimensional.

The pressure associated with the autoignition process is
shown in Fig. 15. At t ¼ 0:50; the hydrodynamic pressure
field induced by the vortex pair is still apparent. This is
overwhelmed by the enormous pressure wave associated
with the autoignition process by t ¼ 1:50 and thereafter.
At the later times, two shock waves associated with the
premixed flames are clearly evident, indicating that these
premixed fronts are weak detonations—weak because,
while they are initiated in nearly stoichiometric gas, they
rapidly burn into the extremes of flammability on either
side of the diffusion flame such that the heat release
decreases as the flames propagate and the strength of the
associated shock wave goes down. The steep gradients in
the pressure field also pose a challenge in terms of grid
resolution.

Figure 16 shows the computational grid for each of the
times shown in Figs. 14 and 15. At t ¼ 3:50 and t ¼ 5:00;
it is clear that the grid has adapted to resolve the steep
gradients in the reaction rate and pressure fields.

Figure 17 shows a zoomed-in view of the reaction rate
during the autoignition event, and Fig. 18 shows a
zoomed-in view of the temperature. During autoignition,
the peak reaction rate is more than an order of magnitude
greater than either before or after autoignition. The affect
of the vortex pair on the mixing layer is apparent. The
vortex pair drifts towards the interface, causing strain in
the middle of the mixing layer; this in turn results in a non-
uniform reaction rate along the interface. In particular,
the flame–vortex interaction results in the appearance of

two hot spots which eventually lead to autoignition. Since
the reaction rate increases with the temperature, the flame
ignites locally at these spots. This process is similar to that
seen by Mastorakos et al. (1997) in two-dimensional
turbulent simulations of autoignition. The ignition process
creates two triple-flame structures, similar in character to
those studied by Ruetsch et al. (1995), which propagate
rapidly towards each other and meet at t < 3:14: After
that time the triple-flames form into the diffusion flame
and two premixed detonation waves traveling away
from it.

The efficiency of the grid adaptation is demonstrated in
Fig. 19 which shows the time evolution of the compression
coefficient. In the present calculations, we used up to eight
levels of resolution with an effective resolution (the
resolution of the non-adaptive computational grid needed
to perform the same calculation) of 1025 £ 256 grid
points. We see a decrease in the compression at t < 3;
which is explained by the appearance of the triple flame
structure.

CONCLUSIONS

The second generation wavelet collocation method
(Vasilyev and Bowman, 2000) for solving evolution
problems is extended to higher dimensions and irregular
sampling intervals. Wavelet decomposition is used for grid
adaptation and interpolation, while a O(N) hierarchical
finite difference scheme, which takes advantage of
wavelet multilevel decomposition, is used for derivative
calculations. In this paper, the method is demonstrated by

FIGURE 16 Evolution of the computational grids Gt
$ for the flame–vortex interaction problem ðe ¼ 1023; p ¼ ~p ¼ 4Þ:
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solving a two-dimensional linear advection problem, a
quasi two-dimensional Burgers equation, and a two-
dimensional laminar flame–vortex interaction problem.
The results indicate that the computational grid and
associated wavelets can very efficiently adapt to the local
irregularities of the solution in order to resolve
sharp transition regions. Furthermore, a solution is
obtained on a near optimal grid for a given accuracy,

i.e. the compression of the solution is performed
dynamically as opposed to a posteriori as done in data
analysis. Additional strengths of the method are:

1. The multi-dimensional wavelet transform can be
performed on an adaptive grid with no auxiliary
memory, i.e. the original signal is replaced with its
wavelet transform;

FIGURE 17 Zoomed-in view of the reaction rate _we during ignition.

FIGURE 18 Zoomed-in view of the temperature during ignition.
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2. The method can handle general boundary conditions
(Dirichlet, Neumann, and mixed type);

3. The treatment of nonlinear terms is a straightforward
task due to the collocation nature of the algorithm.

Future areas of research include the generalization of
the method to nonseparable multi-dimensional wavelets
defined in complex geometries. This work is currently
underway.
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