CEDRIC

Custom Editing and Display of Reduced Information in Cartesian space

National Center for Atmospheric Research *
Mesoscale and Microscale Meteorology Division
Boulder, Colorado 80307-3000

September 2009

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.
CEDRIC

CEDRIC is a software program for the Custom Editing and Display of Reduced Information in Cartesian space. This manual describes the “Batch Version” written in Fortran 77 and C programming languages for mainframe and workstation computers having UNIX operating systems.

NOTICE

© Copyright 1993 University Corporation for Atmospheric Research (UCAR). All Rights Reserved.
National Center for Atmospheric Research (NCAR).

This software was developed by NCAR, which is operated by UCAR and sponsored by the National Science Foundation.

Access and use of this software shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this software, and any derivative works thereof, and its supporting documentation for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the software, derivative works and supporting documentation. Further, the user agrees to credit UCAR/NCAR in any publications that result from the use of this software or in any software package that includes this software. The names UCAR/NCAR, however, may not be used in any advertising or publicity to endorse or promote any products or commercial entity unless specific written permission is obtained from UCAR/NCAR. The user also understands that UCAR/NCAR is not obligated to provide the user with any support, consulting, training or assistance of any kind with regard to the use, operation and performance of this software nor to provide the user with any updates, revisions, new versions or “bug fixes.”

THIS SOFTWARE IS PROVIDED BY UCAR/NCAR “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UCAR/NCAR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.

Published by the Mesoscale and Microscale Meteorology Division, P.O. Box 3000, Boulder, CO 80307-3000. The Mesoscale and Microscale Meteorology Division is a scientific division of the National Center for Atmospheric Research. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research and sponsored by the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this manual are those of its contributors, and do not necessarily reflect the views of the National Science Foundation.

This manual was prepared using \TeX, the Text \textit{EX}ecutive processor developed by Honeywell Information Systems. \TeX \textit{X} is a trademark of the American Mathematical Society.

All brand and product names mentioned in this manual are trademarks or registered trademarks of their respective holders. Reference to a company or product does not imply approval or recommendation of that company or product to the exclusion of others.
1. Introduction
2. References
3. Description of the Command Syntax
4. Summary of CEDRIC Commands
5. Detailed Command Descriptions
 Appendix A: Summary listings of Commands and Examples
 Appendix B: Table of CEDRIC FUNCTIONs
 Appendix C: Effective use of color graphics in CEDRIC
 Appendix D: CEDRIC cartesian data file description
 Appendix E: Running CEDRIC on the CRAY-YMP at NCAR
 Appendix F: Multiple Doppler Radar Wind Synthesis in CEDRIC
 Appendix G: Coordinate systems that can be used in CEDRIC

L. Jay Miller
(303) 497-8975
Email: ljmill@ncar.ucar.edu

Sherrie M. Fredrick
(303) 497-8973
Email: sherrie@ncar.ucar.edu

National Center for Atmospheric Research
Mesoscale and Microscale Meteorology Division
P.O. Box 3000
Boulder, Colorado 80307-3000
Leave this page blank

Leave this page blank
1. INTRODUCTION

The CEDRIC batch processor is designed primarily for the reduction and analysis of single and multiple Doppler radar volumes in either a Cartesian or a coplane coordinate system. CEDRIC provides a wide variety of options for calculating physical quantities of interest, for editing the data, for filtering, as well as options for displaying the data graphically. Users have flexibility in manipulating fields by building function stacks from algebraic primitives. Also users can obtain color area-filled plots and overlay colored vectors or other contoured fields. The plot files can be easily examined on workstations too, using utilities that are part of the NCAR Graphics Package (GKS) from the Scientific Computing Division (SCD).

CEDRIC requires input data files that are structured in a very specific way. This format is described in some detail in Appendix D of this manual and in the SPRINT documentation. The data files can be the output from other programs such as interpolators like SPRINT, or the output files created by previous CEDRIC runs. The most important requirement for data input to CEDRIC is that it be regularly-gridded data (no staggered grids), and in a format understood by CEDRIC. We provide an input-output software package for reading-writing CEDRIC format for users who wish to interface CEDRIC with their own analysis packages or model data outputs.

Current memory sizing allows data sets that meet the following conditions: a) number of grid points along any one axis must be less than 512, b) number of grid points in a horizontal plane (NX by NY) must not exceed 65536, c) only 12 z-levels are allowed if NX*NY=65536, and d) number of fields allowed is 25. The total number of grid points NX*NY*NZ cannot exceed 786432. More than 12 z-levels are allowed if fewer than 65536 horizontal points are used, but the absolute maximum is 128. The absolute memory limit for the product of grid points and number of fields, NX*NY*NZ*NF, is 8000000.

CEDRIC computer runs consist of three basic parts. The first part is the input stage, where data is read by CEDRIC into an edit volume. The second part is the editing and analysis stage that includes decimation, filling, filtering, as well as multiple Doppler radar wind synthesis and algebraic manipulation of fields to produce other physical quantities of interest. Finally, some kind of output is generated that can be graphical, statistical and numerical output. Additionally, new edit volumes are available for output and later use as input to other CEDRIC runs. Although CEDRIC was designed primarily for multiple-Doppler radar wind analysis, it is very useful for other kinds of gridded data such as from aircraft (ACANAL), mesonetwork (GEMINI) and numerical models.

CEDRIC was written originally by Carl Mohr under the supervision and guidance of L. Jay Miller. Bill Anderson converted that software to the Cray-YMP and has added considerable enhancements such as color area-fill graphics and a complete coplane analysis. Bill is currently responsible for the continued programming aspects of the project, and L. Jay Miller is responsible for the overall direction and the scientific aspects. We request that you acknowledge NCAR/MMM as a source of this software package when it is used or referenced in any resulting research, publications, or subdistributions.

The following pages contain a description of the commands that have been implemented in the batch version of CEDRIC, running either on the Cray-YMP or one of several Unix workstations (DEC, SUN, IBM and SGI). The CEDRIC commands are identical in these two environments; however, the Unix shell scripts are not. Though this document concentrates on the Cray version since the shell scripts for workstations may be system dependent, most of what is documented here applies equally well to the Unix workstation versions. As with any large software package there are bound to be errors that have escaped our scrutiny. Please report any annoying or inconsistent program behavior so that appropriate corrections can be made.
Included in Appendix F is an in-depth review of multiple-Doppler wind synthesis. The basic steps involved in this analysis are also included here as introduction to this software package. The user should also refer to Appendix F for further details. The equations referenced here are within that Appendix.

The following steps are taken for multiple-Doppler radar wind synthesis:

1. Interpolate the radar measurements using the SPRINT software package. If measurements were originally taken in the coplane coordinate system, interpolation within these coplanes is selected. If measurements were taken in the normal radar spherical coordinate system, interpolation to Cartesian coordinates should be done. There is little advantage in interpolating to coplanes if the data were not taken in this coordinate system. The SPRINT package has no provision for such interpolation; however, the REORDER package of ATD/RDP does.

2. Select the appropriate coordinate system synthesis, integration and interpolation path in CEDRIC. This is done automatically if the appropriate housekeeping words are correctly set. Otherwise, the user must invoke the COORD command to force the correct choice of mathematical formulation.

3. Specify the necessary parameters in the SYNTHES command in CEDRIC. The Cartesian, orthogonal particle-motion solutions (U,V,W) are derived from three (or more) equations, relating non-orthogonal radial velocities to the (U,V,W) components. The Cartesian synthesis also allows for an over-determined or least-squares solution for (U,V) in terms of measured radial velocities, associated radar geometries, and an unknown vertical velocity contribution. For coplane synthesis at coplane coordinates, only two radars are allowed. Solutions are obtained for orthogonal, coplane components that are parallel and perpendicular to the two-radar baseline.

4. Invoke the CONVERGE command to compute horizontal or coplane convergence, the negative of divergence of the horizontal winds from the solutions in step 3 above.

5. Specify the necessary parameters in the INTEGR command for Cartesian or coplane integration of the mass continuity equation. When the W-contaminated (U,V) solutions are obtained, one way to solve the mass continuity equation is an iterative scheme implemented in the MASS2 command.

2. REFERENCES

These references are mainly for the CEDRIC software package. Other references on the details of multiple-Doppler radar wind synthesis are included in Appendix F.

3. DESCRIPTION OF THE COMMAND SYNTAX

CEDRIC commands consist of 80 character card image formats beginning with a keyword starting in column 1. Each card image is divided into 10, 8-character wide fields referred to in the documentation as parameter positions P1 thru P10. The keyword always occupies field 1. Fields 2-10 contain required parameters that are interpreted by the program as either floating-point (F8.0) or alphanumeric (A8) entities. These are designated as (F) and (A) respectively. (F) parameters must be right justified within the field if they do not have a decimal point. (A) parameters must always be left justified. There also exists a hybrid entity (H) that is first examined as an (A) parameter and if it does not match a predetermined mnemonic, it is interpreted as an (F) parameter. Default values are used whenever a parameter field is left blank or if the information specified is erroneous. If a default value is not specified in the documentation, “blanks” will be supplied for an (A) field and 0.0 will be supplied for an (F) field.

Documentation for each command is as follows:

COMMAND—A brief description of the command, including how it might be used.

Command structure:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P6</th>
<th>P9</th>
<th>P10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Type Name</td>
<td>A brief description of the parameter,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>(A)</td>
<td>AVALE</td>
<td>A brief description of this parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(F)</td>
<td>FVALUE</td>
<td>A brief description of this parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(H)</td>
<td>HVALUE</td>
<td>A brief description of this parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>UNUSED</td>
<td>+++++++++++++++++++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(A)</td>
<td>AVALE</td>
<td>A brief description of this parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7-8</td>
<td>UNUSED</td>
<td>+++++++++++++++++++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>(F)</td>
<td>FVALUE</td>
<td>A brief description of this parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>(A)</td>
<td>IWINDO</td>
<td>Windowing specification for this command:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commands are processed in the order in which they appear and may be repeated as often as desired. Certain commands (READVOL and SYNTHES) that generate new edit files will reset the spatial and field windowing to protect the user from inadvertently editing and displaying information outside the boundaries of the dataset. Some commands [FIELDSET, GRAPHICS (when specifying contours), MASS2, and TRANSFER] may require additional information that cannot be contained on a single card image. These are referred to as multiple-card commands and whenever any additional fields are necessary, EXTRA card images will be processed for the required information until a “blank” field is encountered. Termination by an END card image is not required. EXTRA is not a mandatory keyword, but instead refers to the requirement for additional card images whenever it appears in the documentation.

Other commands (CODED, DIGITAL, FUNCTION, HISTO, GRAPHICS, REMAP, STPLOT, SURFACE, SYNTHES, THREED and WTRANS) initiate the formation of a stack, consisting of multiple card images that contain additional information required by the command. These stacks must be terminated by an END command. END is a required mnemonic and must appear in the command keyword field P1. The COMMENT command also initiates a stack. The COMMENT stack must be terminated by a COMEND command. Any card image containing an asterisk “*” in column one (1) will also be treated as a comment no matter where it appears in the deck.
Facilities also exist for establishing a set of commands as a single entity using the DEFINE command, substituting user-defined variables with the VALUE command and executing the command set as often as needed (EXPAND). The DEFINE command initiates the formation of a stack consisting of valid CEDRIC commands. This stack must be terminated by a DEFEND command in order to differentiate it from other stacks. DEFEND is a required mnemonic and must appear in the command keyword field P1.

The only commands that invoke fully three-dimensional manipulation of data are FILTER (options “L3D” for Leise 3-D filtering and “LT3” for least-squares 3-D filtering), PATCHER (options “FILLCON3” and “FILLALL”), the SURFACE and THREED commands for plots of isosurfaces, and REMAP since data will be interpolated to a new three-dimensional grid. The way the program manipulates the data for these commands is controlled internally. All other commands are inherently two-dimensional, where operations are performed on successive XY-, XZ- or YZ-planes of data while moving in the Z, Y, or X direction.

When the direction for moving through the data can be specified by the user, it is set with the parameter “IFIXAX”, usually P3 or P9. The only commands where the direction is setable are CROSS, FILTER, FUNCTION, GRAPHICS, HISTO, STATS, STPLOT, and UNFOLD. All other commands are conveniently done in two-dimensional XY-planes. But, since the result is not affected by the direction through the data, the user needs no control over direction (fixed axis). For graphical output and statistical output, direction controls the display plane; for example, Z-direction allows displays of XY-planes. The direction to pass through the data is implicit in some commands like INTEGR to integrate the mass continuity equation for the vertical component of air motion.
4. SUMMARY OF CEDRIC COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Stack</th>
<th>Description of its functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>BADVAL</td>
<td>No</td>
<td>Specifies the floating point value for missing data flag</td>
</tr>
<tr>
<td>BCKGRND</td>
<td>No</td>
<td>Allows the user to force the background color for plots.</td>
</tr>
<tr>
<td>CHANGE</td>
<td>No</td>
<td>Alters the value at a specific (X,Y,Z) location</td>
</tr>
<tr>
<td>CODED</td>
<td>Yes</td>
<td>Generates an alphanumeric display of data fields</td>
</tr>
<tr>
<td>COMMENT</td>
<td>Yes</td>
<td>Transmits user-supplied comments to a print file</td>
</tr>
<tr>
<td>COMEND</td>
<td>No</td>
<td>Terminates a set of user-supplied comments</td>
</tr>
<tr>
<td>CONVERGE</td>
<td>No</td>
<td>Calculates horizontal convergence of (U,V) winds</td>
</tr>
<tr>
<td>COORD</td>
<td>No</td>
<td>Specifies coordinate system that data is in</td>
</tr>
<tr>
<td>CREATE</td>
<td>No</td>
<td>Defines a user-specified Cartesian coordinate system</td>
</tr>
<tr>
<td>CROSS</td>
<td>No</td>
<td>Computes the cross correlation between a pair of fields</td>
</tr>
<tr>
<td>DEFINE</td>
<td>Yes</td>
<td>Initiates the formation of a command block</td>
</tr>
<tr>
<td>DEFEND</td>
<td>No</td>
<td>Terminates the definition of a command block</td>
</tr>
<tr>
<td>DIGITAL</td>
<td>Yes</td>
<td>Generates a digital display of data fields</td>
</tr>
<tr>
<td>DELETE</td>
<td>No</td>
<td>Deletes a field from the current edit file</td>
</tr>
<tr>
<td>END</td>
<td>No</td>
<td>Terminates a stack operation</td>
</tr>
<tr>
<td>EXPAND</td>
<td>No</td>
<td>Executes a command block</td>
</tr>
<tr>
<td>FIELDSET</td>
<td>No</td>
<td>Partitions the current set of fields into 2 groups</td>
</tr>
<tr>
<td>FILTER</td>
<td>No</td>
<td>Performs spatial filtering (2- or 3D) of data fields</td>
</tr>
<tr>
<td>FIXIDS</td>
<td>No</td>
<td>Alters information in the 510-word volume header</td>
</tr>
<tr>
<td>FLTERTH</td>
<td>No</td>
<td>Enables/disables flat earth mode</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>Yes</td>
<td>Algebraic manipulation (2D) of data fields</td>
</tr>
<tr>
<td>GRAPHICS</td>
<td>Yes</td>
<td>Generates 2-D plotted displays of data fields</td>
</tr>
<tr>
<td>HISTO</td>
<td>Yes</td>
<td>Generates histogram displays of data fields</td>
</tr>
<tr>
<td>INTEGR</td>
<td>No</td>
<td>Performs vertical integration of a data field</td>
</tr>
<tr>
<td>LAPLACE</td>
<td>No</td>
<td>Least-squares solution of a 2-D differential equation</td>
</tr>
<tr>
<td>Command</td>
<td>Stack</td>
<td>Description of its functionality</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>MASS2</td>
<td>No</td>
<td>Integrates mass continuity equation for 2-radar synthesis</td>
</tr>
<tr>
<td>PATCHER</td>
<td>No</td>
<td>Performs 2- or 3-D filling and 2-D decimation of a data field</td>
</tr>
<tr>
<td>QUIT</td>
<td>No</td>
<td>Terminates the CEDRIC run</td>
</tr>
<tr>
<td>READAIR</td>
<td>Yes</td>
<td>Transfers an ASCII file of aircraft track data into CEDRIC for use later in GRAPHICS</td>
</tr>
<tr>
<td>READSTA</td>
<td>No</td>
<td>Transfers an ASCII file of station locations for use in GRAPHICS</td>
</tr>
<tr>
<td>READVOL</td>
<td>No</td>
<td>Transfers a Cartesian radar volume into CEDRIC</td>
</tr>
<tr>
<td>REGRESS</td>
<td>No</td>
<td>Performs linear regression of one field versus another</td>
</tr>
<tr>
<td>RELAXUV</td>
<td>No</td>
<td>Modify (U,V) components using variationally adjusted W</td>
</tr>
<tr>
<td>REMAP</td>
<td>Yes</td>
<td>Remaps all existing fields to a new coordinate system</td>
</tr>
<tr>
<td>RENAME</td>
<td>No</td>
<td>Renames a field in the current edit file</td>
</tr>
<tr>
<td>SAMPLER</td>
<td>No</td>
<td>Derives radial velocity from a set of (U,V,W) winds</td>
</tr>
<tr>
<td>SHIFTER</td>
<td>No</td>
<td>Advects data fields in horizontal direction</td>
</tr>
<tr>
<td>STATS</td>
<td>No</td>
<td>Generates a statistical display for a set of fields</td>
</tr>
<tr>
<td>STPLOT</td>
<td>Yes</td>
<td>Generates plotted profiles of selected statistics</td>
</tr>
<tr>
<td>SURFACE</td>
<td>Yes</td>
<td>Generates 3-D perspective displays of Z-plane data fields</td>
</tr>
<tr>
<td>SYNTHES</td>
<td>Yes</td>
<td>Synthesizes radial velocity estimates from multiple radars</td>
</tr>
<tr>
<td>THREED</td>
<td>Yes</td>
<td>Generates 3-D isosurface displays of data fields</td>
</tr>
<tr>
<td>TRANSFER</td>
<td>No</td>
<td>Transfers fields from another CEDRIC volume to the edit file</td>
</tr>
<tr>
<td>UNFOLD</td>
<td>No</td>
<td>Performs de-aliasing of radial velocity measurements</td>
</tr>
<tr>
<td>VALUE</td>
<td>No</td>
<td>Permits the parameterization of CEDRIC commands by the user</td>
</tr>
<tr>
<td>WINDOW</td>
<td>No</td>
<td>Defines a user-specified spatial window for editing and display</td>
</tr>
<tr>
<td>WRITVOL</td>
<td>No</td>
<td>Transfers the current edit file to an external storage device</td>
</tr>
<tr>
<td>WTRANS</td>
<td>Yes</td>
<td>Windowed field transfer with spatial translation of input</td>
</tr>
</tbody>
</table>

COMMAND: SYNTAX and SUMMARY-vi
DETAILS of CEDRIC COMMANDS

Custom Editing and Display of Reduced Information in Cartesian space

BATCH PROCESSOR for UNIX-BASED COMPUTERS
BADVAL—Specifies the floating point value to which missing data is set. This command is useful for generating plausible contour lines between regions with data and regions without data. For example, any missing data surrounding good radar reflectivities could be set to a value just below the lowest true data value in order to close contours. *Note: This is a single card image command.*

Command structure:

BADVAL BAD

<table>
<thead>
<tr>
<th>P2</th>
<th>(F) BAD</th>
<th>Missing data points will be set to this value.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(DEFAULT = -1000.0)</td>
</tr>
</tbody>
</table>

| P3-10 | UNUSED | ++++++++++++++++++++

BCKGRND—Sets the background color for plots. By default, the background color for grey scale plots is white and the background for all other plots is black. *Note: This is a single card image command.*

Command structure:

BCKGRND COLOR

<table>
<thead>
<tr>
<th>P2</th>
<th>(A) COLOR</th>
<th>Color to which to set background. Only WHITE and BLACK can be specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WHITE indicates that the background color for all plots should be white.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLACK indicates that the background color for all plots except grey scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plots should be black.</td>
</tr>
</tbody>
</table>
CHANGE—Sets a specified field at a designated (X,Y,Z) location to a user-supplied value. This command is useful for setting certain data points to desired values or for eliminating data glitches. It is not recommended for extensive editing. *Note: This is a single card image command.*

Change command structure:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>NAMFLD</td>
<td>Name of the field to be changed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>ISPCNX</td>
<td>Context within which the (X,Y,Z) location is defined:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INDEX coordinates are specified in index space;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISTANCE coordinates are specified in distance space;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = INDEX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(F)</td>
<td>XLOC</td>
<td>X coordinate of the data point to be altered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>YLOC</td>
<td>Y coordinate of the data point to be altered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(F)</td>
<td>ZLOC</td>
<td>Z coordinate of the data point to be altered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>(H)</td>
<td>VALUE</td>
<td>Location (XLOC,YLOC,ZLOC) in NAMFLD is set to this value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If VALUE = BAD, NAMFLD at (XLOC,YLOC,ZLOC) will be set to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>missing data flag (see the BADVAL command).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8-10</td>
<td>UNUSED</td>
<td>++++++++++++++++++++++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CODED—Generates a coded display (one alphanumeric symbol per data value) for a set of designated fields. This is a stack operation where additional card images allow the user to specify the fields to be examined along with associated display parameterization. The stack *must* be terminated by an **END** command. If a field is referred to more than once, the last specification will be used to display that field. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

Command structure:

<table>
<thead>
<tr>
<th>CODED</th>
<th>IDEST</th>
<th>IFIXAX</th>
<th>SKIP</th>
<th>IWINDO</th>
<th>NMSPEC</th>
<th>SCLFAC</th>
<th>ZREF</th>
<th>WIDTH</th>
<th>NLFT</th>
<th>NRGT</th>
</tr>
</thead>
</table>

P2 (A) **IDEST**
Destination of the display:
- **PRINT** display will be sent to the printer file;
- **MICRO** display will be sent to microfiche/microfilm;
- **BOTH** display will be sent to both printer and film.
The only available option is **PRINT**; the others have been documented here for historical reasons.
(DEFAULT = **PRINT**)

P3 (A) **IFIXAX**
Axis to be fixed for displays:
- **Z** z-axis fixed, display xy-planes;
- **Y** y-axis fixed, display xz-planes;
- **X** x-axis fixed, display yz-planes.
(DEFAULT = **Z**)

P4 (F) **SKIP**
Increment between display levels. A display will be generated every **SKIP** levels.
(DEFAULT = 1.0)

P5-9 UNUSED

P10 (A) **IWINDO**
Windowing specification for the display:
- **WINDOW** display will be confined to the current user-set window;
- **FULL** display will be generated over the full (X,Y,Z) grid.
(DEFAULT = **FULL**)

CODEED—**STACK of ADDITIONAL CARD IMAGES**—

P2 (A) **NMSPEC**
Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
- **PRI** only the primary field group will be displayed;
- **SEC** only the secondary field group will be displayed;
- **ALL** every field will be displayed.
See the **FIELDSET** command for instructions on how to set primary and secondary field groups.
(DEFAULT = **PRI**)

P3 (F) **SCLFAC**
Scaling factor. Field values will be multiplied by this number before they are encoded.
(DEFAULT = 1.0)

CODED-3
P4	(F) ZREF	Reference value for display. All field values less than ZREF will be encoded as lower-case letters; all field values greater than ZREF will be represented as upper-case. Values beyond the boundaries set by the user will be represented by either plus (+) or minus (−), depending on their sign. Missing data values will be represented by a period (.)
P5	(F) WIDTH	Width for the individual bins. All data points within each of these intervals will be assigned the same **CODED** symbol. (DEFAULT = 5.0)
P6	(F) NLFT	Number of bins to the left of reference value (0-26) (DEFAULT = 0.0)
P7	(F) NRGT	Number of bins to the right of reference value (0-26) (DEFAULT = 0.0)
P8-10	UNUSED	++++++++++++++++++++

END This **END** command terminates the **CODED** command stack.
COMMENT—Transmits user-supplied comments to an output file. This is a stack operation where additional card images contain user-supplied comments, one card image per line of text. The stack must be terminated by a COMEND command. Any CEDRIC commands appearing between the COMMENT and COMEND commands will be treated as comments and will not be executed. This command is useful for including comments about the data flow and commands, or to comment out large groups of commands that are not to be executed such as when the setup is being debugged. The latter would be done by simply surrounding the desired group with a COMMENT-COMEND combination.

Command structure:

```
COMMENT IDEST
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
COMEND
```

P2 (A) IDEST Destination of the user-supplied comments:
 PRINT comments will be sent to the printer file;
 MICRO comments will be sent to microfiche/microfilm;
 BOTH comments will be sent to both printer and film.
 The only available option is PRINT; the others have been documented here for historical reasons.
 (DEFAULT = PRINT)

COMMAND—STACK of ADDITIONAL CARD IMAGES—

P1-10 (A) TEXT A line of user-supplied text; include as many card images as desired.
CEDRIC does allow comment text in the P1 location; however, it has not been included in the above Command structure for readability.

COMEND This COMEND command terminates the COMMENT command stack.

COMEND—Terminates a stack of comments. It is used only in conjunction with the COMMENT command, and must appear following the last comment card image in the COMMENT stack. Note: This command is itself a single card image command, and it requires no parameters.

Command structure:

```
COMEND
```

COMMENT/COMEND-5
CONVERGE—Calculates the two-dimensional convergence of the horizontal Cartesian or coplane two-dimensional wind components. The convergence is calculated using either 3- or 5-point centered differencing in either Cartesian space or in coplane space, depending on the coordinate system of the data as determined from the volume header or from the **COORD** command. See Appendix F for further details on the Cartesian and coplane forms of two-dimensional convergence and their use in the mass continuity equation. **Note:** This is a single card image command.

Command structure:

P2	(A) NAMOUF	Name of the output two-dimensional convergence field.
P3	(A) NAMU	Name of the input U-component of the wind field.
P4	(A) NAMV	Name of the input V-component of the wind field.
P5	(F) NDER	Number of points along each axis to use when computing the convergence estimate. The only acceptable values are 3.0 and 5.0 (DEFAULT = 3.0)
P6-10	UNUSED	++++++++++++++++++++++

COORD—Forces CEDRIC to interpret the data of all subsequent volumes as being in a particular coordinate system. The coordinate system chosen will affect the way that the synthesis **SYNTHES**, convergence **CONVERGE**, and integration **INTEGR** calculations are carried out. See Appendix F for the details of calculations performed in Cartesian space and coplane space. Use of this command also will set ID words 16 and 17 (coordinate system words) to either **CRT** for Cartesian or **COPL** for coplane for any volume that CEDRIC currently has in memory. If this command is not used, CEDRIC will obtain coordinate system information from the volume header (ID words 16 and 17). This command stays in effect until either the **COORD** command is called again or until the end of the CEDRIC script. **Note:** This is a single card image command.

Command structure:

P2	(A) ICORD	Coordinate system options:
		CART assume the data is in a three-dimensional Cartesian coordinate system regardless of the information in the volume header;
		COPLANE assume the data is in a coplane coordinate system regardless of the information in the volume header.
		There is no DEFAULT value. If this command is included, the user must specify the coordinate system.
P3-10	UNUSED	++++++++++++++++++++++

CONVERGE/COORD-6
CREATE—Defines or deactivates a user-supplied Cartesian coordinate system into which is mapped all subsequent INPUT volumes and SYNTHESIZED output volumes. This command is particularly useful when synthesizing multiple Doppler radar CEDRIC volumes that have not been interpolated to identical Cartesian grid systems. Any Cartesian coordinate systems to be remapped must have some grid locations in common with the CREATEd coordinate system. No other restrictions are imposed. The user-defined (X,Y,Z) grid is specified in kilometers (km) relative to some predetermined origin in (X,Y) horizontal space and km relative to Mean Sea Level (MSL) along the Z-axis. Note: This is a single card image command.

Command structure:

CREATE X1 X2 XD Y1 Y2 YD Z1 Z2 ZD

P2 (H) X1 If X1 = OFF, mapping of INPUT and SYNTHESIS volumes into CREATEd coordinates will be deactivated. Otherwise, X1 is interpreted as the beginning X-coordinate of the user-defined (X,Y,Z) grid.
P3 (F) X2 Ending X-coordinate.
P4 (F) XD Grid spacing along the X-axis.
P5 (F) Y1 Beginning Y-coordinate of the user-defined (X,Y,Z) grid.
P6 (F) Y2 Ending Y-coordinate.
P7 (F) YD Grid spacing along the Y-axis.
P8 (F) Z1 Beginning Z-coordinate of the user-defined (X,Y,Z) grid.
P9 (F) Z2 Ending Z-coordinate.
P10 (F) ZD Grid spacing along the Z-axis.
CROSS—Computes the two-dimensional cross correlation function between two-dimensional planes of a pair of fields that are lagged with respect to one another to a maximum specified distance along each axis in two-dimensions. Any axis may be held fixed, and the cross correlation function will be computed only in those regions within the designated geometric window. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>CROSS</th>
<th>NAMOUF</th>
<th>NAMREF</th>
<th>NAMLAG</th>
<th>LAGI</th>
<th>LAGJ</th>
<th>IZERO</th>
<th>JZERO</th>
<th>IFIXAX</th>
<th>IWINDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>NAMOUF</td>
<td>Name of the cross correlation output field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMREF</td>
<td>Name of the reference input field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(A)</td>
<td>NAMLAG</td>
<td>Name of the input field to be lagged with respect to NAMREF. (DEFAULT = If either NAMREF or NAMLAG are left blank the input field that was specified will be lagged with respect to itself, the auto-correlation function.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>LAGI</td>
<td>Number of grid locations to lag in a positive and negative direction along the current I-direction. LAGI must not exceed the default value. (DEFAULT = Number of I-locations within the window divided by 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(F)</td>
<td>LAGJ</td>
<td>Number of grid locations to lag in a positive and negative direction along the current J-direction. LAGJ must not exceed the default value. (DEFAULT = Number of J-locations within the window divided by 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>(F)</td>
<td>IZERO</td>
<td>Specifies the I-index in the output field where the zero-lag correlation coefficient is to be located. (DEFAULT = Results will be stored, beginning at the left boundary of the output array.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>(F)</td>
<td>JZERO</td>
<td>Specifies the J-index in the output field where the zero-lag correlation coefficient is to be located. (DEFAULT = Results will be stored beginning at the lower boundary of the output array.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>(A)</td>
<td>IFIXAX</td>
<td>Axis to be fixed for two-dimensional cross correlation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td>z-axis fixed, correlation is done in xy-planes;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>y-axis fixed, correlation is done in xz-planes;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>x-axis fixed, correlation is done in yz-planes. (DEFAULT = Z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>(A)</td>
<td>IWINDO</td>
<td>Windowing specification for this command:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WINDOW</td>
<td>execute the command only in the current user-set window;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FULL</td>
<td>execute the command over the full (X,Y,Z) grid. (DEFAULT = FULL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEFINE—Initiates the formation of a command block. A command block may consist of any valid sequence of CEDRIC commands except another **DEFINE**. This is a unique stack operation and *must* be terminated by the **DEFEND** command. This sequence of commands is saved for later expansion and execution. None of the commands are actually executed until the block is invoked using the **EXPAND** command. **EXPAND** commands may be contained within **DEFINE** blocks provided that the nesting level does not exceed five (5). A maximum of 25 **DEFINE** blocks may be created during the CEDRIC run, and the total number of card images contained in all the existing **DEFINE** blocks may not exceed 10000. A **DEFINE** block may not be redefined once it has been established. An example using CEDRIC commands thus far documented is shown in the command structure.

Command structure:

```
DEFINE NAMBLK
COMMENT IDEST
TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT
CREATE X1 X2 XD Y1 Y2 YD Z1 Z2 ZD
BADVAL BAD
CHANGE NAMFLD ISPCNX XLOC YLOC ZLOC VALUE
CODED IDEST IFIXAX SKIP IWINDO
END
COORD ICORD
CONVERGENAMOUF NAMU NAMV NDER
CROSS NAMOUF NAMREF NAMLAG LAGI LAGJ IZERO JZERO IFIXAX IWINDO
DEFEND
```

P2 (A) NAMBLK The name of the **DEFINE** block to be associated with the set of CEDRIC commands contained in the stack. (DEFAULT = The user is permitted to have one unnamed **DEFINE** block.)

DEFINE—STACK of ADDITIONAL CARD IMAGES—

P1-10 (H) CEDRIC commands as they would appear if they were actually being executed.

DEFEND This **DEFEND** command terminates the **DEFINE** command stack.

DEFEND—Terminates the **DEFINE** block. It is used only in conjunction with the **DEFINE** command and must always appear following the last entry in the stack. A **DEFEND** command must always be present even if the **DEFINE** block contains no entries. *Note: This command is itself a single card image command, and it requires no parameters.*

Command structure:

```
DEFEND
```

DEFINE/DEFEND–9
DIGITAL—Generates a digital display (fixed number of digits per value) for a set of designated fields. This is a stack operation and must be terminated by an `END` command. The stack consists of additional card images listing the fields to be displayed and the specifications of the displays. Only one specification per field is permitted in the stack. If a field is referred to more than once, the last specification will be used to display that field. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

Command structure:

```
DIGITAL IDEST IFIXAX SKIP IWINDO NMSPEC SCLFAC NDIG
END
```

P2 (A) IDEST Destination of the display: The only available option is PRINT.
P3 (A) IFIXAX Axis to be fixed for displays:
 Z z-axis fixed, display xy-planes;
 Y y-axis fixed, display xz-planes;
 X x-axis fixed, display yz-planes.
 (DEFAULT = Z)
P4 (F) SKIP Increment between display levels. A display will be generated every SKIP levels. (DEFAULT = 1.0)
P5-9 UNUSED ++++++++++++++++++++
P10 (A) IWINDO Windowing specification for the display:
 WINDOW display will be confined to the current user-set window;
 FULL display will be generated over the full (X,Y,Z) grid.
 (DEFAULT = FULL)

DIGITAL --STACK of ADDITIONAL CARD IMAGES--

P2 (A) NMSPEC Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
 PRI only the primary field group will be displayed;
 SEC only the secondary field group will be displayed;
 ALL every field will be displayed.
 See the FIELDSET command for instructions on how to set primary and secondary field groups. (DEFAULT = PRI)
P3 (F) SCLFAC Scaling factor. Field values will be multiplied by this number before they are displayed. (DEFAULT = 1.0)
P4 (F) NDIG Maximum number of digits allocated for each value. Values which cannot be displayed using the number of digits allocated will be represented as either plus (+) or minus (–) depending upon their sign. Missing data values will be represented by a period (.). (DEFAULT = 3.0)
P5-10 UNUSED ++++++++++++++++++++

END This END command terminates the DIGITAL command stack.
DELETE—Deletes fields from the list of those present in the current edit file. If a non-existent field is designated for deletion a warning message will be provided. *Note: This is a single card image command.*

Command structure:

```
DELETE NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL
```

P2-10 (A) NAMDEL Names of the fields to be deleted.

END—Terminates a stack operation. It is used only in conjunction with stack definitions and *must always* appear following the last entry in the stack. An **END** command must always be present even if the stack contains one or no entries. **END** *cannot be used* to terminate CEDRIC processing. **QUIT** is the appropriate command for program termination. *Note: This command is itself a single card image command, and it requires no parameters.*

Command structure:

```
END
```

EXPAND—Executes the set of commands associated with the named **DEFINE** block. All CEDRIC commands within each block that is expanded will be inserted into the command stream where the **EXPAND** appears. Any **DEFINE** block may be **EXPANDED** as often as desired. *Note: This is a single card image command.*

Command structure:

```
EXPAND NAMBLK
```

P2 (A) NAMBLK The name of the **DEFINE** block associated with the CEDRIC commands to be inserted and executed.

P3-10 UNUSED ++++++++++++++++++++

(DEFAULT = The user is permitted to have one unnamed **DEFINE** block. In that case, NAMBLK can be blank.)

DELETE/END/EXPAND–11
FIELDSET—Divides all existing edit fields into two groups. This command is particularly useful when generating displays of similar fields, since it can eliminate the need for explicit reference to individual fields in the display stack. Whenever a new edit file is established using either the READVOL or SYNTHES command, all the fields are designated as primary. Any fields subsequently transferred in or generated by edit commands are designated as secondary. Taken together, the primary and secondary field groups comprise the set of ALL fields. Any fields not included in the primary group are automatically classified as secondary, and vice versa. These groupings are mutually exclusive. FIELDSET is a multi-card image command whenever 8 or more fields are to be designated as comprising a group. Note: This command must be terminated with a blank field name. Therefore, if any card image including the FIELDSET command line has a name as parameter (P10), the next card image must be blank.

Command structure:

<table>
<thead>
<tr>
<th>FIELDSETNAMGRP</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
<th>NINCLD</th>
</tr>
</thead>
</table>

P2 (F) NAMGRP Group name to be defined:
PRI primary fields to be specified;
SEC secondary fields to be specified.
(DEFAULT = PRI)

P3-10 (A) NINCLD Names of the fields to be included in the group. Whenever 8 or more fields are to be specified their names must appear on subsequent card images in the following format:

FIELDSET—STACK of EXTRA CARD IMAGES—

P2-10 (A) NINCLD Remaining field names. Include as many EXTRA card images as needed. They will be processed until a “blank” field is encountered. If exactly 8 fields are specified, a “blank” card image must be provided in order to terminate the processing of field names.
FILTER—Performs two- or three-dimensional spatial filtering of any edit field using any one of 8 available techniques. The uniform (all data are equally-weighted), forward Hanning (weights in each dimension are $1/4, 1/2, 1/4$), inverse Hanning (weights are designed to give a nearly-uniform response over the low-pass bandwidth of the Hanning filter), and two-way Hanning (weights are the same as forward, followed by inverse) filtering schemes are done only over local (3×3) regions. This means that the first zero in the filter response function is at 2Δ, where Δ is the grid spacing. The linear least-squares and Leise methods allow the user to select larger regions for filtering, thereby limiting the output to wavelengths longer than those from the uniform and Hanning filters. The Leise filter is described in NOAA Tech. Memo. ERL WPL-82 written by J.A. Leise entitled “A Multidimensional Scale-Telescoped Filter and Data Extension Package.” This method is analagous to two-way Hanning—with NSTEP = 1.0, virtually the same as two-way Hanning with one pass at the grid spacing; with NSTEP = 2.0, two-way Hanning, once at the grid spacing and once at twice the grid spacing; with NSTEP = 3.0, two-way Hanning, once at the grid spacing, once at twice the grid spacing, and once at three times the grid spacing and so forth. Therefore, the first zeroes for the Leise multi-step filter are: $2\Delta, 4\Delta, 8\Delta...$ for NSTEP =1.0, 2.0, 3.0 For all the methods, only those locations within the designated geometric window receive a filtered result. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>FILTER</th>
<th>NAMOUF</th>
<th>NAMINF</th>
<th>METHOD</th>
<th>NSTEP</th>
<th>IFIXAX</th>
<th>IWINDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>NAMOUF</td>
<td>Name of the output field containing the filtered result.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = The input field will be updated.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMINF</td>
<td>Name of the input field to be filtered.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(A)</td>
<td>METHOD</td>
<td>Filtering method:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNI</td>
<td>Uniform weighting of all values;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAN</td>
<td>Hanning filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INV</td>
<td>Inverse Hanning filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TWO</td>
<td>Hanning followed by Inverse Hanning filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1D</td>
<td>Leise one-dimensional filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEI</td>
<td>Leise two-dimensional filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L3D</td>
<td>Leise three-dimensional filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEA</td>
<td>Linear least-squares two-dimensional filtering will be done;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT3</td>
<td>Linear least-squares three-dimensional filtering will be done.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>NSTEP</td>
<td>Only required for Leise and Least Squares filtering.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If METHOD = L1D, LEI, L3D: The number of filter steps as defined by Leise;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If METHOD = LEA or LT3: Specifies the radius in grid steps (number of grid steps outward from the central grid point) over which filtering will be done.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6-8</td>
<td>UNUSED</td>
<td>++++++++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>(A)</td>
<td>IFIXAX</td>
<td>Axis to be fixed for two-dimensional filtering (or direction of filtering for one-dimensional filtering):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>z-axis fixed, operate in xy-planes(filter in z direction for L1D);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>y-axis fixed, operate in xz-planes(filter in y direction for L1D);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>x-axis fixed, operate in yz-planes(filter in x direction for L1D).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Windowing specification for this command:

- **WINDOW**: execute the command only in the current user-set window.
- **FULL**: execute the command over the full (X,Y,Z) grid.

(DEFAULT = FULL)
FIXIDS—Alters information in the 510 word header of the edit volume that is currently active. This volume header consists of 16-bit words. Refer to the CEDRIC 16–bit VOLUME HEADER DESCRIPTION in Appendix D for a detailed layout of this data structure. As many as 4 words may be altered by a single **FIXIDS command**. Note: *This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>P2</th>
<th>F</th>
<th>IW</th>
<th>Position of word to be altered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>H</td>
<td>IV</td>
<td>New contents of word specified by P2.</td>
</tr>
<tr>
<td>P4</td>
<td>F</td>
<td>IW</td>
<td>Position of word to be altered.</td>
</tr>
<tr>
<td>P5</td>
<td>H</td>
<td>IV</td>
<td>New contents of word specified by P4.</td>
</tr>
<tr>
<td>P6</td>
<td>F</td>
<td>IW</td>
<td>Position of word to be altered.</td>
</tr>
<tr>
<td>P7</td>
<td>H</td>
<td>IV</td>
<td>New contents of word specified by P6.</td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>IW</td>
<td>Number of a word to be altered.</td>
</tr>
<tr>
<td>P9</td>
<td>H</td>
<td>IV</td>
<td>New contents of word specified by P8.</td>
</tr>
<tr>
<td>P10</td>
<td></td>
<td></td>
<td>++++++++++++++++++++++++++++++++</td>
</tr>
</tbody>
</table>

FLTERTH—Enables or disables a flat earth mode. If enabled, coordinate transformations to three-dimensional Cartesian will not use curvature of the earth corrections in calculation of the height (Z). These corrections only affect the **ELEV** function within the **FUNCTION** command and the **REMAP** command when remapping from coplane or constant elevation angle coordinates to Cartesian. In CEDRIC, flat earth mode is disabled by default and is only enabled through the use of this command. Note: *This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>P2</th>
<th>A</th>
<th>O</th>
<th>indicates that flat earth mode should be enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>indicates that flat earth mode should be disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DEFAULT = OFF)</td>
<td></td>
</tr>
<tr>
<td>P3-10</td>
<td></td>
<td></td>
<td>++++++++++++++++++++++++++++++++</td>
</tr>
</tbody>
</table>

FUNCTION—Algebraic manipulation of multi-dimensional Cartesian fields. This command is a stack operation that allows the user to chain algebraic primitives together, thereby producing elaborate formulae without the unnecessary generation of superfluous edit fields. The stack consists of additional card images containing the primitive algebraic operations to be executed in the order in which they appear in the stack. A maximum of 30 primitives is permitted in a single stack. The algebraic primitives are defined in Appendix B, and they may be referenced either by name or by number. Only those locations within the designated window will contain the results of any computations. The stack must be terminated by an END command.

Fields within the FUNCTION stack may be any one of three types:

- **PERMANENT**—field either already exists or will be created as a permanent edit field upon completion of the command;
- **TEMPORARY**—field will exist only for the duration of the command;
- **CONSTANT PLANE**—after initialization the elements of this two-dimensional field are retained from one plane to the next. This field will exist only for the duration of the command. The constant plane provides the user with a CEDRIC internal field in which results can be accumulated as the selected operation proceeds in the specified direction. For example, if the user wanted to find the maximum value of a field within each vertical column of the grid, the first level of the field could be stored in this constant plane. Then, proceed by taking the maximum of the values of the field and the constant plane and putting this value back in the constant plane field. As the stack executes, a permanent field also should be set to the constant plane values where they can be stored after completion of the FUNCTION command. See the illustrative example included below.

Command structure:

```
FUNCTION IDMODE DIREC IFIXAX IWINDO
NAMOUF IFLTYP NAMFUN NAMF1 NAMF2 C1 C2 C3 C4
NAMOUF C CONPLANEINFLD CONSET
END
```

An illustrative example of the FUNCTION command:

```
DEFINE MAXWIN
COMMENT

Obtain the accumulated maximum value over several planes of FINP
1) Initialize FACCUM(I,J) to first plane of TFINP(I,J,K)
2) Then for increasing K (IFIXAX direction)
   FACCUM(I,J) = MAX[FACCUM(I,J),TFINP(I,J,K)]
   FMAX(I,J,K) = FACCUM(I,J)

Each level of FMAX contains the maximum value of FINP to that level

COMEND
VALUE ON
FUNCTIONNAME 1.0 IFIXAX WINDOW
FINP T ORELSE FINP FMIN
FACCUM C CONPLANETFINFO 1.0
FACCUM C MAX FACCUM TFINP
FMAX P LINEAR FACCUM 1.0 0.0
END
VALUE OFF
DEFEND MAXWIN
```
P3 (A) DIREC Direction of the calculations through the volume:
 +1.0 positive direction through the planes;
 -1.0 negative direction through the planes.
 (DEFAULT = +1.0)

P4-8 UNUSED +++++++++++++++++++++

P9 (A) IFIXAX Axis to be fixed for two-dimensional functions:
 Z z-axis fixed, operate in xy-planes;
 Y y-axis fixed, operate in xz-planes;
 X x-axis fixed, operate in yz-planes.
 (DEFAULT = Z)

P10 (A) IWINDO Windowing specification for this command:
 WINDOW execute the command only in the current user-set window;
 FULL execute the command over the full (X,Y,Z) grid.
 (DEFAULT = FULL)

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>--STACK of ADDITIONAL CARD IMAGES--</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2 (A) NAMOUF Name of the output field containing the results of this primitive operation.</td>
<td></td>
</tr>
</tbody>
</table>
| P3 (A) IFLTYP Output field type:
 T temporary;
 C constant plane field that has been previously defined;
 P permanent (CEDRIC decides the scaling factor if the field is being newly created);

 P*nnnnnn new permanent field being created where nnnnnn is a user-specified 6-digit floating point value which will be used to scale the information in the field before it is stored. This feature should only be exercised by experienced users.
 (DEFAULT = If the output field name was previously used, the output field type is the same as originally defined. If the output field has not been defined yet, the output field type is temporary.) |
| P4 (H) NAMFUN Function specification. Depending upon the value of NAMFUN the remaining information on the card image can be interpreted in either of two ways: |

---NAMFUN (P4) from the list of primitives in Appendix B---

Any valid FUNCTION NAME or NUMBER interpreted in the context indicated by IDMODE will add a primitive algebraic operation to the FUNCTION stack; P5 thru P10 contain parameterization information. |
| P5 (A) NAMF1 Name of the first input field, if needed. |
| P6 (A) NAMF2 Name of the second input field, if needed. |
| P7 (H) C1 Name of the first constant, if needed. |
| P8 (H) C2 Name of the second constant, if needed. |
| P9 (H) C3 Name of the third constant, if needed. |

FUNCTION--17
<table>
<thead>
<tr>
<th>P10</th>
<th>(H)</th>
<th>C4</th>
<th>Name of the fourth constant, if needed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>If any constant = BAD, it will be set to the missing data flag when the function is executed. Otherwise, the (DEFAULT = 0.0)</td>
</tr>
</tbody>
</table>

---NAMFUN (P4) set to CONPLANE---
Establishes a CONSTANT PLANE field; P5 and P6 contain initialization information.

<table>
<thead>
<tr>
<th>P5</th>
<th>(A)</th>
<th>INIFLD</th>
<th>Name of the field with which to initialize the CONSTANT PLANE field NAMOUF. (DEFAULT = Do not initialize with an existing field; instead set to a constant, see P6).</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>(F)</td>
<td>CONSET</td>
<td>If an existing field has been specified in INIFLD, then CONSET is the index number of the fixed plane to use for the initialization of NAMOUF. (DEFAULT=Use the first plane within the window starting in the direction of the computation) Otherwise, if INIFLD is blank, CONSET contains the constant value to which NAMOUF will be initialized. (DEFAULT = 0.0)</td>
</tr>
</tbody>
</table>

P7-10 Unused ++++++++++++++++++++

END
This **END** command terminates the **FUNCTION** command stack.
GRAPHICS—Generates plotted displays for a set of designated fields. This is a stack operation and must be terminated by an END command. If a field appears more than once in the same type of plot in a single stack, only the last specification will be used to display that field. For example, a field can be used in a vector plot and in a contour plot in a single stack, but it cannot be used in two contour plots. If the user desires two differently specified contour plots of the same field, this would be done in two different GRAPHICS stacks. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

The GRAPHICS command stack consists of additional card images that allow the user to specify the types of graphs and the fields to be graphed, along with associated display parameterizations. The command stack can consist of:

- **CONTOUR**—produces ordinary contour lines or color area-fill;
- **VECTOR**—produces a plot of two fields as a vector, with direction and length proportional to magnitude, or as streamlines. These plots can be overlaid on CONTOUR plots;
- **SCATTER**—produces a scatter plot of one field against another, along with the parameters of a regression analysis (if selected);
- **ALPHA**—produces an alphanumerically-coded display;
- **AIRTRCK**—produces a plot of an aircraft track read in previously with the READAIR command.
- **STALOC**—produces a plot of mesonet stations (or other landmarks) read in with the READSTA command.
- **DIGITAL**—produces a digitally-coded display;
- **LABELS**—controls the amount of labeling that appears on plots;
- **OVERLAY**—produces an overlaid plot. This type of plot allows the user to combine any CONTOUR plot type which has been defined in the stack with a secondary overlay image. OVERLAY plots are done on a plotting area that is smaller than other plot types in order to accommodate the additional labeling that is required. The overlay image must be defined in the stack and can only be one of the following plot types: CONTOUR, ALPHA or DIGITAL.

Command structure:

```
GRAPHICSIJKLMNOPQRSTUVWXYZ
CONTOUR NAMFLD ICONTPT IOPTNS DIG THK ICLDEF CLMIN CLMAX CLINC
VECTOR NAMHOR NAMVER IVPTYP IVSPAC VMS VKM IVHEAD COLOR
SCATTER NAMHOR XBEG XEND NAMVER YBEG YEND DEGFIT XCOL
ALPHA NMSPEC SCLFAC ZREF WIDTH NLFT NRGT ISPAC
AIRTRCK IOPTNS CMARKS VMS VKM VFREQ COLOR
STALOC IPLTPAR
DIGITAL NMSPEC SCLFAC NDIG ISPAC
LABELS LABFLG
OVERLAY IFPRIM IFOVLY IOPTYP IDASHP IDASHO PRICOL OVLCOL
END
```

P2 (H) IX*1Y*1Z

Graphics skipping factor. This is a special mnemonic to produce graphical displays at integer multiples of the actual grid of the current edit volume. Each of IX, IY, and IZ are integer skipping factors (I2 format) that are used when passing through the fields to construct inputs to the graphical routines. For example, 02*02*01 will produce contour, color area-fill, vector,... plots at twice the edit volume xy-grid spacing without degrading the resolution for other commands such as FUNCTION. If any of IX, IY, or IZ are set, this value takes precedence over SKIP (P4). However, the vector spacing (IVSPAC, P6 if P2 is VECTOR) will be additionally done, since it is applied to the grid spacing implied by use of IX*1Y*1Z. (DEFAULT = 01*01*01)

GRAPHICS–19
P3 (A) IFIXAX
Axis to be fixed for two-dimensional displays with optional Z-axis stretching whenever X or Y are fixed:
- Z: z-axis fixed, display xy-planes;
- Y: y-axis fixed, display xz-planes;
- X: x-axis fixed, display yz-planes;

P3 (A) IFIXAX
Axis to be fixed continued.
- Y*nnnnnn: y-axis fixed, display xz-planes with Z-axis stretching. The stretching factor nnnnnn is a 6 digit floating point value specifying the desired ratio of 1 km along the vertical Z-axis to 1 km along the horizontal X-axis;
- X*nnnnnn: x-axis fixed, display yz-planes with Z-axis stretching. The stretching factor nnnnnn is a 6 digit floating point value specifying the desired ratio of 1 km along the vertical Z-axis to 1 km along the horizontal Y-axis;
 (DEFAULT = Z)

P4 (F) SKIP
Increment between display levels. A display will be generated every SKIP levels.
 (DEFAULT = 1.0)

P5-9 (A) ITITLE
User supplied titling information; appears at top of each plot generated.
 (40 Character maximum.)
 (DEFAULT = No user supplied titling.)

P10 (A) IWINDO
Windowing specification for the display:
- WINDOW: display will be confined to the current user-set window;
- FULL: display will be generated over the full (X,Y,Z) grid.
 (DEFAULT = FULL)

GRAPHICS
STACK of ADDITIONAL CARD IMAGES

P2 (A) IPTLTYP
Plot type specifier. If the 8th character of IPTLTYP contains the letter D, the plots specified by that card image will be DEFINED but not generated. This feature allows the user to define graphics for subsequent use in OVERLAYs without having to produce those graphics as separate plots. Depending on the plot type designated by IPTLTYP the remaining information on the card image will be interpreted accordingly:

---IPTLTYP (P2) set to CONTOUR---P3-P10 contain parameterization---

P3 (A) NAMFLD
Contour field name or one of the following codes designating a predetermined group of fields:
- PRI: the primary field group will be displayed;
- SEC: the secondary field group will be displayed;
- ALL: every field will be displayed.
See the FIELDSET command for instructions on how to set primary and secondary field groups.
 (DEFAULT = PRI)
Type of contouring or color area-filling desired, with the maximum number of contour levels in parentheses:

- **CONT**: contour lines only (61 levels)
- **HAFT**: halftone shading only (15 levels)
- **CHAFT**: contour lines with halftone shading
- **FALL**: area-fill using all colors, no contour lines (61 levels)
- **FHOT**: area-fill using “hot” colors, no contour lines (31 levels)
- **FCOLD**: area-fill using “cold” colors, no contour lines (31 levels)
- **CFALL**: area-fill using all colors, with contour lines (61 levels)
- **CFHOT**: area-fill using “hot” colors, with contour lines (31 levels)
- **CFCOLD**: area-fill using “cold” colors, with contour lines (31 levels)
- **GREYS**: area-fill using shades of grey, no contour lines (61 levels). The shades of grey increase monotonically in intensity from the lowest contour level to the highest.
- **CGREYS**: area-fill using shades of grey, with contour lines (61 levels). The shades of grey increase monotonically in intensity from the lowest contour level to the highest.
- **CGREYS2**: area-fill using shades of grey, with contour lines. The middle bin is blank and a three-peat pattern moving in both directions from the middle bin is used. (61 levels)
- **CHAFT2**: area-fill using halftones, with contour lines. The middle bin is blank and a three-peat pattern moving in both directions from the middle bin is used. (61 levels)
- **CGREYS3**: area-fill using shades of grey, with contour lines. The shades of grey increase monotonically in intensity from the lowest contour level to the highest. The middle bin, however, is blank. (61 levels)
- **CGREYS4**: area-fill using shades of grey, with contour lines. A three-peat pattern starting from the lowest contour level is used. (61 levels)

(DEFAULT = CONT)

Contouring options. IOPTNS is a alphanumeric, left-justified pattern of single digit numbers most of which either turn OFF (0) or ON (1) a particular plotting feature. There are 8 features over which the user has control. In order from left to right in the 8-digit pattern, they are:

1—Label the contour lines [DEFAULT is 0 (OFF)];
2—Mark relative highs and lows [DEFAULT is 0 (OFF), 1 means mark “many” highs and lows, 2 means mark “fewer” up to 9 which means to mark the fewest number of highs and lows. 4 is a reasonable value for marking the most prominent highs and lows.];
3—Dashed line pattern and color:

 [The first color in parentheses following the type of line is the color of the contour lines when the contour type (P4) is CONT, BOTH, CFALL, CFHOT, or CFCOLD. The second color in parentheses is the color of the contour lines when the contour type is CGREYS].

 0—Positive is solid and negative is dashed (white, white);
 1—Alternating pattern of three dashed types (white, white);
 2—Positive is solid and negative is dashed (black, black);
 3—Alternating pattern of three dashed types (black, black);
 4—Positive is solid and negative is dashed (grey, shades of grey);
5—Alternating pattern of three dashed types (grey, shades of grey);
6—Positive is solid and negative is dashed (blue, grey);
7—Alternating pattern of three dashed types (blue, grey);
8—Positive is solid and negative is dashed (yellow, grey);
9—Alternating pattern of three dashed types (yellow, grey);

[DEFAULT = 1]

4—Stop contours at missing data locations [DEFAULT = 0 (OFF)];
5—Indicate maximum value on the plot [DEFAULT = 1 (ON)];
6—Digitize the field on the plot background [DEFAULT = 0 (OFF)];
7—Overlay vector or airtrck plots;
 0—No overlay;
 1—Overlay the last of the vector plots specified
 in the stack with this contour plot;
 2—Overlay the last of the airtrck plots specified
 in the stack with this contour plot;
 3—Overlay the last vector and airtrck plots
 specified in the stack with this contour plot;
 4—Overlay the last station location (staloc) plot
 specified in the stack with this contour plot;
 5—Overlay the last staloc and vector plots;
 6—Overlay the last staloc and airtrck plots;
 7—Overlay the last staloc, vector, and airtrck
 plots;
 8—Overlay map background/landmarks on this plot
 according to the value of this digit:
 0—No overlay;
 1—Map background;
 2—Landmarks in the header;
 3—Both (1) and (2) [DEFAULT = 0 (OFF)].
(DEFAULT = 00101000)

P6 (F) DIG THK Scaling factor and contour line thickness. The DIG portion is used only
when digitizing field values on the plot background. Values will be multi-
plied by this number before they are displayed. (DEFAULT = The program
decides.) The THK portion is used whenever contour lines are drawn on
the plot. A value of 1.0 (the DEFAULT) means to use the default line thick-
ness. A higher number means to use thicker lines. 2.0 will give noticably
thicker lines. Anything less than 0.5 will cause the lines to disappear. The
DIG scaling factor uses the first 4 digits of this parameter and the THK
thickness factor uses the last 4 digits. Both are floating point values.

P7 (A) ICLDEF Contour line specification mode:
UNI uniform contour levels will be specified by P8-10;
NON P8-10 are ignored and non-uniform contour lines will be speci-
fied by P2-10 of EXTRA card images.
(DEFAULT = UNI)

P8 (F) CLMIN Beginning contour level when ICLDEF=UNI; (DEFAULT = 0.0).

P9 (F) CLMAX Ending contour level when ICLDEF=UNI; (DEFAULT = 60.0).

P10 (F) CLINC Increment between levels when ICLDEF=UNI; (DEFAULT = 10.0).
---IPLTYP (P2) set to CONTOUR---EXTRA card images to set non-uniform contour levels---

P2-10 (F) User supplied contour levels. Used when ICLDEF=NON. These EXTRA card images are processed until a “blank” field is encountered.
---IPLTYP (P2) set to VECTOR---P3-P10 contain parameterization---

P3 (A) NAMHOR Field name for the vector component along the current I-axis.

P4 (A) NAMVER Field name for the vector component along the current J-axis.

P5 (A) IVPTYP Type of vector plot:
 ARROW arrows will be drawn according to specifications in P6-P9;
 STREAM streamlines will be generated according to the value specified
 by P6 (P7-P9 are ignored).
 (DEFAULT = ARROW)

P6 (F) IVSPAC Number of grid spaces between vectors:
 If IVPTYP = ARROW:
 –1 interleaved (odd border points);
 –2 interleaved (even border points);
 >0 every IVSPAC vector will be plotted.
 (DEFAULT = -1.0)

 If IVPTYP = STREAM:
 >0 a streamline will be initiated every IVSPAC grid locations;
 (DEFAULT = 2.0)

P7 (F) VMS Reference speed (M/S); only if IVPTYP = ARROW. (DEFAULT = 2.0)

P8 (F) VKM Reference distance (KM); only if IVPTYP = ARROW. (DEFAULT = 1.0)

 Arrow lengths are scaled so that VMS (M/S) is VKM (KM) in length on
 the plot.

P9 (A) IVHEAD Arrowhead type; only if IVPTYP = ARROW:
 FIX arrow heads will be a fixed size;
 PROPnnnn arrow heads will be proportional to the arrow lengths, and if
 nnnn is between 0.01 and 5.0, scaled by nnnn. (nnnn is in F4.2 format);
 (DEFAULT = FIX)

P10 (A) COLOR Color of vectors. The options are WHITE, GREY, PURPLE, BLUE, GREEN,
 YELLOW, BROWN, MAGENTA, BLACK, and RED. NOTE: when vectors are
 overlayed on contour plots filled with shades of grey only WHITE, GREY,
 and BLACK are possible choices for vector color.
 (DEFAULT = WHITE)

---IPLTYP (P2) set to SCATTER---P3-P10 contain parameterization---

P3 (A) NAMHOR Field name for horizontal axis (independent variable).

P4 (F) XBEG Left endpoint of the horizontal axis. (DEFAULT = -50.0)

P5 (F) XEND Right endpoint of the horizontal axis. (DEFAULT = 50.0)

P6 (A) NAMVER Field for vertical axis (dependent variable).

P7 (F) YBEG Left endpoint of the vertical axis. (DEFAULT = -50.0)

P8 (F) YEND Right endpoint of the vertical axis. (DEFAULT = 50.0)
P9 (F) DEGFIT Degree of the polynomial least-squares fit; the vertical axis variable computed as a function of the horizontal axis variable. (DEFAULT = 0.0). No curve fitting will be performed.

P10 (A) XCOL The first character X is the keyboard character to be used in scatter plots, and COL is the color to be used for the character plotted. The color options are: WHITE, GREY, PURPLE, BLUE, GREEN, YELLOW, BROWN, MAGENTA, and RED. For example, the string +BLUE would plot + characters in blue. (DEFAULT = +WHITE), plus signs in white.

---IPLTYP (P2) set to ALPHA---P3-P9 contain parameterization---

P3 (A) NMSPEC Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:

PRI the primary field group will be displayed;
SEC the secondary field group will be displayed;
ALL every field will be displayed.

(DEFAULT = PRI)

P4 (F) SCLFAC Scaling factor. Field values will be multiplied by this number before they are encoded. (DEFAULT = 1.0)

P5 (F) ZREF Reference value for display. All field values less than ZREF will be encoded as lower-case letters; all field values greater than ZREF will be represented as upper-case. Values beyond the boundaries set by the user will be represented by either plus (+) or minus (-), depending upon their sign. Missing data values will be represented by a period (.) (DEFAULT = 0.0)

P6 (F) WIDTH Interval width for the individual bins. (DEFAULT = 5.0)

P7 (F) NLFT Number of bins to the left of reference value (0–26) (DEFAULT = 0.0)

P8 (F) NRGT Number of bins to the right of reference value (0–26) (DEFAULT = 0.0)

P9 (H) ISPAC ALPHA symbol spacing and background specification. This information is supplied in the following 8-character format: M/nnnnnn where M and nnnnnn are supplied by the user and separated by a slash (/). The M is a single letter code that designates how missing values are to be represented in the display:

P a period (.) will be digitized at missing data locations;
B missing data locations will remain blank.

The quantity nnnnnn is a 6-digit floating point number designating the symbol spacing:

-1.0 interleaved (odd border points);
-2.0 interleaved (even border points);
>0.0 every nnnnnn’th symbol will be plotted.

The combined (DEFAULT = P/-1.0). Interleave odd with missing data represented by periods. Note: M and nnnnnn are separately DEFAULTed.

P10 UNUSED ++++++++++++++++++++

GRAPHICS–25
---IPLTYP (P2) set to AIRTRCK---P3-P6 contain parameterization---

Note that the program automatically searches for the wind components that correspond to the fixed axis in effect. For example, if \(z \) is the fixed axis (x-y planes), the \(u,v \) components, if available and the winds plotting option below is turned on, will be plotted.

P3-P4 UNUSED

P5 (A) IOPTNS

Plotting options. IOPTNS is an alphanumeric, left-justified pattern of single digit numbers most of which either turn off or on a particular plotting feature. There are 6 features over which the user has control. In order from left to right in the 8-digit pattern, they are:

1—Dash pattern option. If 0, the pattern will be dashed if the track position is less than the current level and solid if the track is greater than or equal to the current level. If 1, the pattern will always be dashed. If 2, the pattern will always be solid.

2—Flag to indicate if beginning and ending times of the track are to be plotted. If 1, the times will be plotted on the frame. If 0, they will not be plotted.

3—Flag to indicate if vector winds (if available) are to be plotted. If 1, the winds will be plotted. If 0, they will not be.

4—Indicates what kind of symbol to plot for major marks on the airtrack (see P6 for more details).
 0—for a circle with a plus sign in the middle
 1—for a plus sign
 2—for a triangle
 3—for a circle with a dot in the middle
 4—for a box

5—Indicates what kind of symbol to plot for minor marks on the airtrack (see P6 for more details).
 0—for a plus sign
 1—for a circle with a plus sign in the middle
 2—for a triangle
 3—for a circle with a dot in the middle
 4—for a box

6—Multiplication factor for aircraft-track plot limits. Track is plotted if the aircraft is within ± multfac*delta km of the current display level, where delta is grid spacing. If this parameter is not specified or if there is only one level, the entire track is plotted.

(DEFAULT = 011000)

P6 (F) MAJ MIN

Specifies how often major and minor marks should be placed along the track. The first 4 spaces of this parameter are how often major marks should be placed and the second 4 are how often minor marks should be placed in seconds. For example, '36001800' would indicate that a major mark is to be placed every hour (3600 seconds) and a minor mark every half hour. If no marks are desired for one or both, leave one or both parts of this parameter blank or set to zero. For example, '36000000' indicates that a major mark should be placed every hour; no minor marks are to be placed on the track. The symbols used are specified with P5 of this command. Note that these values must be integer multiples of the resolution at which the data is read in.

P7 (F) VMS

Reference speed (M/S). (DEFAULT=None.)

GRAPHICS–26
P8 (F) VKM Reference distance (KM). Arrow lengths are scaled so that VMS (M/S) is VKM (KM) in length on the plot.

P9 (F) VFREQ Specifies how often vectors are to be drawn along track in seconds. For example, '3600' would indicate that vectors are to be drawn every hour. Vector wind fields must exist and the third digit of P5 (above) must be turned on. (DEFAULT=no vectors).

P10 (A) COLOR Color of airtrack. The options are WHITE, GREY, PURPLE, BLUE, GREEN, YELLOW, BROWN, MAGENTA, and RED. NOTE: when vectors are overlayed on contour plots filled with shades of grey, only WHITE, GREY, and BLACK are options. (DEFAULT = WHITE)

---IPLTYP (P2) set to STALOC---P3-P6 contain parameterization---

P3 (F) IPLTPAR Plotting parameter that controls how the stations are marked on the plots.

1.0–plot symbol only
2.0–plot name only
3.0–plot symbol and name
4.0–plot symbol only in a box
5.0–plot name only in a box
6.0–plot symbol and name in a box
7.0–plot symbol and height (m)
8.0–plot name and height (m)
9.0–plot symbol, name, and height (m)

(DEFAULT = NONE. User must specify.)

---IPLTYP (P2) set to LABELS---P3 contains parameterization---

P3 (F) LABFLG Specifies how much labeling is to appear on all plots that follow this command. This command is useful for preparing plots for publication. Currently, the only values supported are 9.0 (full labeling) and 1.0 (minimal labeling).

(DEFAULT = 9.0)
---IPLTYP (P2) set to DIGITAL---P3-P6 contain parameterization---

P3 (A) NMSPEC
Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
- **PRI** the primary field group will be displayed;
- **SEC** the secondary field group will be displayed;
- **ALL** every field will be displayed.
(DEFAULT = PRI)

P4 (F) SCLFAC
Scaling factor. Field values will be multiplied by this number before they are encoded. (DEFAULT = 1.0)

P5 (F) NDIG
Maximum number of digits allocated for each value. Values that cannot be plotted using the number of digits allocated will be represented as either plus (+) or minus (-), depending on their sign. Missing data values will be represented by a period (.) (DEFAULT = 3.0)

P6 (H) ISPAC
DIGITAL value spacing and background specification. This information is supplied in the following 8-character format: M/nnnnnn where M and nnnnnn are supplied by the user and separated by a slash (/). The M is a single letter code that designates how missing values are to be represented in the display:

- **P** a period (.) will be digitized at missing data locations;
- **B** missing data locations will remain blank.

The quantity nnnnnn is a 6-digit floating point number designating the symbol spacing:
- **-1.0** interleaved (odd border points);
- **-2.0** interleaved (even border points);
- **>0.0** every nnnnnn’th symbol will be plotted.

The combined (DEFAULT = P/-1.0). Interleave odd with missing data represented by periods. Note: M and nnnnnn are separately DEFAULTed.

P7-10 UNUSED

+++++++

GRAPHICS–28
---IPLTYP (P2) set to OVERLAY---P3-P9 contain parameterization---

P3 (A) IFPRIM Primary field name. This must be an actual edit field name. A CONTOUR plot corresponding to this field name must be defined by some means elsewhere in the stack.

P4 (A) IFOVLY Overlay field name. This must be an actual edit field name. A CONTOUR, ALPHA or DIGITAL plot corresponding to this field name must be defined by some means elsewhere in the stack.

P5 (A) IOPTYP Overlay plot type:
 CONTOUR contour or color area-fill plot;
 ALPHA alphanumeric plot;
 DIGITAL digital or numeric plot;
 (DEFAULT = CONTOUR)

P6 (A) IDASHP Dashline pattern to be used for any contour lines appearing in CONTOUR plot of the primary field:
 S solid lines;
 D short dashed lines;
 L long dashed lines;
 N long dashed negative and solid positive lines;
 M multiple pattern dash-lines;
 (DEFAULT = S)

P7 (A) IDASHO Dashline pattern to be used for any contour lines appearing in plot of the overlay field. This parameter is only necessary when the overlay field is a CONTOUR plot. See the above description of IDASHP for the list of valid dashline codes.
 (DEFAULT = L)

P8 (A) PRICOL Color used for any contour lines in the primary field. The choices are:
 BLACK, GREY, WHITE, BLUE, GREYS (for varying shades of grey), and
 YELLOW. NOTE: When the primary plot is contour lines filled with shades of grey, only WHITE, BLACK, GREY, and GREYS are possible choices for PRICOL.
 (DEFAULT = WHITE)

P9 (A) OVLCOL Color used for any contour lines in the overlay field. The choices are:
 BLACK, GREY, WHITE, BLUE, and YELLOW. NOTE: When the primary plot is contour lines filled with shades of grey, only WHITE, BLACK, GREY, and GREYS are possible choices for OVLCOL.
 (DEFAULT = WHITE)

P10 UNUSED ++++++++++++++++++++++

END This END command terminates the GRAPHICS command stack.
HISTO—Generates a histogram display for a set of designated fields. This is a stack operation and **must** be terminated by an **END** command. The command stack consists of additional card images that allow the user to specify the fields to be examined along with associated display parameterization. If a field is referred to more than once, the last specification will be used to display that field. Fields will be displayed in the order they are listed with this command. The maximum number of bins for any display is 1000. Statistics such as mean and standard deviation will be displayed at the top of the plot. These statistics are calculated over the whole distribution, not just the range of bins selected.

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTO</td>
<td>IDEST</td>
</tr>
<tr>
<td>IFIXAX</td>
<td>SKIP</td>
</tr>
<tr>
<td>ITYP</td>
<td>TITLE</td>
</tr>
<tr>
<td>NMSPEC</td>
<td>SCLFAC</td>
</tr>
<tr>
<td>HMIN</td>
<td>HMAX</td>
</tr>
<tr>
<td>WIDTH</td>
<td>MEDIAN</td>
</tr>
<tr>
<td>COLOR</td>
<td>PERC</td>
</tr>
<tr>
<td>DISOPT</td>
<td></td>
</tr>
</tbody>
</table>

P2 (A) IDEST
Destination of the display:
All histograms will be placed in the graphics metacode file. There are currently no other valid destinations. Therefore, P2 can simply be left blank.

P3 (A) IFIXAX
Axis to be fixed for displays:
- Z: z-axis fixed, construct histogram from xy-planes;
- Y: y-axis fixed, construct histogram from xz-planes;
- X: x-axis fixed, construct histogram from yz-planes.
(DEFAULT = Z)

P4 (F) SKIP
Increment between display levels. Histograms will be generated every SKIP levels.
(DEFAULT = 1.0)

P5 (A) ITYP
Type of HISTO display to produce for each field:
- PLANE: displays will be generated by plane;
- VOLUME: displays will be generated by volume (all points within the windowed region);
- BOTH: displays will be generated by plane and by volume.
(DEFAULT = BOTH)

P6-9 TTITLE
User-supplied additional titling for histograms.
(DEFAULT = none)

P10 (A) IWINDO
Windowing specification for the display:
- WINDOW: display will be confined to the current user-set window;
- FULL: display will be generated over the full (X,Y,Z) grid.
(DEFAULT = FULL)

P2 (A) NMSPEC
Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
- PRI: only the primary field group will be displayed;
- SEC: only the secondary field group will be displayed;
- ALL: every field will be displayed.
See the **FIELDSET** command for instructions on how to set primary and secondary field groups.
(DEFAULT = PRI)

HISTO–30
P3 (F) SCLFAC Scaling factor. Field values will be multiplied by this number before they are placed in bins.
(DEFAULT = 1.0)

P4 (F) HMIN Left most midpoint of the frequency distribution.
(DEFAULT = 0.0)

P5 (F) HMAX Right most midpoint of the frequency distribution.
(DEFAULT = 100.0)

P6 (F) WIDTH Interval width for individual bins.
(DEFAULT = 5.0)

P7 (A) MEDIAN Median flag.
ON a line indicating the median of the distribution will be drawn in the plot. The median is calculated over the whole distribution, not just within the range of bins that selected.
(DEFAULT = OFF)

P8 (A) COLOR Color of histogram bars. The options are NONE (don’t fill) WHITE, GREY, PURPLE, BLUE, GREEN, YELLOW, BROWN, MAGENTA, and RED.
(DEFAULT = NONE)

P9 (F) PERC Highest percent to be drawn for any one bin. Any bin whose percent of total exceeds this number will be drawn up to this value, and then several asterisks will be placed on top of the bar to indicate that the percent within this bin actually goes higher.
(DEFAULT = 100.0)

P10 (A) YAXIS Controls y axis type:
LINEAR axis will be linear.
LOG axis will be logarithmic.
(DEFAULT = LINEAR)

END This END command terminates the HISTO command stack.

HISTO-31
INTEGR—Vertical integration of an existing edit field. This command is used mostly for the derivation
of vertical air motions, with density weighting of the appropriate fields. See Appendix F for details on
integrating the mass continuity equation. An empirical density weighting function is built into the command
and is defined below. If a different form of density weighting is desired, the input field should be premultiplied
using the facilities in the FUNCTION command, and the integration can be invoked with the internal
density weighting switched off. The integration can be performed in Cartesian space or coplane space.
CEDRIC will obtain the coordinate system information from the volume header, or the user can force the
coordinate system to be used with the COORD command. There are three methods of integration: 1) upward
from the lower boundary conditions, 2) downward from the upper boundary conditions, and 3) a
variational scheme within each vertical column that requires both upper and lower boundary conditions.
Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGR</td>
<td>Vertical integration of an existing edit field.</td>
</tr>
<tr>
<td>NAMOUF</td>
<td>Name of the field for integration output.</td>
</tr>
<tr>
<td>NAMINF</td>
<td>Name of the existing field to be integrated.</td>
</tr>
<tr>
<td>INTYPE</td>
<td>Type of integration to be performed.</td>
</tr>
<tr>
<td>METHBC</td>
<td>Method for specifying the lower boundary condition for upward integration:</td>
</tr>
<tr>
<td>INIVAL</td>
<td>Value to be used when initializing using method designated by METHBC:</td>
</tr>
<tr>
<td>NAMTOP</td>
<td></td>
</tr>
<tr>
<td>ZLOWER</td>
<td></td>
</tr>
<tr>
<td>ZUPPER</td>
<td></td>
</tr>
</tbody>
</table>

P2 (A) NAMOUF Name of the field for integration output.
P3 (A) NAMINF Name of the existing field to be integrated.
P4 (A) INTYPE Type of integration to be performed. This parameter is in the form
M*nnnnnn where M = U, D, or V designates the method of integration and
nnnnnn is the user supplied term in the density weighting function RHO =
EXP (- Z * nnnnnn), where Z is the height in kilometers (MSL).
Whenever an asterisk appears after the method M, density weighting is
assumed and nnnnnn is set to 0.1 if no value is supplied. Depending on
the value of INTYPE, the remaining parameters are interpreted as described
below. (DEFAULT = V*0.1)

---INTYPE (P4) set to U*nnnnnn---P5-P10 contain parameterization---
P5 (A) METHBC Method for specifying the lower boundary condition for upward integration:

- CONST initialize paths with a constant,
 Winit = Constant;

- FRACT initialize paths using a fraction of the field being integrated,
 Winit = NAMINF * FRACT * DIRECTION * ΔZ,
 where DIRECTION is (+1.0) for upward and (-1.0) for downward integrations
 and CEDRIC determines ΔZ.

- FIELD initialize using the value from the same xy-location in another
 field,
 Winit = Value from another field.

P6 (H) INIVAL Value to be used when initializing using method designated by METHBC:

- For CONST : Value of the constant. (DEFAULT = 0.0)
- For FRACT : Value of the fraction. (DEFAULT = 1.0)
- For FIELD : Name of the field to be used must be supplied.
P7 (A) NAMTOP Name of a field in which topography information is to be saved from the integration. Topography is the height of first-occurrence (in the direction of integration) of the field being integrated. (DEFAULT=Do not save any topography information.)

P8 UNUSED ++++++++++++++++++++

P9 (H) ZLOWER Lowest Z-level to be included in the integration procedure:
I=nnnnnn level is specified in INDEX space and nnnnnn is the index of the desired level;
D=nnnnnn level is specified in DISTANCE space and nnnnnn is the height (KM) of the desired level;
(DEFAULT=lowest level in the volume).

P10 (H) ZUPPER Highest Z-level to be included in the integration procedure:
I=nnnnnn level is specified in INDEX space and nnnnnn is the index of the desired level;
D=nnnnnn level is specified in DISTANCE space and nnnnnn is the height (KM) of the desired level;
(DEFAULT=highest level in the volume).

---INTYPE (P4) set to D*nnnnnn---P5-P10 contain parameterization---

P5 (A) METHBC Boundary condition initialization method. (See the description above.)

P6 (H) INIVAL Value to be used when initializing using the method designated by METHBC. (See the description above.)

P7 (A) NAMTOP Name of a field in which topography information is to be saved from the integration. (See description above.)

P8 UNUSED ++++++++++++++++++++

P9 (H) ZLOWER Lowest Z-level to be included in the integration procedure. (See the description above.)

P10 (H) ZUPPER Highest Z-level to be included in the integration procedure. (See the description above.)

---INTYPE (P4) set to V*nnnnnn---P5-P10 contain parameterization---

P5 (A) METHUP Method of specifying the lower boundary conditions. (See the description above.)

P6 (H) INIVUP Value to be used when setting the lower boundary condition the method designated by METBUP. (See the description above.)

P7 (A) METHODN Method of specifying the upper boundary conditions. (See the description above.)

P8 (H) INIVDN Value to be used when setting the upper boundary conditions using the method designated by METHODN. (See the description above.)

P9 (H) ZLOWER Lowest Z-level to be included in the integration procedure. (See the description above.)

P10 (H) ZUPPER Highest Z-level to be included in the integration procedure. (See the description above.)
LAPLACE—Least-squares solution for pressure perturbations. Horizontal momentum equations with unknown pressure perturbations \((p)\) on the left and “known” quantities \((F\) and \(G\)) on the right:

\[
\begin{align*}
\frac{\partial p}{\partial x} &= -\rho_0 \frac{Du}{Dt} + fr_x \equiv F \\
\frac{\partial p}{\partial y} &= -\rho_0 \frac{Dv}{Dt} + fr_y \equiv G.
\end{align*}
\]

The above equations will have a solution for \((p)\) if and only if

\[
\frac{\partial F}{\partial y} = \frac{\partial G}{\partial x}.
\]

Since the total derivatives of \((u,v)\) on the right are determined inexacty, and the formulation for the friction terms \((fr_x, fr_y)\) is imperfect, the system can be solved only in a least-squares sense. The solution to this variational problem leads to

\[
\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} = \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y},
\]

where \(F\) and \(G\) are obtained from Doppler synthesized winds and some user-determined friction terms. The resulting partial differential equation is a Poisson equation for the pressure perturbations subject to Neumann boundary conditions. Results are computed by Z-level for every location in the \((x,y,z)\) volume for which there are input values for the two “known” quantities on the right-hand side of the equation. This command can be used to generate an estimate of the pressure perturbation field at each level when values of \(F = \partial p/\partial x\) and \(G = \partial p/\partial y\) are provided as the input fields. **LAPLACE** is an implementation of the pressure retrieval technique described by Gal-Chen and Hane (1981) in their article in Vol. 12 of the NCAR Atmospheric Technology report entitled: “Retrieving Buoyancy and Pressure Fluctuations from Doppler Radar Observations”. This command may consume MINUTES of cpu time. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>LAPLACE</th>
<th>NAMOUF</th>
<th>DPDX</th>
<th>DPDY</th>
<th>RELEPS</th>
<th>MAXITR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>NAMOUF</td>
<td>Name for the resulting output pressure perturbation field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>DPDX</td>
<td>Name of the input field ((F)) to be differentiated inside LAPLACE as the first term on the right hand side of the Poisson equation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(A)</td>
<td>DPDY</td>
<td>Name of the input field ((G)) to be differentiated inside LAPLACE as the second term on the right hand side of the Poisson equation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>RELEPS</td>
<td>Epsilon value of the relative error to achieve in order to satisfy convergence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(F)</td>
<td>MAXITR</td>
<td>Maximum number of iterations to perform while convergence criteria ((\text{RELEPS})) remains unsatisfied.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = 400.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7-10</td>
<td>UNUSED</td>
<td>++++++++++++++++++++++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAPLACE—34
MASS2—This command computes a consistent set of wind component fields: (Unew, Vnew, Wnew), using the original synthesized winds (U,V) and the corresponding error terms (EWU,EWV) that are produced by invoking the two-radar approximation in the **SYNTHES**is command. The **MASS2** command expects the above fields to be present and assumes the above names. In order for this calculation to work properly, these input fields (generated by the synthesis) must not have been altered prior to invoking of this command, except perhaps by filtering and such. Under no circumstances should the (U,V) winds from the two-radar approximation already be altered in an attempt to account for the vertical motion (W) contamination. If (U, V, EWU or EWV) have been **RENAME**d, they must be **RENAME**d back to their original monikers before invoking this command. **MASS2** is a two-card image command that requires one **EXTRA** card image, but no **END** card image. See Appendix F for details on how the the mass continuity equation is solved for vertical motions. Either upward or downward integration will be done: no variational scheme has been implemented.

Command structure:

<table>
<thead>
<tr>
<th>Command structure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS2 UNEW VNEW WNEW INTYPE METHBC INIVAL CNCRIT ZLOWER ZUPPER ZINIT NAMDBZ ACON BCON CCON</td>
</tr>
</tbody>
</table>

P2 (A) UNEW
Name of the adjusted U-component output field.

P3 (A) VNEW
Name of the adjusted V-component output field.

P4 (A) WNEW
Name of the integrated W-component output field.

P5 (A) INTYPE
Type of integration to be performed. This parameter is in the form **M***nnnnnn where **M** designates the method of integration and nnnnnn is the user supplied term in the density weighting function **RHO** = **EXP** \(- Z * nnnnnn\), where **Z** is the height in kilometers (MSL). Whenever an asterisk appears after the method **M**, density weighting is assumed and nnnnnn is set to 0.1 if no value is supplied. Depending on the value of **INTYPE**, the remaining parameters are interpreted as described below.
(DEFAULT = **U***0.1)

P6 (A) METHBC
Method for specifying the lower boundary condition for upward integration:

- **CONST** initialize paths with a constant,
 \[Winit = \text{Constant}; \]

- **FRACT** initialize paths using a fraction of the field being integrated,
 \[Winit = \text{NAMINF} \times \text{FRACT} \times \text{DIRECTION} \times \Delta Z, \]
 where \text{DIRECTION} is (+1.0) for upward and (-1.0) for downward integrations and CEDRIC determines \Delta Z.

- **FIELD** initialize using a value at the same xy-location in another field,
 \[Winit = \text{Value from a user-supplied field}. \]

P7 (H) INIVAL
Value to be used when initializing using method designated by **METHBC**:

- For **CONST**: Value of the constant. (DEFAULT = 0.0)
- For **FRACT**: Value of the fraction. (DEFAULT = 1.0)
- For **FIELD**: A name of the field to be used must be supplied.
Criteria for determining procedure convergence at each level. This parameter is in the form III, EEEE, where III is the maximum number of iterations to perform at each level while attempting to satisfy the requirement that the mean difference between the vertical and horizontal convergence at each level be less than EEEE. The part III must be an integer whose absolute value is in the range 1-25. If III is negative, CEDRIC will iterate exactly ABS(III) times, regardless of other convergence criteria. The part EEEE must be in the range 0.01-0.99. (DEFAULT = 10.01); however each part is DEFAULTed separately.

Lowest Z-level to be included in the integration procedure:

I=nnnnnn level is specified in INDEX space and nnnnnn is the index of the desired level;
D=nnnnnn level is specified in DISTANCE space and nnnnnn is the height (KM) of the desired level;
(DEFAULT=lowest level in the volume).

Highest Z-level to be included in the integration procedure:

I=nnnnnn level is specified in INDEX space and nnnnnn is the index of the desired level;
D=nnnnnn level is specified in DISTANCE space and nnnnnn is the height (KM) of the desired level;
(DEFAULT=highest level in the volume).

Level in the direction of the integration PAST which initialization will cease. This will be the last level at which the boundary conditions will be set.

I=nnnnnn level is specified in INDEX space and nnnnnn is the index of the desired level;
D=nnnnnn level is specified in DISTANCE space and nnnnnn is the height (KM) of the desired level;
(DEFAULT = Continue to initialize at every level).

Name of the radar reflectivity field to be used in the user-supplied Reflectivity — Fallspeed relationship:

\[VT = -A \times (10.0^{(0.1 \times \text{DBZ} + B)}) \times (\text{RHO}(0)/\text{RHO}(Z))^C, \]
where DBZ is the radar reflectivity in dBZ units; RHO is the air density (already specified); and A, B, C are supplied by the user in (P4-P6). (DEFAULT = Fallspeed will be set to 0.0).

Constant A (as described above). (DEFAULT = 1.5)

Constant B (as described above). (DEFAULT = 0.105)

Constant C (as described above). (DEFAULT = 0.4)

+++++++++++++++
PATCHER—Performs one- or two- or three-dimensional data filling (interpolation and extrapolation) or decimation of any scalar edit field. The methods are readily tailored to individual user-needs.

Data filling can be performed by using any one of three available techniques:

FILLCON—Use a two-dimensional, linear, local-least-squares method with constraints. At each (I,J) grid location where a data value is missing (BAD) the program goes out one grid interval, accumulating the coefficients of a linear, least-squares fit in two-dimensions. After doing so, the user-specified constraints are checked: 1) are there good data values in each of MINQAD quadrants, a test of the degree that good data bounds the (I,J) missing-data grid location and 2) are there at least MINPTS good values involved, a test of sufficient numbers of good data values to make a reasonable fit. If both tests are satisfied, the program solves the normal equations and moves on to the next (I,J) location having missing data. However, if either test fails the program searches out one more grid shell, and then repeats the tests. The search and testing procedure continues until either both tests succeed and a value is interpolated or the maximum number of steps outward (MINPTS) is reached. In the latter case, if the tests still fail, the missing data point remains flagged as BAD. By choosing four quadrants, the result is an interpolation and by choosing two quadrants, the result is an extrapolation. Three quadrants is an intermediate situation between interpolation and extrapolation. The method is piecewise-continuous, but no attempt is made to match the derivatives at the boundaries between adjacent regions.

FILLCON3—Use a three-dimensional, linear, local-least-squares method with constraints. This method is nearly identical to the two-dimensional version except instead of testing on quadrants, the program tests on octants surrounding the missing data location.

FILLALL—Globally fill all missing data points, using the Leise technique. The Leise method is described in NOAA Tech. Memo. ERL WPL–82 written by J.A. Leise entitled “A Multidimensional Scale-Telescoped Filter and Data Extension Package.” This method involves successive, linear interpolations in one-, two- and three-dimensions that attempt to construct piece-wise tangents to the good data values. The mean value of the good data within the geometric window is used as a first-guess estimate at all missing data locations before proceeding with an interpolation across missing data regions. The difference between the linearly, interpolated value and the first-guess estimate at the midpoint of a missing data span is used as a correction at the midpoint. Linear interpolation is done again, except between an originally good value and this midpoint, and on both sides of the midpoint. This estimate-and-adjust scheme proceeds, with each successive interpolation being done over half the previous missing data span. This method is analogous to constructing a spline across the missing data span, but is much faster. However, because the first-guess values equal the mean value of the good data, the extrapolation outward from good data is asymptotic to this mean value.

LINFIT2—Globally fill all grid points (good and bad) by using a 2-D linear least squares model of the data. First, a 2-D fit is performed at the current level. Then, based on the fit coefficients, all grid points on that level are filled in. This process continues for each level. This method is similar to FILLCON, but is a global fit, not a local.

Decimation can be performed using either of the following two techniques:

DECILOC—Decimate suspicious data based on deviation from local mean. Within the local regions specified by MAXSTP, a mean of all good data points is computed. The central (I,J) location is compared to this mean, and if the absolute difference exceeds MAXDEV, or there are fewer than MINPTS good data points, the central value is flagged as BAD. This method is essentially a localized, de-spiking scheme.

DECIGLO—Decimate suspicious data based on deviation from the global mean. A standard deviation of good data within each two-dimensional plane is calculated, and all values outside SIGFAC standard deviations are flagged as BAD. Only those locations within the designated geometric window are affected.

Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATCHER</td>
<td>Performs data filling or decimation.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>NAMOUF Name of output field.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>NAMINF Name of input field.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>METHOD One of the filling methods (FILLCON, FILLCON3, FILLALL, LINFIT2).</td>
</tr>
<tr>
<td>PATCHER</td>
<td>P5 Parameter 5 for method.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>P6 Parameter 6 for method.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>P7 Parameter 7 for method.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>P8 Parameter 8 for method.</td>
</tr>
<tr>
<td>PATCHER</td>
<td>IFIXAX</td>
</tr>
<tr>
<td>PATCHER</td>
<td>IWINDO</td>
</tr>
<tr>
<td>PATCHER</td>
<td>IWINDO</td>
</tr>
<tr>
<td>PATCHER</td>
<td>IWINDO</td>
</tr>
</tbody>
</table>

PATCHER–37
<table>
<thead>
<tr>
<th>Patch Name</th>
<th>Parameters</th>
<th>IWINDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATCHER NAMOUF NAMINF</td>
<td>FILLALL NDIM</td>
<td>IWINDO</td>
</tr>
<tr>
<td>PATCHER NAMOUF NAMINF</td>
<td>FILLCON3MAXSTP MINQAD MINPTS</td>
<td>IWINDO</td>
</tr>
<tr>
<td>PATCHER NAMOUF NAMINF</td>
<td>LINFIT2 PERC</td>
<td>DECFLD</td>
</tr>
<tr>
<td>PATCHER NAMOUF NAMINF</td>
<td>DECILOC MAXSTP MINPTS MAXDEV</td>
<td>IFIXAX</td>
</tr>
<tr>
<td>PATCHER NAMOUF NAMINF</td>
<td>DECIGLO SIGFAC</td>
<td>IWINDO</td>
</tr>
</tbody>
</table>
P2 (A) NAMOUF Name of the output field containing the results from this command.
(DEFAULT = The input field will be updated if NAMOUF is “blank”.)

P3 (A) NAMINF Name of the input field to be altered.

P4 (A) METHOD The method of filling (interpolation/extrapolation) or decimation. Depending on the METHOD specified, the remaining information on the card image will be interpreted accordingly:

---METHOD (P4) set to FILLCON---P3-P10 contain parameterization---

P5 (F) MAXSTP Maximum number of steps (grid intervals) to search outward from a missing data location to determine if it is bounded.
(DEFAULT = 5.0)

P6 (F) MINQAD Minimum number of quadrants occupied in order to satisfy the search.
(DEFAULT = 3.0)

P7 (F) MINPTS Minimum number of surrounding points required.
(DEFAULT = 4.0)

P8 (F) DECFLD Decision field name. Grid location will be filled only if the corresponding grid location in DECFLD is also missing.

P9 (A) IFIXAX Axis to be fixed for two-dimensional data filling:

Z z-axis fixed, operate in xy-planes;

Y y-axis fixed, operate in xz-planes;

X x-axis fixed, operate in yz-planes.
(DEFAULT = Z)

P10 (A) IWINDO Windowing specification for this command:

WINDOW execute the command only in the current user-set window;

FULL execute the command over the full (X,Y,Z) grid.
(DEFAULT = FULL)

---METHOD (P4) set to FILLCON3---P3-P10 contain parameterization---

P5 (F) MAXSTP Maximum number of steps (grid intervals) to search outward from a missing data location to determine if it is bounded.
(DEFAULT = 5.0)

P6 (F) MINQAD Minimum number of octants occupied in order to satisfy the search.
(DEFAULT = 3.0)

P7 (F) MINPTS Minimum number of surrounding points required.
(DEFAULT = 4.0)

P8-9 UNUSED ++++++++++++++++++++

P10 (A) IWINDO Windowing specification for this command. (See above description.)
---METHOD (P4) set to FILLALL---P3-P10 contain parameterization---

P5 (F) NDIM The number of dimensions for the data filling procedure:
1.0 one-dimensional fill performed line by line in the direction of
the axis held fixed;
2.0 two-dimensional fill performed plane by plane along the axis
held fixed;
3.0 three-dimensional fill using all the points within the windowed
region of the volume.
(DEFAULT = 2.0)

---METHOD (P4) set to LINFIT2---P3-P10 contain parameterization---

P5 (F) PERC Minimum acceptable percentage of points within window region of plane
(DEFAULT = 50.0)

---METHOD (P4) set to DECILOC---P3-P10 contain parameterization---

P5 (F) MAXSTP Maximum number fo steps to search outward from each (I,J) grid location.
(DEFAULT = 3.0)

P6 (F) MINPTS Minimum number of points required in the region surrounding each (I,J)
location.
(DEFAULT = 4.0)

P7 (F) MAXDEV Maximum permissible deviation from the local mean for a central value to
be retained.
(DEFAULT = The Nyquist velocity divided by 2)

PATCHER–40
---METHOD (P4) set to DECIGLO---P3-P10 contain parameterization---

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>F</td>
<td>SIGFAC</td>
</tr>
<tr>
<td>P6-9</td>
<td>UNUSED</td>
<td>+++++++++++++++++++</td>
</tr>
<tr>
<td>P10</td>
<td>A</td>
<td>IWINDO</td>
</tr>
</tbody>
</table>
QUIT—Terminates execution of CEDRIC. This must be the last command in the current job stack. Note: This command is itself a single card image command, and it requires no parameters.

Command structure:
QUIT

READAIR—Reads in an ASCII dataset containing aircraft position information (and possibly wind information) as a function of time for plotting and gridding (using a closest point scheme). The first column in the dataset must be the time in seconds (as an integer), the second must be the latitude (decimal degrees) of the plane at that time, the third longitude and the fourth, elevation in meters above mean sea level (all as reals). The fifth through the seventh can optionally contain the u,v, and w as measured by the aircraft (as reals). The data in the input file must be uniformly spaced in time. One can also use x and y values (km) instead of latitude and longitude values.

Latitude values must be in the range from -90 to +90. Longitude values can follow the convention where positive is East of the Prime Meridian or the convention where positive is West. The user specifies which convention the longitudes follow. Only one aircraft dataset can be active in Cedric at a time. That is, if a second READAIR card is encountered, the data from the first will be overwritten in Cedric. Once the data is read in, it can be used in the GRAPHICS command for plotting and overlaying on other plots. U and V vector components (if read in) are assumed to be relative to true North and will be rotated automatically if the existing edit volume has a coordinate orientation where the y-axis is not along true North.

This is a stack command and must be terminated by an END card. The maximum number of positions that can be read in is 20000. Thus, for 1 second data, about 5 hours worth of track positions can be read in.

Command structure:
READAIR LUN CDIR OLAT OLON DELTAC COORD DTAC
 WINDS UCOL VCOL WCOL
 GRID NAMU NAMV NAMW
 ADVECT ASPD ADIR ATIM
END

P2 (F) LUN Fortran logical unit number of the INPUT file.
P3 (A) CDIR Direction convention of longitudes.
 WEST positive long. is west of Prime Mer.
 EAST positive long. is east of Prime Mer.
 (DEFAULT = WEST)
P4 (F) OLAT Latitude of the origin. Used to convert aircraft positions to X and Y distances.
 (DEFAULT = Value in ID header)
P5 (F) OLON Longitude of the origin. Used to convert aircraft positions to X and Y distances.
 (DEFAULT = Value in ID header)
P6 (F) DELTAC Resolution of data to be used in seconds. For example, the input dataset might contain data every second, while you might only want data for plots every 60 seconds.
 (DEFAULT = 1.0)
P7 (A) COORD Specifies whether aircraft positions are in lat and long or already in xy space (km).
 LAT-LONG indicates positions are in lat and long
 XY indicates positions are in xy space (km)

QUIT/READAIR-42
P8 (F) DTAC Time +/- the mean volume time for which data will be read in. Thus, if 3600. is specified, data +/- 1 hour of the mean volume time will be read in for plotting or gridding. The mean volume time is calculated from the volume header information.
(DEFAULT = LAT-LONG)

P9-I0 UNUSED ++++++++++++++++++++

---READAIR---

---WINDS card---P3-5 contain parameterization---

P3 (F) UCOL Column in IUNIT containing u wind component. Must be between 5 and 7, inclusive. Only two of the three components need to be present in IUNIT in order for vectors to be displayed. Which two depends on which planes of data will be displayed (i.e., x-y, y-z, etc.)
(DEFAULT = None.)

P4 (F) VCOL Column in IUNIT containing v wind component. Must be between 5 and 7, inclusive.
(DEFAULT = None.)

P5 (F) WCOL Column in IUNIT containing w wind component. Must be between 5 and 7, inclusive.
(DEFAULT = None.)

---ADVECT card---P3-5 contain parameterization---

P3 (F) ASPD Advection speed in m/s.
(DEFAULT = None.)

P4 (F) ADIR Direction, relative to true North, from which storm is approaching.
(DEFAULT = None.)

P5 (F) ATIM Anchor time to which advection should be done.
(DEFAULT = Mean volume time.)

---GRID card---P3-5 contain parameterization---

P3 (F) NAMU Name of output U field, if any, to be gridded. Note that a U field column must be specified on the WINDS card.
(DEFAULT = None.)

P4 (F) NAMV Name of output V field, if any, to be gridded. Note that a V field column must be specified on the WINDS card.
(DEFAULT = None.)

P5 (F) NAMW Name of output W field, if any, to be gridded. A W field column must be specified on the WINDS card.
(DEFAULT = None.)

QUIT/READAIR--43
READSTA—Reads in an ASCII dataset containing mesonet (or other) station locations for use in plot overlays. The input file must have a specific format, most easily understood by looking at an example (shown below). The positions of the stations are given in either latitude and longitude values (decimal degrees) or in x and y (km). Latitude values must be in the range from -90 to +90. Longitude values can follow the convention where positive is East of the Prime Meridian or the convention where positive is West. The user specifies which convention the longitudes follow.

Only one station dataset can be active in Cedric at a time. That is, if a second **READSTA** card is encountered, the data from the first will be overwritten in Cedric. Once the data is read in, it can be used in the **GRAPHICS** command for plotting and overlaying on other plots. Currently, the station positions are NOT adjusted if a **REMAP** is done to translate or rotate the coordinate system. They will be relative to the grid orientation and layout when the station data was originally read in.

Command structure:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>READSTA</td>
<td>LUN</td>
<td>CDIR</td>
<td>OLAT</td>
<td>OLON</td>
</tr>
<tr>
<td>P2</td>
<td>(F) LUN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A) CDIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direction convention of longitudes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEST</td>
<td>positive long. is west of Prime Mer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAST</td>
<td>positive long. is east of Prime Mer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DEFAULT = WEST)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(F) OLAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latitude of the origin. Used to convert station positions to X and Y distances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DEFAULT = Value in ID header)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F) OLON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longitude of the origin. Used to convert aircraft positions to X and Y distances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DEFAULT = Value in ID header)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(A) COORD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specifies whether aircraft positions are in lat and long or already in xy space (km).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAT-LONG</td>
<td>indicates positions are in lat and long</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY</td>
<td>indicates positions are in xy space (km)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DEFAULT = LAT-LONG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7-P10</td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>++++++++++++++++++++</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
READVOL—Positions a file (that may or may not have multiple volumes) for input to a current edit volume. Positioning is done by volume name, time or simply the NEXT volume. If a user-defined coordinate system has been established before transfer using the CREATE command, the input volume will be mapped into that coordinate system. However, the volume to be transferred MUST have grid points in common with the CREATED grid since this transfer involves only movement of fields in INDEX space. This means that the CREATED grid spacings MUST be integer multiples of those in the volume to be transferred. If no user-defined coordinate system is active, the edit file coordinate system is defined by the header information of the volume to be transferred.

After this command, the original input file that was accessed is positioned immediately before the next volume in the file, or at the end of the file if no more volumes are present. All searches are forward from the current position within the input file. If the desired volume is “ahead” of the current volume in the input file, the file pointers must be “rewound” to the beginning of the input file before initiating a search. Otherwise, CEDRIC will search forward until the end of the file and issue an error that it could not find the volume.

Whenever a READVOL is invoked, the contents of the current edit volume in CEDRIC will be completely overwritten. Therefore, the WRITVOL command must be used to save the current edit file that has been operated on, if it is to be preserved. Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>READVOL</th>
<th>LUN</th>
<th>NAMVOL</th>
<th>IBEGTM</th>
<th>IENDTM</th>
<th>IREWND</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(F)</td>
<td>LUN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMVOL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(F)</td>
<td>IBEGTM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>IENDTM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(A)</td>
<td>IREWND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7-10</td>
<td></td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P2 (F) LUN Fortran logical unit number of the INPUT file.

P3 (A) NAMVOL Volume name. If an actual volume name is specified, a forward search will continue until that volume is located. Otherwise, NAMVOL can simply be NEXT to transfer the next volume in the INPUT file within the time range specified by IBEGTM and IENDTM.

P4 (F) IBEGTM Beginning time (HHMMSS) when NAMVOL is set to NEXT.

P5 (F) IENDTM Ending time (HHMMSS) when NAMVOL is set to NEXT.

P6 (A) IREWND Rewind option:

YES rewind the file pointer to the beginning of the file before initiating the search;

NO do NOT rewind the file pointer before initiating the search.

P7-10 UNUSED ++++++++++++++++++++

READVOL–45
REGRESS—Computes the linear regression statistics between two fields. The linear correlation coefficient (also called the product-moment correlation coefficient, or Pearson’s r), standard error of estimate and the equation of the linear least-squares curve fit are produced as a tabular display by plane and/or by volume for all locations with collocated non-missing values within the designated windowed region. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>REGRESS</th>
<th>IDEST</th>
<th>IFIXAX</th>
<th>SKIP</th>
<th>ITYP</th>
<th>NAMIND</th>
<th>NAMDEP</th>
<th>IWINDO</th>
</tr>
</thead>
</table>

P2 (A) IDEST

Destination of the regression output:
- **PRINT** output will be sent to the printer file;
- **MICRO** output will be sent to microfiche/microfilm;
- **BOTH** output will be sent to both printer and film.

The only available option is **PRINT**; the others have been documented here for historical reasons.

(DEFAULT = PRINT)

P3 (A) IFIXAX

Axis to be fixed for regression analysis:
- **Z** z-axis fixed, regression is done in xy-planes;
- **Y** y-axis fixed, regression is done in xz-planes;
- **X** x-axis fixed, regression is done in yz-planes.

(DEFAULT = Z)

P4 (F) SKIP

Increment between output levels. A regression analysis and output will be generated every SKIP levels.

(DEFAULT = 1.0)

P5 (A) ITYP

Type of regression analysis to be done:
- **PLANE** regression analysis will be done by two-dimensional planes;
- **VOLUME** regression analysis will be done by volume, (all points within the windowed region);
- **BOTH** regression analysis will be done both by plane and by volume.

(DEFAULT = BOTH)

P6 (A) NAMIND

Field name of the independent variable to be used in the regression analysis.

(DEFAULT = This field name must be specified.)

P7 (A) NAMDEP

Field name of the dependent variable to be used in the regression analysis.

(DEFAULT = This field name must be specified.)

**P8-9 UNUSED ++++++++++++++++++++

P10 (A) IWINDO

Windowing specification for this command:
- **WINDOW** execute the command only in the current user-set window;
- **FULL** execute the command over the full (X,Y,Z) grid.

(DEFAULT = FULL)
RELAXUV—Computes a new set of horizontal wind component fields (UNEW, VNEW) using the current fields (UCUR, VCUR) and the vertical air motion field (WAIR) derived from a variationally adjusted integration. That integration scheme does not adjust (redistribute random errors vertically) the horizontal winds, only the horizontal convergence so there is no guarantee that three-dimensional convergence is exactly zero as required in the form of the mass continuity equation outlined in Appendix F. Therefore, the (UCUR, VCUR) components are iteratively corrected so as to minimize the mean difference between horizontal and vertical convergence within each level. The same density profile that was used in the integration should be employed here as well. The user may want to generate a new horizontal convergence field using (UNEW, VNEW) once this command has been executed. Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>RELAXUV</th>
<th>UNEW</th>
<th>VNEW</th>
<th>UCUR</th>
<th>VCUR</th>
<th>WAIR</th>
<th>DWFAC</th>
<th>CNCRIT</th>
<th>ZLOWER</th>
<th>ZUPPER</th>
</tr>
</thead>
</table>

P2 (A) UNEW New U-component output field name.

P3 (A) VNEW New V-component output field name.

P4 (A) UCUR Existing U-component input field name.

P5 (A) VCUR Existing V-component input field name.

P6 (A) WAIR Variationally adjusted W-component input field name.

P7 (H) DWFAC Density weighting factor. This parameter is in the form Z*nntnnnn where Z* is typed literally and nntnnnn is the user supplied term in the density weighting function:

\[
\text{RHO} = \text{EXP} \left(-Z \times \text{nntnnnn} \right),
\]

where Z is the height in kilometers (MSL) at each level. If DWFAC is not blank and the preamble Z* is missing, density weighting will NOT be used. Also, any sequence of characters such as UNITY or NODENS will turn off density weighting. (DEFAULT = Z*0.1)

P8 (H) CNCRIT Criteria for determining procedure convergence at each level. This parameter is in the form III.EEEE, where III is the maximum number of iterations to perform at each level while attempting to satisfy the requirement that the mean difference between the vertical and horizontal convergence at each level be less than EEEE. The part III must be an integer whose absolute value is in the range 1-25. If III is negative, CEDRIC will iterate exactly ABS(III) times, regardless of other convergence criteria. The part EEEE must be in the range 0.01-0.99. (DEFAULT = 10.01); however each part is DEFAULTed separately.

P9 (H) ZLOWER Lowest Z-level to be included in the procedure:

I=nntnnn level is specified in INDEX space and nntnnn is the index of the desired level;

D=nntnnn level is specified in DISTANCE space and nntnnn is the height (KM) of the desired level. (DEFAULT=lowest level in the volume).

P10 (H) ZUPPER Highest Z-level to be included in the procedure:

I=nntnnn level is specified in INDEX space and nntnnn is the index of the desired level;

D=nntnnn level is specified in DISTANCE space and nntnnn is the height (KM) of the desired level. (DEFAULT=highest level in the volume).
REMAP—Remaps the data from all existing fields to a new user-specified Cartesian coordinate system. This command is useful for adjusting individual volumes to a storm-relative coordinate system (translation) and for generating vertical sections along the direction of storm motion (rotation). This command also allows the user to interpolate a volume from a coplane or elevation coordinate system to a three-dimensional Cartesian coordinate system. The total number of data points, grid points times the number of fields—$N_x \times N_y \times N_z \times N_f$—has the same restrictions as those imposed on all CEDRIC files. There are no other restrictions in the specification of the new coordinate system. Its origin can be translated, the X and Y axes rotated about Z, and the grid spacing and layout itself can be changed. If only a shifting of the data has been requested, i.e. a translation of the origin by an integral number of grid spacings in each orthogonal direction, no interpolation will be performed, only shifting. Otherwise, a bilinear/closest point scheme of three-dimensional interpolation will be done. If the REMAP Z-levels are the same as those of the current edit volume to be remapped, a two-dimensional interpolation is done only in xy-planes. This is a stack command and must be terminated with an END command.

The additional stack card images are used to specify the grid and any special processing. If the seventh parameter (P7) of the REMAP command is NEWGRID, the next card image must specify the grid. If P7 is not set to NEWGRID, then subsequent card images specify any special processing. This includes interpolation of vector components, especially when the coordinate system is rotated. In that case, the vector is properly transformed and its components interpolated. When radar radial velocities are interpolated, a local unfolding scheme can be invoked in order to preserve the discontinuities associated with folded velocities. See Miller et al. (1986) for the details of this procedure. Additionally, fields that are represented on a dB scale can be converted to a linear scale, interpolated, and then converted back to a dB scale.

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMAP</td>
<td>ICORD Coordinate system of data before interpolation or shifting: CART interpolate from a Cartesian coordinate system; COPLANE interpolate from a coplane coordinate system; ELEV interpolate from a constant elevation angle coordinate system. These are currently the only possibilities. The coplane angles are assumed to be equally-spaced, and the elevation angles are assumed to be unequally-spaced. Actual elevation angles are taken from information in the level header rather than the equally-spaced coordinates of the 510-word CEDRIC volume header. If ICORD is left blank, CEDRIC determines the input coordinate system.</td>
</tr>
<tr>
<td></td>
<td>ANGXAX Horizontal azimuth angle of the new X-axis in the new coordinate system, measured clockwise from true north. If ANGXAX is specified and is NOT equal to the existing angle of the X-axis, the new coordinate system will be defined, assuming rotation about the vertical or Z-axis. (DEFAULT = same as that of the old coordinate system.)</td>
</tr>
<tr>
<td></td>
<td>XORGIN The X-coordinate in the OLD space where the origin of the NEW coordinate system is to be located. (DEFAULT = 0.0), there is no change.</td>
</tr>
<tr>
<td></td>
<td>YORGIN ZORGIN NWGRD MAXREL</td>
</tr>
<tr>
<td></td>
<td>X1 X2 XD Y1 Y2 YD Z1 Z2 ZD</td>
</tr>
<tr>
<td></td>
<td>SPEC P3 P4 P5 P6 P7 P8 P9 P10</td>
</tr>
<tr>
<td></td>
<td>ROTATE INX INY INZ OUTX OUTY OUTZ</td>
</tr>
<tr>
<td></td>
<td>LINEAR FIELD</td>
</tr>
<tr>
<td></td>
<td>UNFOLD FIELD</td>
</tr>
<tr>
<td></td>
<td>END</td>
</tr>
</tbody>
</table>

P2 (A) ICORD Coordinate system of data before interpolation or shifting:
- CART interpolate from a Cartesian coordinate system;
- COPLANE interpolate from a coplane coordinate system;
- ELEV interpolate from a constant elevation angle coordinate system. These are currently the only possibilities. The coplane angles are assumed to be equally-spaced, and the elevation angles are assumed to be unequally-spaced. Actual elevation angles are taken from information in the level header rather than the equally-spaced coordinates of the 510-word CEDRIC volume header. If ICORD is left blank, CEDRIC determines the input coordinate system.

P3 (F) ANGXAX Horizontal azimuth angle of the new X-axis in the new coordinate system, measured clockwise from true north. If ANGXAX is specified and is **NOT** equal to the existing angle of the X-axis, the new coordinate system will be defined, assuming rotation about the vertical or Z-axis. (DEFAULT = same as that of the old coordinate system.)

P4 (F) XORGIN The X-coordinate in the OLD space where the origin of the NEW coordinate system is to be located. (DEFAULT = 0.0), there is no change.
P5 (F) YORGIN The Y-coordinate in the OLD space where the origin of the NEW coordinate system is to be located. (DEFAULT = 0.0), there is no change.

P6 (F) ZORGIN The Z-coordinate in the OLD space where the origin of the NEW coordinate system is to be located. (DEFAULT = 0.0), there is no change.

P7 (A) NWGRD Flag that indicates whether a new grid specification card will follow this one:
 NEWGRID the next card specifies the new grid layout;
 the old grid will be used.
 (DEFAULT =); “blank”, no new grid will be specified.

P8 (F) MAXREL Maximum distance (kilometers) to relocate a point when closest point method of interpolation is being used. (DEFAULT = 0.0)

P9-10 UNUSED ++++++++++++++++++++

—NWGRD (P7) set to NEWGRID—NEXT CARD IMAGE MUST SPECIFY GRID—

P2 (F) X1 Beginning X-coordinate of the new grid. There is no DEFAULT; the user must specify.

P3 (F) X2 Ending X-coordinate of the new grid. There is no DEFAULT; the user must specify.

P4 (F) XD Spacing along X-axis. There is no DEFAULT; the user must specify.

P5 (F) Y1 Beginning Y-coordinate of the new grid. There is no DEFAULT; the user must specify.

P6 (F) Y2 Ending Y-coordinate. There is no DEFAULT; the user must specify.

P7 (F) YD Spacing along Y-axis. There is no DEFAULT; the user must specify.

P8 (F) Z1 Beginning Z-coordinate of the new grid. There is no DEFAULT; the user must specify.

P9 (F) Z2 Ending Z-coordinate. There is no DEFAULT; the user must specify.

P10 (F) ZD Spacing along Z-axis. There is no DEFAULT; the user must specify.

REMAP

---STACK of ADDITIONAL CARD IMAGES---

P2 (H) SPEC Option for special processing of any fields during remapping
 ROTATE a three-dimensional vector will be interpolated. No interpolation of vector components is allowed for constant elevation to cartesian.
 UNFOLD local unfolding will be done during interpolation;
 LINEAR the field will be converted from a dB scale before interpolation and back to a dB scale after interpolation. There is no DEFAULT; the user must specify.

REMAP-49
---SPEC (P2) set to ROTATE---P3-8 contain parameterization---

P3 (A) INX Name of input vector component field that corresponds to motion in the **OLD** X-direction. This name must be an existing field. There is no DEFAULT; the user must specify.

P4 (A) INY Name of input vector component field that corresponds to motion in the **OLD** Y-direction. This name must be an existing field. There is no DEFAULT; the user must specify.

P5 (A) INZ Name of input vector component field that corresponds to motion in the **OLD** Z-direction. This name must be an existing field. There is no DEFAULT; the user must specify.

P6 (A) OUTX Name of output vector component field that will correspond to motion in the **NEW** X-direction. This name can refer to an existing field (including any of P3-P5), or if it does not exist, the field will be created. The user should be certain that there is enough memory (Nx * Ny * Nz * Nf) to create any new fields. If a new field is implied and not enough memory exists, the program will print out an error message indicating insufficient memory and exit. There is no DEFAULT; the user must specify.

P7 (A) OUTY Name of output vector component field that will correspond to motion in the **NEW** Y-direction. This name can refer to an existing field (including any of P3-P5), or if it does not exist, the field will be created. See the number of grid points times number of fields issue described above. There is no DEFAULT; the user must specify.

P8 (A) OUTZ Name of output vector component field that will correspond to motion in the **NEW** Z-direction. This name can refer to an existing field (including any of P3-P5), or if it does not exist, the field will be created. See the number of grid points times number of fields issue described above. There is no DEFAULT; the user must specify.

P9-10 UNUSED ++++++++++++++++++++

---SPEC (P2) set to LINEAR---P3 contains parameterization---

An outline of the linearization procedure is:

\[r = \text{original dB value} \]
\[r = 10^{(r/10.0)} \]
interpolation of points is done

\[fval = \text{final value from interpolation} \]
\[fval = 10\log_{10}(fval) \]

P3 (A) FIELD Name of field to be made linear for interpolation. This name **must** refer to an existing field name. There is no DEFAULT; the user must specify.

P4-10 UNUSED ++++++++++++++++++++

---SPEC (P2) set to UNFOLD---P3-4 contain parameterization---

Radial velocity fields are to be locally unfolded.

P3 (A) FIELD Name of the radial velocity field. There is no DEFAULT; the user must specify.

P4 (F) NYQ Nyquist velocity to be used for unfolding.
(DEFAULT=Use value in housekeeping.)

REMAP–50
This **END** command terminates the **REMAP** command stack.
RENAME—Allows the user to rename existing fields in the current edit volume. The previous name is replaced by a new one and all references to the old name will no longer be valid. *Note: This is a single card image command.*

Command structure:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>NAMOLD</td>
<td>Old name of field to be renamed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>UNUSED</td>
<td>The addition of TO improves readability.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(A)</td>
<td>NAMNEW</td>
<td>New name of field specified by P2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(A)</td>
<td>NAMOLD</td>
<td>Old name of field to be renamed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>(A)</td>
<td>NAMNEW</td>
<td>New name of field specified by P5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>(A)</td>
<td>NAMOLD</td>
<td>Old name of field to be renamed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>(A)</td>
<td>NAMNEW</td>
<td>New name of field specified by P7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAMPLER—Computes a radial velocity field for a fixed radar position \((X,Y,Z)\) using the orthogonal components \((U,V,W)\) of a three-dimensional wind field. The radar position and the vector components are assumed to be relative to the same set of coordinate axes. The user can specify that the radar coordinates supplied and the vector components are relative to the coordinate system where the \(y\)-axis points along true north, or that the radar coordinates and the vector components are relative to the current coordinate system, whatever its orientation. However, in both cases the radar coordinates supplied are relative to the current origin, only the orientation of the axes can be chosen.

Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A) NAMOUF</td>
</tr>
<tr>
<td>P3</td>
<td>(A) NAMU</td>
</tr>
<tr>
<td>P4</td>
<td>(A) NAMV</td>
</tr>
<tr>
<td>P5</td>
<td>(A) NAMW</td>
</tr>
<tr>
<td>P6</td>
<td>(F) XRAD</td>
</tr>
<tr>
<td>P7</td>
<td>(F) YRAD</td>
</tr>
<tr>
<td>P8</td>
<td>(F) ZRAD</td>
</tr>
<tr>
<td>P9</td>
<td>(A) COORD</td>
</tr>
<tr>
<td></td>
<td>NORTH</td>
</tr>
<tr>
<td></td>
<td>REL</td>
</tr>
<tr>
<td>P10</td>
<td>(A) IWINDO</td>
</tr>
<tr>
<td></td>
<td>WINDOW</td>
</tr>
<tr>
<td></td>
<td>FULL</td>
</tr>
</tbody>
</table>
SHIFTER—Advection of data at horizontal levels according to analysis time or time to which data is shifted, storm motion, and data or collection time. Two techniques are available:

UNIFORM—shift the data within each level an integral number of grid points in X and Y. This number of grid positions is calculated based on the average collection time of the individual Z-levels, unless otherwise specified.

DIFFERENTIAL—relocates data values within a level along X and Y according to individual grid point collection times. The advected field is subsequently remapped to the regular (X,Y) analysis grid using bi-linear interpolation.

If a time field does not exist and a fixed time would not be representative for every (X,Y,Z) location in the volume, a simple FUNCTION stack can be devised by the user to generate an appropriate time field. Time fields are always defined as the time in seconds corresponding to each (X,Y,Z) location after the time of day (HHMMSS) associated with the beginning of the volume scan. The SHIFTER command should be avoided unless one is working with information from a single radar. When combining multiple radars, the advection feature in the SYNTHES command instead should be invoked since it will produce the same result without the necessity of advecting each radar volume explicitly using the SHIFTER command. It is generally unwise to advect individual fields, rather all fields should be advected when using this command. Once advection is completed, this command replaces the beginning and ending times in the edit volume header (words 116–127) with the analysis time (ITANAL). It will be necessary to use the FIXIDS command should you wish to shift individual levels within a volume so that the original times continue to be used after the first set of levels are advected. Note: This is a single card image command.

Command structure:

```
SHIFTER NAMOUF NAMINF NAMTIM ITANAL STMDIR STMSPD IADTYP ZLOWER ZUPPER
```

P2 (A) NAMOUF Name of the advected output field. If ALL is specified, all fields will be advected.

(DEFAULT=The input field will be updated.)

P3 (A) NAMINF Name of the input field to be advected. If ALL is specified, all fields will be advected.

(DEFAULT=If neither NAMOUF or NAMINF are specified, all fields will be advected.)

P4 (A) NAMTIM Time field specifier. This may be either an actual edit field name or a special mnemonic indicating that the TIME field is to be set to a constant. This special mnemonic must be in the following format: T=nnnnnn where nnnnnn is a 6 digit floating point value specifying the constant to which the TIME field will be set.

(DEFAULT = T=0.0)

P5 (F) ITANAL Analysis time to be used as a reference for advecting the data in HHMMSS (time of day.)

(DEFAULT=Starting time of the current edit volume.)

P6 (F) STMDIR Storm direction. This is defined as degrees clockwise from North in the direction from which the storm is approaching. (Same as a wind is defined.)

(DEFAULT = 0.0)

P7 (F) STMSPD Storm speed (M/S). (DEFAULT = 0.0), no advection will be performed.)

P8 (A) IADTYP Method of advection:

- **UNI** uniform advection will be performed;
- **DIF** differential advection will be performed.

(DEFAULT = DIF)
P9 (H) ZLOWER

Lowest Z-level to be included in the advection procedure:

$I=nnnnnn$ level is specified in INDEX space and $nnnnnn$ is the index of the desired level;

$D=nnnnnn$ level is specified in DISTANCE space and $nnnnnn$ is the height (KM) of the desired level;

(DEFAULT=lowest level in the volume).

P10 (H) ZUPPER

Highest Z-level to be included in the advection procedure:

$I=nnnnnn$ level is specified in INDEX space and $nnnnnn$ is the index of the desired level;

$D=nnnnnn$ level is specified in DISTANCE space and $nnnnnn$ is the height (KM) of the desired level;

(DEFAULT=highest level in the volume).
STATS—Generates a statistical display for a set of designated fields. The display includes mean, standard deviation, minimum-maximum values, and number of good data values. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATS</td>
<td></td>
</tr>
<tr>
<td>IDEST</td>
<td>Destination of the display. The only available option is PRINT.</td>
</tr>
</tbody>
</table>
| IFIXAX | Axis to be fixed for displays:
| | Z: z-axis fixed, display xy-planes;
| | Y: y-axis fixed, display xz-planes;
| | X: x-axis fixed, display yz-planes.
| | (DEFAULT = Z) |
| SKIP | Increment between display levels. A display will be generated every SKIP levels.
| | (DEFAULT = 1.0) |
| NMSPEC | Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
| | PRI: only the primary field group will be displayed;
| | SEC: only the secondary field group will be displayed;
| | ALL: every field will be displayed.
| | See the FIELDSET command for instructions on how to set primary and secondary field groups.
| | (DEFAULT = PRI) |
| ITYP | Region for computing the statistics:
| | PLANE: statistics will be generated for each plane;
| | VOLUME: statistics will be generated for the volume;
| | BOTH: statistics will be generated for each plane and for the volume.
| | (DEFAULT = BOTH) |
| IWINDO | Windowing specification for this command:
| | WINDOW: execute the command only in the current user-set window;
| | FULL: execute the command over the full (X,Y,Z) grid.
| | (DEFAULT = FULL) |
STPLOT—Generates plotted profiles of selected statistics along any fixed geometric axis for a set of designated fields. Profiles for the following five quantities can be produced: Minimum, Mean - scale*σ, Mean value, Mean + scale*σ, and Maximum. The quantity σ is the standard deviation. Each of these statistics is determined within two-dimensional planes, according to which axis is fixed and over the windowed region. Statistics are then plotted as a function of the fixed axis direction. The specified window determines the limits of the geometric axis of the profile, and either the user or the program decides the ranges for the statistics axis. Profiles may be oriented in either the vertical or horizontal direction. This is a stack operation and must be terminated by an END command. The stack consists of additional card images that allow the user to specify the fields to be examined, along with associated display parameterizations. If a field is referred to more than once, the last specification will be used to display the field. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STPLOT</td>
<td></td>
</tr>
<tr>
<td>IDEST</td>
<td>Destination of the display. The only available option is MICRO.</td>
</tr>
<tr>
<td>IFIXAX</td>
<td>Axis to be fixed for displays:</td>
</tr>
<tr>
<td></td>
<td>Z z-axis fixed, display xy-planes;</td>
</tr>
<tr>
<td></td>
<td>Y y-axis fixed, display xz-planes;</td>
</tr>
<tr>
<td></td>
<td>X x-axis fixed, display yz-planes.</td>
</tr>
<tr>
<td>IORENT</td>
<td>Orientation of the statistical profiles:</td>
</tr>
<tr>
<td></td>
<td>HOR statistical profiles will be plotted left-to-right;</td>
</tr>
<tr>
<td></td>
<td>VER statistical profiles will be plotted bottom-to-top.</td>
</tr>
<tr>
<td>MEAN</td>
<td>Specification for MEAN profile. Profile specifications are made in the following 8-character format: P/C/nnnn where P, C and nnnn are supplied by the user.</td>
</tr>
<tr>
<td>SIGMA</td>
<td>Specification for the MEAN ± (SIGMA * SDFAC) profiles. Profile specifications are made as described above for the MEAN (P5).</td>
</tr>
<tr>
<td>MIN</td>
<td>Specification for the MINimum value profile. Profile specifications are made as described above for the MEAN (P5).</td>
</tr>
</tbody>
</table>

P2 (A) IDEST
P3 (A) IFIXAX
P4 (A) IORENT
P5 (H) MEAN
P6 (H) SIGMA
P7 (H) MIN

STPLOT-57
P8 (H) MAX Specification for the MAXimum value profile. Profile specifications are
made as described above for the MEAN (P5).
(DEFAULT = MAX profile will NOT be plotted.)
IF no profiles are activated by user-specified parameters P5-8, the program
will generate displays containing MEAN and SIGMA profiles using internally
determined specifications.

P9 (F) SDFAC Sigma scaling factor. SIGMA profiles will be drawn SDFAC standard deviations
on either side of the MEAN.
(DEFAULT = 1.0)

P10 (A) IWINDO Windowing specification for this command:
WINDOW execute the command only in the current user-set window;
FULL execute the command over the full (X,Y,Z) grid.
(DEFAULT = FULL)

STPLOT –STACK of ADDITIONAL CARD IMAGES–

P2 (A) NMSPEC Field name specifier. This may be either an actual edit field name or one
of the following codes designating a predetermined group of fields:
PRI only the primary field group will be displayed;
SEC only the secondary field group will be displayed;
ALL every field will be displayed.
See the FIELDSET command for instructions on how to set primary and
secondary field groups.
(DEFAULT = PRI)

P3 (F) STMIN Minimum value to display on the profile plot. (DEFAULT = 0.0)

P4 (F) STMAX Maximum value to display on the profile plot. (DEFAULT = 0.0)

If STMIN = STMAX, the program decides what the endpoints should be for
the profiles specified. Hence, leaving STMIN and STMAX will make the
program decide plot limits.

P5-10 UNUSED ++++++++++++++++++++

END This END command terminates the STPLOT command stack.
SURFACE—Generates a three-dimensional perspective display of a field for each (x,y) from any viewing angle for a set of designated fields. A figure whose height or displacement above the perspective horizontal plane is proportional to the values in the field will be produced for every constant Z-plane within the display window. This is a stack operation and must be terminated by an **END** command. The stack consists of additional card images that allow the user to specify the fields to be examined, along with associated display parameterizations. Only one specification per field is permitted in the stack. If a field is referred to more than once, the last specification will be used to display that field. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

Command structure:

```
SURFACE IDEST SKIP ICONAX XEYMUL YEYMUL FEYMUL LABTYP IWINDO
NMSPEC VALMIN VALMAX VALZER
END
```

- **P2 (A) IDEST** Destination of the display: The only available option is **MICRO**.
- **P3 (F) SKIP** Increment between display levels. A display will be generated every SKIP levels. (DEFAULT = 1.0)
- **P4 (A) ICONAX** Axes to be contoured: X, Y and/or Z may appear in any combination in the first three left-justified positions of ICONAX. Any axis that is specified will be contoured. (DEFAULT = XY)
- **P5 (F) XEYMUL** Multiple of the X-axis length from Xmin where the eye is to be positioned. (DEFAULT = 2.0)
- **P6 (F) YEYMUL** Multiple of the Y-axis length from Ymin where the eye is to be positioned. (DEFAULT = -6.0)
- **P7 (F) FEYMUL** Multiple of the F-axis length from Fmin where the eye is to be positioned. (DEFAULT = 2.5)
- **P8 (A) LABTYP** Type of axes labeling desired:
 - **FULL** the full (X,Y,FIELD) axes legend will be generated;
 - **FIELD** only FIELD axis will be labeled;
 - **NONE** no axes will be labeled. (DEFAULT = FULL)
- **P9** UNUSED ++++++++++++++++++++
- **P10 (A) IWINDO** Windowing specification for this command:
 - **WINDOW** execute the command only in the current user-set window;
 - **FULL** execute the command over the full (X,Y,Z) grid. (DEFAULT = FULL)
SURFACE

P2 (A) NMSPEC Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields:
- PRI: only the primary field group will be displayed;
- SEC: only the secondary field group will be displayed;
- ALL: every field will be displayed.
See the **FIELDSET** command for instructions on how to set primary and secondary field groups.
(DEFAULT = PRI)

P3 (F) VALMIN Minimum field value to be depicted in the SURFACE display. Any number less than or equal to this value will appear at the “lowest” point in the display. (DEFAULT = 0.0)

P4 (F) VALMAX Maximum field value to be depicted in the SURFACE display. Any number greater than or equal to this value will appear at the “highest” point in the display. VALMAX must be greater than VALMIN. (DEFAULT = 50.0)

P5 (F) VALZER Value at ZERO height. FIELD values above VALZER will be depicted as “mountains”; FIELD values below VALZER will be depicted as “valleys”. Any missing data values in the field to be displayed will be set to VALZER. VALZER must NOT be less than VALMIN nor greater than VALMAX. (DEFAULT = 0.0)

P6-10 UNUSED ++++++++++++++++++++

END This **END** command terminates the **SURFACE** command stack.
SYNTHES—Synthesizes radial velocity information from two or more Doppler radars. Each radar is assigned a weight of unity and the least-squares solution described in Appendix F is employed for the derivation of the orthogonal components of particle motion. Up to five additional fields may be transferred from each of the input radar volumes. Only those original radar fields that are explicitly transferred by the user will be copied over to the output edit volume produced. Whenever the SYNTHES command is invoked the contents of the current edit volume in CEDRIC will be completely overwritten. Therefore, the WRITVOL command should be used to save the current edit file if it is to be preserved. Any input single-radar files referenced by SYNTHES must be predefined in the script being run on the system. This command creates a new volume containing the synthesized wind information, along with any additional fields that the user has designated for transfer from the radar input volumes.

If a user-defined coordinate system has been established using the CREATE command, all radar input volumes will be remapped accordingly. If no user-defined coordinate system is active, the grid specifications of the first radar input volume will be used, and all subsequent input volumes will be remapped onto that grid. All radar input volumes MUST have grid points in common; that is, grid spacings can be only integer multiples of each other, including the spacings of any CREATEd grids. The synthesis can be done in a three-dimensional Cartesian coordinate systems or in a coplane coordinate systems. By default, CEDRIC determines the coordinate system from the volume header. The volume header information can be overridden with the COORD command.

SYNTHES produces the following fields (see Appendix F for further details):

- U: the U-component of particle motion.
- V: the V-component of particle motion.
- CT: a bit map of the radars contributing to the synthesis at each (X,Y,Z) location. The rightmost bit is set to one (1) if the first radar was used, 2nd bit for the 2nd radar and so forth. The actual number of contributing radars can be calculated using the BITCOUNT primitive in the FUNCTION command.
- $USTD$: the normalized standard deviation of the U-component.
- $VSTD$: the normalized standard deviation of the V-component.
- $WSTD$: the normalized standard deviation of the W-component. Whenever the two-equation solution option is invoked or when only two radars are used as input, W and $WSTD$ cannot be computed.
- EWU: the multiplier of (an unknown) W to adjust the two-equation U to obtain a “true” U.
- EWV: the multiplier of (an unknown) W to adjust the two-equation V to obtain a “true” V.
- MPE: the “Most Probable Error” field defined as follows:

\[MPE = \frac{1}{(N-M)} \left(\sum (V_n - V_{rn}(U,V,W))^2 \right)^{1/2} \]

where V_n is the nth input radial velocity at synthesis grid point, V_{rn} is the resampled radial velocity from the synthesized winds, N is the number of radars, and $M (= 2 \text{ or } 3)$ is the number of synthesized wind components (2 or 3). W is assumed to be zero when a two-equation or (U,V) solution is specified by the user.

Once the SYNTHES command has finished execution, its output volume is available for editing, or any other manipulation and preservation in the same manner as any edit volume. This command is a stack operation and must be terminated by an END command. The stack consists of additional card images that contain parameterization information associated with each of the radar input volumes. The parameterization includes the volume specification as well as the velocity field name and advection information. If any input volume is from an AIRBORNE Doppler radar (Landmark #2 = AIRBRN), azimuth and elevation angle field names must be supplied in place of any advection information. See the descriptions of P8 and P9 in the stack for further details. Also included on EXTRA card images are the names of any additional fields to be transferred from the individual radars.

SYNTHES—61
Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTHES</td>
<td>Name of the SYNTHES output volume.</td>
</tr>
<tr>
<td>NSNVOL</td>
<td>Name of the SYNTHES output volume.</td>
</tr>
<tr>
<td>NRADS</td>
<td>Number of radar input volumes to be included in</td>
</tr>
<tr>
<td></td>
<td>the synthesis.</td>
</tr>
<tr>
<td>DTEST1</td>
<td>User-specified constraint on the potential</td>
</tr>
<tr>
<td></td>
<td>contribution of W to the (U,V) solutions.</td>
</tr>
<tr>
<td>DTEST2</td>
<td>User-specified constraint on the quality of the</td>
</tr>
<tr>
<td></td>
<td>(U,V) solution.</td>
</tr>
<tr>
<td>DTEST3</td>
<td>User-specified constraint on the quality of the</td>
</tr>
<tr>
<td></td>
<td>W solution.</td>
</tr>
<tr>
<td>ITWOEQ</td>
<td>Two-equation solution (U,V) option:</td>
</tr>
<tr>
<td></td>
<td>YES use the two-equation approximation as</td>
</tr>
<tr>
<td></td>
<td>described in Appendix F at every grid location</td>
</tr>
<tr>
<td></td>
<td>and set W to the missing data value;</td>
</tr>
<tr>
<td></td>
<td>NO use the two-equation approximation at those</td>
</tr>
<tr>
<td></td>
<td>locations with data only from two radars;</td>
</tr>
<tr>
<td></td>
<td>otherwise, attempt a three-equation solution.</td>
</tr>
<tr>
<td>ITANAL</td>
<td>Analysis time to be used as a reference for</td>
</tr>
<tr>
<td></td>
<td>advecting the data in HHMMSS (time of day).</td>
</tr>
<tr>
<td>STMDIR</td>
<td>Storm direction for advecting data. This is</td>
</tr>
<tr>
<td></td>
<td>defined as degrees clockwise from North in the</td>
</tr>
<tr>
<td></td>
<td>direction from which the storm is approaching.</td>
</tr>
<tr>
<td>STMSPD</td>
<td>Storm speed (M/S).</td>
</tr>
<tr>
<td></td>
<td>(DEFAULT = 0.0, no advection will be performed.)</td>
</tr>
</tbody>
</table>

P2 (A) NSNVOL Name of the SYNTHES output volume. (DEFAULT=Name of the first radar input volume.)

P3 (F) NRADS Number of radar input volumes to be included in the synthesis. A card image containing relevant parameterization information must be supplied in the SYNTHES stack for each radar input volume. From two to six input radars may be specified.

P4 (F) DTEST1 User-specified constraint on the potential contribution of W to the (U,V) solutions. Both EWU and EWV must be less than DTEST1 for an acceptable two-equation solution. See Appendix F for details. (DEFAULT = 1.0)

P5 (F) DTEST2 User-specified constraint on the quality of the (U,V) solution. Both $USTD$ and $VSTD$ must be less than DTEST2 for an acceptable two-equation solution. See Appendix F for details. (DEFAULT = 100.0)

P6 (F) DTEST3 User-specified constraint on the quality of the W solution. $WSTD$ must be less than DTEST3 for an acceptable three-equation solution for U, V and W. See Appendix F for details. (DEFAULT = 100.0)

P7 (A) ITWOEQ Two-equation solution (U,V) option:

YES use the two-equation approximation as described in Appendix F at every grid location and set W to the missing data value;

NO use the two-equation approximation at those locations with data only from two radars; otherwise, attempt a three-equation solution.

P8 (F) ITANAL Analysis time to be used as a reference for advecting the data in HHMMSS (time of day). If no advection is to be performed, P8 thru P10 should be left “blank”.

P9 (F) STMDIR Storm direction for advecting data. This is defined as degrees clockwise from North in the direction from which the storm is approaching. (Same as a wind is defined.)

P10 (F) STMSPD Storm speed (M/S). (DEFAULT = 0.0, no advection will be performed.)

SYNTHES–62
P2 (F) LUNIT: Fortran logical unit number of the radar input volume. LUNIT must be predefined in the Job Control Language.

P3 (A) NAMVOL: Volume name:
If an actual volume name is specified, a forward search will continue until that volume is located. No additional constraints are imposed on the search;

If NAMVOL = NEXT, the next volume of the radar file within the time range specified by IBEGTM and IENDTM will be transferred into the synthesis procedure.
(DEFAULT = NEXT)

P4 (F) IBEGTM: Beginning time (HHMMSS) when NAMVOL is set to NEXT.
(DEFAULT = 000000.0)

P5 (F) IENDTM: Ending time (HHMMSS) when NAMVOL is set to NEXT.
(DEFAULT = 240000.0)

P6 (A) IREWND: Rewind option:
YES: rewind the file pointers before initiating the search;
NO: do NOT rewind the file pointers before initiating the search.
(DEFAULT = NO)

P7 (A) NAMVEL: Name of the radial velocity field from this radar to be used in the synthesis.
This field must be specified.

P8 (A) IADTYP: If the input volume is from a ground-based Doppler radar IADTYP is the advection method to employ:
UNI: uniform advection will be performed;
DIF: differential advection will be performed;
NONE: no advection will be performed.
(DEFAULT = NONE)

If landmark #2 is set to AIRBRN, the input volume is assumed to be from an airborne Doppler radar and IADTYP must contain the name of the AZIMUTH field.

P9 (A) NAMTIM: If the input volume is from a ground-based Doppler radar and advection is to be performed, NAMTIM is the time field specifier. This may be either an actual edit field name or a special mnemonic indicating that the time field is to be set to a constant. This special mnemonic must be in the following format:
T=nnnnnn where nnnnnn is a 6 digit floating point value specifying the constant to which the time field will be set. (DEFAULT = T=0.0)
If the input volume is from an airborne Doppler radar NAMTIM must contain the name of the ELEVATION field.
P10 (A) NADFSW Additional field switch:

YES additional fields will be transferred from this radar and added to the SYNTHES output volume;
NO no fields will be transferred from this radar to the output volume. (DEFAULT = NO)

SYNTHES --STACK of EXTRA CARD IMAGES--

Whenever NADFSW is set to YES, two (2) EXTRA card images must immediately follow. The first card image (INPUT) contains the names of the fields to be transferred as they appear in the radar INPUT volume. The second card image (OUTPUT) contains the corresponding field names as they are to be designated in the output volume. This is necessary to avoid any duplicate names in the SYNTHES output volume. The keyword INPUT must be present in parameter position P2 of the first EXTRA card image and OUTPUT must be present in position P2 of the second card image.

P2 (A) INPUT INPUT must be present and the remaining parameters contain the names of fields to be input from this radar.
P3-7 (A) NAMINP Names of the fields to be transferred from the radar input volume. As many as five (5) fields may be specified from each radar.
P8-10 UNUSED ++++++++++++++++++++

P2 (A) OUTPUT OUTPUT must be present and the remaining parameters contain the names of fields in the output SYNTHES volume.
P3-7 (A) NAMOUT Destination names of the fields to be transferred from the radar input volume. As many as five (5) fields may be specified from each radar.
P8-10 Unused +++++++++++++++++++

END This END command terminates the SYNTHES command stack.
THREED—Generates a three-dimensional isosurface display from any viewing angle for a set of designated fields. This is a stack operation and must be terminated by an END command. The stack consists of additional card images that allow the user to specify the fields to be examined, along with associated display parameterizations. If a field is referred to more than once, the last specification will be used to display the field. Fields will be displayed according to their order within the CEDRIC program and not according to their order in the stack.

Command structure:

P2	(A)	IDEST	Destination of the display. The only available option is MICRO.
P4	(A)	ICONAX	Axes to be contoured: X, Y and Z may appear in any combination in the first three left-justified positions of ICONAX. Any axis that is specified will be contoured. (DEFAULT = XY)
P4	(F)	XSTR	X-axis stretching factor. (DEFAULT = 1.0)
P5	(F)	YSTR	Y-axis stretching factor. (DEFAULT = 1.0)
P6	(F)	ZSTR	Z-axis stretching factor. (DEFAULT = 1.0)
P7	(F)	XEYE	X-coordinate of the eye position. (DEFAULT= 5.0 times the length of the X-axis length from the Xmin location.
P8	(F)	YEYE	Y-coordinate of the eye position. (DEFAULT= -3.5 times the length of the Y-axis length from the Ymin location.
P9	(F)	ZEYE	Z-coordinate of the eye position. (DEFAULT= 2.0 times the length of the Z-axis length from the Zmin location.
P10	UNUSED	++++++++++++++++++++	

THREED—STACK of ADDITIONAL CARD IMAGES—

P2	(A)	NMSPEC	Field name specifier. This may be either an actual edit field name or one of the following codes designating a predetermined group of fields: PRI only the primary field group will be displayed; SEC only the secondary field group will be displayed; ALL every field will be displayed. See the FIELDSET command for instructions on how to set primary and secondary field groups. (DEFAULT = PRI)
P3	(F)	CLEVEL	Contour level. The visibility of the plotted three-dimensional figure is determined by this value. (DEFAULT = 0.0)
P4	(F)	IVISBL	Visibility switch: ABOVE data values above CLEVEL will be visible; BELOW data values below CLEVEL will be visible; (DEFAULT = ABOVE)
P5-10	UNUSED	++++++++++++++++++++	

END This END command terminates the THREED command stack.
TRANSFER—Transfers fields from any Cartesian volume contained in an existing disk file to the current edit volume in CEDRIC. Transferred fields will be remapped into the Cartesian coordinate system of the existing edit volume. This means that the fields to be transferred must have grid points in common with the current edit volume; that is, their grid can only be an integer multiple of the one in the current edit volume. Further, the volume from which fields are transferred must have the same number of Z-levels as the current edit volume. It may be necessary to RENAME some edit fields before TRANSFER is invoked since this command will overwrite existing fields with the same name as those being transferred. TRANSFER is a multi-card command whenever four (4) or more fields are to be transferred from a single Cartesian volume. An END card image is NOT allowed to terminate this command; instead, EXTRA card images are processed until a “blank” field name is encountered.

Command structure:

<table>
<thead>
<tr>
<th>TRANSFERLUNIT</th>
<th>NAMVOL</th>
<th>IBEGTM</th>
<th>IENDTM</th>
<th>IREWND</th>
<th>NAMTRN</th>
<th>NAMTRN</th>
<th>NAMTRN</th>
<th>NAMTRN</th>
<th>NAMTRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(F)</td>
<td>LUNIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMVOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(F)</td>
<td>IBEGTM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>IENDTM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(A)</td>
<td>IREWND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7-10</td>
<td>(A)</td>
<td>NAMTRN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P2 (F) LUNIT Fortran logical unit number of the file from which the data fields are to be transferred. LUNIT must be predefined in the Job Control Language.

P3 (A) NAMVOL Volume name. If an actual volume name is specified, a forward search will continue until that volume is located. Otherwise, NAMVOL can simply be NEXT to transfer the next volume in the INPUT file within the time range specified by IBEGTM and IENDTM.

P4 (F) IBEGTM Beginning time (HHMMSS) when NAMVOL is set to NEXT.

P5 (F) IENDTM Ending time (HHMMSS) when NAMVOL is set to NEXT.

P6 (A) IREWND Rewind option:

YES: rewind the file pointer to the beginning of the file before initiating the search;

NO: do NOT rewind the file pointer before initiating the search.

P7-10 (A) NAMTRN Names of the fields to be transferred from the Cartesian volume. If a field to be transferred has the same name as an existing edit volume field, the edit volume field will be overwritten by the transferred field. If exactly four (4) fields are specified, a “blank” card image must follow the TRANSFER to terminate the processing of field names. Whenever more than four (4) are specified, their names must appear on subsequent card images in the following format:

TRANSFER—STACK of EXTRA CARD IMAGES—

P2-10 (A) NAMTRN Remaining field names to be transferred. EXTRA card images are processed until a “blank” field name is encountered.

TRANSFER–66
UNFOLD—Performs de-aliasing or unfolding of radial velocity measurements within a designated geometrically-windowed region. The available methods are readily tailored to a variety of folding cases. In all methods, a template or reference field U_e is built in some way as an estimate of the “true” or unfolded velocities. The original radial velocities V are then compared to the reference values and put into the proper velocity range using the following scheme.

The true (unfolded) radial velocity U at a (X,Y,Z) grid point is

$$ U = V + \kappa V_a; \quad \kappa = 0, \pm 1, \pm 2, \ldots \quad (1) $$

where V is the measured quantity which may have been folded and is subject to measurement error, $V_a = 2V_n$ is the ambiguous velocity interval, and κ is the integer factor needed to remove Nyquist folding ambiguities from V. When the measured velocity differs by more than V_n from the value expected at the grid point, the integer folding factor in Eq (1) is non-zero and can be approximated by

$$ K = \frac{U_e - V}{V_a} \quad (2a) $$

where U_e is a preliminary estimate of the true radial velocity at the (X,Y,Z) point. The appropriate integer unfolding factor is determined by

$$ \kappa = \left\{ \begin{array}{ll} \text{INT}(K + 0.5), & \text{if } K \geq 0, \\ \text{INT}(K - 0.5), & \text{if } K \leq 0. \end{array} \right. \quad (2b) $$

where INT represents truncation toward zero. The quantity U_e comes from the so-called template or reference velocity field, and the field V is unfolded and stored in U, using Eqs. (1) and (2).

Unfolding can be performed by using any one of six available techniques:

AUTO—automatic unfolding. Suspect radial velocity estimates are first decimated, based upon deviation from the local mean. The resultant field is filled at these decimated locations using the Leise filling technique (see the PATCHER command). All radial velocities are unfolded using this filled field as a reference.

FORCE(IN/OUT)—forced unfolding. All velocities within the designated spatial window and either INside or OUTside of a user-specified velocity range are forced to be within the Nyquist velocity interval of a user-specified reference velocity.

AUTOTEMP—automatic unfolding using a template field. A template field containing reference velocities is specified and used as a “seed” to initiate the procedure at a designated plane. The radial velocities at the designated plane are unfolded using the information in the template field at the corresponding plane as a reference. The resultant unfolded plane is saved and subsequently used as the template for unfolding the next higher and lower planes. This successive-level procedure continues in both directions until all planes within the geometric window have been unfolded. The template field and the field to be unfolded may be the same field.

AUTOFILL—automatic unfolding using a template field with data filling. This procedure is the same as AUTOTEMP with one additional feature. After each unfolded plane has been saved, it is data filled using the Leise technique (see the PATCHER command) before it is used as a template for the next plane to be unfolded. This ensures that a reference value will be present at every grid point within each successive plane.

AUTOSLOP—automatic unfolding using a template field with data filling and slope preservation in the direction of execution. This procedure is the same as AUTOFILL with one additional feature. After two consecutive unfolded planes have been produced, the slope at each location is taken into account when generating the template for the next plane to be unfolded.

FORTEMP—forced template unfolding. A template field is specified, and the velocity information in it is used as a reference for unfolding the input folded velocity field at each corresponding location.

Aliased velocities will be unfolded as many times as are necessary in order to place them within the Nyquist velocity interval of the reference velocity. Only those locations within the designated window will be unfolded.

Note: This is a single card image command.
Command structure:

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
</table>
| UNFOLD | NAMOUF NAMINF METHOD P5 P6 P7 P8 IFIXAX IWINDO | P2 (A) NAMOUF Name of the output field containing the results from this command. (DEFAULT = The input field will be updated if NAMOUF is “blank”.)
| | | P3 (A) NAMINF Name of the input field to be altered. |
| | | P4 (A) METHOD The method of unfolding. Depending on the METHOD specified, the remaining information on the card image will be interpreted accordingly: |
| | | ---METHOD (P4) set to AUTO---P5-P10 contain parameterization--- |
| | P5 (F) LOCDIM | Dimension of the local region surrounding each location. LOCDIM must be odd and the region will be assumed (LOCDIM x LOCDIM) in size. (DEFAULT = 3.0) |
| | P6 (F) MINPTS | Minimum number of points required in the (LOCDIM x LOCDIM) region. At least MINPTS values must be present or the central value is flagged BAD or decimated. (DEFAULT = 4.0) |
| | P7 (F) MAXDEV | Maximum permissible deviation from the local mean for a center value to be retained. (DEFAULT=Nyquist Velocity divided by 2) |
| | P8 (F) VNYQ | Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.) |
| | P9 (A) IFIXAX | Axis to be fixed for two-dimensional functions: z-axis fixed, operate in xy-planes; y-axis fixed, operate in xz-planes; x-axis fixed, operate in yz-planes. (DEFAULT = Z) |
| | P10 (A) IWINDO | Windowing specification for this command: WINDOW execute the command only in the current user-set window; FULL execute the command over the full (X,Y,Z) grid. (DEFAULT = FULL) |

UNFOLD–68
---METHOD (P4) set to FORCEIN---P5-P10 contain parameterization---

P5 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P6 (F) VREF Reference velocity. All velocities within the designated spatial window and INside the velocity interval (VMIN,VMAX) will be unfolded into the same Nyquist interval as VREF. (DEFAULT = 0.0)

P7 (F) VMIN Minimum value of velocity interval (M/S). (DEFAULT = 0.0)

P8 (F) VMAX Maximum value of velocity interval (M/S). (DEFAULT = 0.0)

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)

---METHOD (P4) set to FORCEOUT---P5-P10 contain parameterization---

P5 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P6 (F) VREF Reference velocity. All velocities within the designated spatial window and OUTside the velocity interval (VMIN,VMAX) will be unfolded into the same Nyquist interval as VREF. (DEFAULT = 0.0)

P7 (F) VMIN Minimum value of velocity interval (M/S). (DEFAULT = 0.0)

P8 (F) VMAX Maximum value of velocity interval (M/S). (DEFAULT = 0.0)

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)

---METHOD (P4) set to AUTOTEMP---P5-P10 contain parameterization---

P5 (A) NAMTPF Name of the template field. This field must be specified, and may be the same as the field to be unfolded.

P6 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P7 (A) ISPCNX Context within which the (X,Y,Z) location is defined:
INDEX coordinates are specified in index space;
DISTANCE coordinates are specified in distance space;
(DEFAULT = INDEX)

P8 (F) LEVEL Starting plane for the automatic template unfolding. Unfolding will proceed in both a positive and a negative direction from this plane. (DEFAULT= Lowest plane within the spatial window.)

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)
---METHOD (P4) set to AUTOFILL---P5-P10 contain parameterization---

P5 (A) NAMTPF Name of the template field. This field must be specified, and may be the same as the field to be unfolded.

P6 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P7 (A) ISPCNX Context within which the starting plane is defined. (See above description.)

P8 (F) LEVEL Starting plane for the automatic template unfolding. (See above description.)

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)

---METHOD (P4) set to AUTOSLOP---P5-P10 contain parameterization---

P5 (A) NAMTPF Name of the template field. This field must be specified, and may be the same as the field to be unfolded.

P6 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P7 (A) ISPCNX Context within which the starting plane is defined. (See above description.)

P8 (F) LEVEL Starting plane for the automatic template unfolding. (See above description.)

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)

---METHOD (P4) set to FORTEMP---P5-6,P9-10 contain parameterization---

P5 (A) NAMTPF Name of the template field. This field must be specified. If it is the same as the field to be unfolded, no unfolding will be done.

P6 (F) VNYQ Nyquist velocity (M/S) to be used for unfolding. (DEFAULT=Nyquist velocity in the volume header.)

P7-9 UNUSED ++++++++++++++++++++

P9 (A) IFIXAX Axis to be fixed. (See above description.)

P10 (A) IWINDO Windowing specification for this command. (See above description.)
VALUE—Provides a mechanism by which CEDRIC commands can be parameterized so that the appropriate values may be substituted into the commands at the time of command execution. This command is typically used in conjunction with the DEFINE and EXPAND commands to facilitate the execution of repetitious multi-command CEDRIC procedures without their being repeated in the script and without having to make parameters explicit. This command permits the user to associate new values with variable names that have been entered as parameters to CEDRIC commands in order to change their numeric values before execution or re-execution of a DEFINE block. Only one set of variable assignments may exist at a time containing no more than 100 entries. See P2 for a description of allowed assignment manipulations.

When the VALUE list is non-empty and substitution has been activated, parameter fields P2 thru P10 of every subsequent card image are scanned prior to execution. If a particular parameter field is identical character-by-character to a variable name in the VALUE list, it will be replaced by the value to which it has been assigned. All eight characters must agree with one another for a replacement to be made. No variable name may be doubly defined and no parameter field will be substituted for more than once.

The user can also assign elements of the ID header to variables names. For example, the Nyquist velocity, which is ID(304) (see Appendix D), could be assigned to a variable name and then that variable could be used in Cedric commands. This way, the user doesn’t have to manually enter the Nyquist velocity when it’s needed. Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>VALUE</th>
<th>IOPCOD</th>
<th>NAMVAR</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>IOPCOD</td>
<td>Operation code:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF turns OFF substitutions of values for variables, no additional parameters need to be specified;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON turns ON substitution of values for variables, no additional parameters need to be specified;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NONE deletes ALL existing variable assignments, no additional parameters need to be specified;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DELETE deletes a variable assignment from the list;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SET adds a variable assignment to the existing list.</td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMVAR</td>
<td>Variable name. This may consist of any string of up to 8 characters or numbers, including decimal points, that are to be replaced in the parameter fields of CEDRIC card images when substitution has been turned ON. All eight (8) symbols must agree for a replacement to be made. NAMVAR must be specified whenever IOPCOD = SET or IOPCOD = DELETE.</td>
</tr>
<tr>
<td>P4</td>
<td>UNUSED</td>
<td>+++++++++++++++++++++++++++++++++</td>
<td>If this parameter is set to TO, it helps remind the user of what is being done when IOPCOD = SET.</td>
</tr>
<tr>
<td>P5</td>
<td>(A)</td>
<td>VALUE</td>
<td>Value assigned to NAMVAR. It can be any valid ASCII string of up to 8 symbols. This VALUE will be substituted into the parameter field of subsequent CEDRIC card images if substitution is turned ON and the associated NAMVAR matches that field as it was originally specified on the CEDRIC card image. If the content of this parameter is “ID(x)”, where x is an integer value from 1-510, and IOPCOD = SETID, that element from the ID header will be the value assigned to the variable. VALUE must be specified whenever IOPCOD = SET or IOPCOD = SETID.</td>
</tr>
<tr>
<td>P6-10</td>
<td>UNUSED</td>
<td>+++++++++++++++++++++++++++++++++</td>
<td></td>
</tr>
</tbody>
</table>
WINDOW—Defines or deactivates a user-supplied spatial window that may be subsequently invoked for purposes of selective editing and/or display (when the IWINDO variable in several CEDRIC commands is set to WINDOW). This command is particularly useful for constraining the execution of commands to small regions without affecting the remainder of the field. However, this option should be exercised cautiously when doing the **FUNCTION** command since the final field may not be derived in the same way everywhere. This command also permits the user to generate graphics on any size grid background so that regions of interest may be examined in detail, and CEDRIC displays can be sized for comparison with displays from other measurement systems. The window specified may be larger or smaller than the actual edit volume grid in which the information is contained so long as they overlap in some way. Whenever a new edit file is established using either the **READVOL** or the **SYNTHES** command, the window established by this command will be **reset** to the full (X,Y,Z) grid corresponding to the new edit volume. **WINDOW** differs from the **CREATE** command in that **WINDOW** does not perform any restructuring of the coordinate system, whereas **CREATE** actually establishes a new (X,Y,Z) grid mapping. *Note: This is a single card image command.*

Command structure:

<table>
<thead>
<tr>
<th>WINDOW</th>
<th>ISP CONX</th>
<th>X1</th>
<th>X2</th>
<th>Y1</th>
<th>Y2</th>
<th>Z1</th>
<th>Z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(A)</td>
<td>ISPCNX</td>
<td>Context within which the (X,Y,Z) location is defined:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INDEX coordinates are specified in index space;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISTANCE coordinates are specified in distance space;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT = INDEX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(F)</td>
<td>X1</td>
<td>Beginning X-coordinate of the (X,Y,Z) window.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(F)</td>
<td>X2</td>
<td>Ending X-coordinate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT=If either X1 or X2 are unspecified, the X-axis of the window will correspond to the X-axis of the full (X,Y,Z) grid.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(F)</td>
<td>Y1</td>
<td>Beginning Y-coordinate of the (X,Y,Z) window.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(F)</td>
<td>Y2</td>
<td>Ending Y-coordinate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT=If either Y1 or Y2 are unspecified, the Y-axis of the window will correspond to the Y-axis of the full (X,Y,Z) grid.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>(F)</td>
<td>Z1</td>
<td>Beginning Z-coordinate of the (X,Y,Z) window.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>(F)</td>
<td>Z2</td>
<td>Ending Z-coordinate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DEFAULT=If either Z1 or Z2 are unspecified, the Z-axis of the window will correspond to the Z-axis of the full (X,Y,Z) grid.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9-10</td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WINDOW–73
WRITVOL—Writes the current edit volume out to disk. There are two output formats that can be selected. The first is called pure binary format and is portable, very fast, and compact. This format is recommended for general use. See Appendix D for specifics of this format. The second format that files can be created in is netCDF. This format was developed by NASA and the Unidata program at UCAR. It is highly portable. There is also a lot of software around that can directly read this format. Thus, if you want to use Cedric files in other software packages, it might be easier to create them in this format. The pure format can also be used in your own programs, but it would be harder to do. See Appendix D for information about that. I/O to netCDF files is slower and the files are bigger, so it is not recommended for general, everyday use. Furthermore, only one volume can be written to netCDF files. With the pure format, up to 10 volumes can be placed in a single file. Writing out to a file that already exists with the netCDF format option selected will cause the contents of the existing file to be overwritten. No appending takes place. Users should exercise caution to avoid accidentally overwriting datasets.

WRITVOL has no effect on the current edit volume. It merely copies it to a permanent storage medium for reference at a later time. Also, any number of output volumes can be written using WRITVOL and re-accessed if necessary with READVOL during the course of a single CEDRIC run. All output positioning options except BEG will add volumes to the end of existing files. If BEG is specified, the disk file is positioned at the beginning. Any volumes of data that already exist in this file will be lost. Some terminology here is a carry-over from when physical tapes were actually mounted and accessed by CEDRIC. This rarely occurs anymore since tape is usually put onto disk first and then accessed. Note: This is a single card image command.

Command structure:

<table>
<thead>
<tr>
<th>WRITVOL</th>
<th>LUN</th>
<th>NAMTAP</th>
<th>NAMVOL</th>
<th>IPOS</th>
<th>NFSKIP</th>
<th>FEET</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>(F)</td>
<td>LUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>(A)</td>
<td>NAMTAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>(A)</td>
<td>NAMVOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>(A)</td>
<td>IPOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>(F)</td>
<td>NFSKIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>(F)</td>
<td>FEET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>(A)</td>
<td>FORMAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9-10</td>
<td></td>
<td>UNUSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WRITVOL—74
WTRANS—Transfers fields from any volume contained on an existing disk file into the current edit volume. Transfers are done either into the same field name if it already exists, or into a name carried from the transfer-file header. If no translation or windowing is wanted during the transfer, the **TRANSFER** command should be used instead of **WTRANS**. Transferred fields will be remapped into the coordinate system of the existing edit volume under user supplied constraints. These allow for prior translation of the input data locations and selection of the destination region to be modified in cases where the field is already present in the edit volume. Translation must be performed so that grid points in the input volume map to coincident locations in the edit volume. Windowing only applies to fields that are present in both the input and the edit volumes. It may be necessary to **RENAME** some edit fields before **WTRANS** is invoked in order to avoid or to force the duplication of names depending upon the outcome desired. **WTRANS** is a stack operation and must be terminated by an **END** command.

Command structure:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| P2 (H) LUNIT | Fortran logical unit number of the INPUT file from which the fields are to be transferred. LUNIT may be specified in either of two formats:
R=nnnnnn where nnnnnn is a 6 digit floating point value specifying the Fortran logical unit number. When this format is used the file is repositioned to its beginning prior to the forward search for the requested volume;
nnnnnnnn If R= is **NOT** present the entire 8 digit field nnnnnnnn will be interpreted as a unit number and NO repositioning within the file will be performed.
This parameter must be specified and LUNIT predefined in the Job Control Language. |
| P3 (A) NAMVOL | Volume name. If an actual volume name is specified, a forward search will continue until that volume is located. Otherwise, NAMVOL can simply be NEXT to transfer the next volume in the INPUT file within the time range specified by IBEGTM and IENDTM.
(DEFAULT = NEXT) |
| P4 (F) IBEGTM | Beginning time (HHMMSS) when NAMVOL is set to NEXT.
(DEFAULT = 000000.0) |
| P5 (F) IENDTM | Ending time (HHMMSS) when NAMVOL is set to NEXT.
(DEFAULT = 240000.0) |
| P6 (A) ISPCNX | Context within which the (X,Y,Z) translation is to be done:
INDEX translations are specified in index space;
DISTANCE translations are specified in distance space;
(DEFAULT = INDEX) |
| P7 (F) XTRANS | Input volume translation in X:
NEW X = CURRENT X + XTRANS.
(DEFAULT = 0.0) |
| P8 (F) YTRANS | Input volume translation in Y:
NEW Y = CURRENT Y + YTRANS.
(DEFAULT = 0.0) |
ZTRANS

Input volume translation in Z: \(\text{NEW } Z = \text{CURRENT } Z + Z\text{TRANS} \).
(DEFAULT = 0.0)

NOTE: The \((X\text{TRANS}, Y\text{TRANS}, Z\text{TRANS})\) displacements must result in coincident locations between the two volumes.

IWINDO

Windowing specification for **WTRANS** transfer of fields that already exist in the edit volume. This feature applies ONLY to existing fields; newly created fields are ALWAYS transferred in their entirety to the coordinate system of the current edit volume:

- **WINDOW**: existing fields will be updated ONLY within the confines of the current user-set window;
- **FULL**: existing fields will be completely replaced.

(DEFAULT = FULL)

<table>
<thead>
<tr>
<th>WTRANS</th>
<th>STACK of EXTRA CARD IMAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-10 (A) NAMTRN</td>
<td>Names of the fields to be transferred from the volume to which the disk file has been positioned. The data from each field will be transferred to the current edit file according to the conventions previously given.</td>
</tr>
</tbody>
</table>

END
This **END** command terminates the **WTRANS** command stack.
CEDRIC—Custom Editing and Display of Reduced Information in Cartesian space

BATCH PROCESSOR for UNIX-BASED COMPUTERS
APPENDIX A

+++++ A Summary listing of all CEDRIC commands +++++

Names of parameters are listed

This is a summary of all CEDRIC commands that have been documented in detail. In this summary, the Command structure is emphasized. Following this summary listing are commands where values or different options have been substituted for the parameter names.

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....
BADVAL BAD
CHANGE NAMFLD ISPCNX XLOC YLOC ZLOC VALUE
CODED IDEST IFIXAX SKIP IWINDO
NMSPEC SCLFAC ZREF WIDTH NLFT NRGT
END
COMMENT IDEST
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
COMEND
CONVERGENAMOUF NAMU NAMV NDER
COORD ICORD
CREATE X1 X2 XD Y1 Y2 YD Z1 Z2 ZD
CROSS NAMOUF NAMREF NAMLAG LAGI LAGJ IZERO JZERO IFIXAX IWINDO
DEFINE NAMBLK
COMMENT IDEST
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
TEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXTTEXT
COMEND
COORD ICORD
CONVERGENAMOUF NAMU NAMV NDER
CROSS NAMOUF NAMREF NAMLAG LAGI LAGJ IZERO JZERO IFIXAX IWINDO
DEFEND
DIGITAL IDEST IFIXAX SKIP IWINDO
NMSPEC SCLFAC NDIG
END
DELETE NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL NAMDEL
END
EXPAND NAMBLK
FIELDSETNAMGRP NINCLD NINCLD NINCLD NINCLD NINCLD NINCLD NINCLD NINCLD
NINCLD NINCLD NINCLD
FILTER NAMOUF NAMINF METHOD NSTEP IWINDO
FIXIDS IWORD IVALUE IWORD IVALUE IWORD IVALUE IVALUE
FLTERTH OPTION
FUNCTIONIDMODE DIREC IWINDO
NAMOUF IFLTYP NAMFUN NAMF1 NAMF2 C1 C2 C3 C4
NAMOUF C CONPLANEINFLD CONSET
END
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....

Appendix A-1
+++++ A Summary listing of all CEDRIC commands ++++

Names of parameters are listed

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......

GRAPHICSIX*%Y*%ZIFIXAX SKIP ITITLEITITLEITITLEITITLEITITLEITITLE ITITLE IWINDO
CONTOUR NAMFLD ICONTTP IOPTNS DIGSCL ICLDEF CLMIN CLMAX CLINC
VECTOR NAMHOR NAMVER IVPTYP IVSPAC VMS VKM IVHEAD COLOR
SCATTER NAMHOR XBEGIN XEND NAMVER YBEGIN YEND DEGFIT XCOL
ALPHA NMSPEC SCFLAC ZREF WIDTH NLFT NRGT ISPAC
DIGITAL NMSPEC SCFLAC HMIN HMAX WIDTH MEDIAN COLOR PERC DISOPT
OVERLAY IFPRIM IFOLY IOPTYP IDASHA IDASHO IDIRCOL QVLCOL
END

HISTO IDEST IFIXAX SKIP ITYP ITITLEITITLEITITLEITITLE ITITLE IWINDO
NMSPEC SCFLAC HMIN HMAX WIDTH MEDIAN COLOR PERC DISOPT
END

INTEGR NAMOUF NAMINF INTYPE METHBC INIVAL NAMTOP ZLOWER ZUPPER
INTEGR NAMOUF NAMINF *nnnnnnMETHBC INIVAL NAMTOP ZLOWER ZUPPER
INTEGR NAMOUF NAMINF *nnnnnnMETHUP INIVAL METHDN INIVDN ZLOWER ZUPPER
LAPLACE NAMOUF DPDX DPDY RELAYS MAXITR
MASS2 NAMOUF NAMINF METHBC INIVAL INCRIT ZLOWER ZUPPER
ZINIT NAMDBZ ACON BCON CCON
PATCHER NAMOUF NAMINF METHOD P5 P6 P7 P8 IFIXAX IWINDO
PATCHER NAMOUF NAMINF FILLCON MAXSTP MINQAD MINPTS DECFLD IFIXAX IWINDO
PATCHER NAMOUF NAMINF FILLALL NDIM IWINDO
PATCHER NAMOUF NAMINF DECIGLO MAXSTP MINPTS MAXDEV IFIXAX IWINDO
PATCHER NAMOUF NAMINF DECIGLO SIGFAC IWINDO
QUIT

READVOL LUN NAMVOL IBEGTM IENDTM IREWIND
REGRESS IDEST IFIXAX SKIP ITYP NAMIND NAMDEP IWINDO
RELAXUV NAMOUF NAMU NAMV NAMW XRAD YRAD ZRAD COORD IWINDO
REMAP ICORD ANGAX XORIGIN YORIGIN ZORIGIN NWGRD MAXREL
X1 X2 XD Y1 Y2 YD Z1 Z2 ZD
SPEC P3 P4 P5 P6 P7 P8 P9 P10
ROTATE INX INY INZ OUTX OUTY OUTZ
LINEAR FIELD
UNFOLD FIELD NYQ
END

RENAME NAMOLD TO NAMNEW NAMOLD TO NAMNEW NAMOLD TO NAMNEW
SAMPLER NAMOUF NAMU NAMV NAMW XRAD YRAD ZRAD COORD IWINDO
SHIFTER NAMOUF NAMINF NAMTIM ITANAL SMDDIR SMDSPEED IADTYP ZLOWER ZUPPER
STATS IDEST IFIXAX SKIP NSPEC ITYP IWINDO
STPLOT IDEST IFIXAX IORENT MEAN SIGMA MIN MAX SDFAC IWINDO
NMSPEC STMIN STMAX
END

SURFACE IDEST SKIP ICONAX XEYMUL YEYMUL FEYMUL LABTYP IWINDO
NMSPEC VALMIN VALMAX VALZER
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......

Appendix A-2
+++++ A Summary listing of all CEDRIC commands+++++
Names of parameters are listed

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.......
SYNTHES NSNVOL NRADS DTEST1 DTEST2 DTEST3 ITWOEQ ITANAL STMDIR STMSPD
LUNIT NAMVOL IbegTM IENDTM IREWND NAMVEL LADTYP NAMTIM NADFSW
INPUT NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP
OUTPUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT
LUNIT NAMVOL IbegTM IENDTM IREWND NAMVEL LADTYP NAMTIM NADFSW
INPUT NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP
OUTPUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT
LUNIT NAMVOL IbegTM IENDTM IREWND NAMVEL LADTYP NAMTIM NADFSW
INPUT NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP NAMINP
OUTPUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT NAMOUT

END
THREED IDEST ICONAX XSTR YSTR ZSTR XEYE YEYE ZEYE
NMSPEC CLEVEL IVISBL

END
TRANSFERLUNIT NAMVOL IbegTM IENDTM IREWND NAMTRN NAMTRN NAMTRN NAMTRN
NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN
UNFOLD NAMOUF NAMINF METHOD P5 P6 P7 P8 IFIXAX IWINDO
UNFOLD NAMOUF NAMINF AUTO LOCDIM MINPTS MAXDEV VNYQ IFIXAX IWINDO
UNFOLD NAMOUF NAMINF FORCEIN VNYQ VREF VMIN VMAX IFIXAX IWINDO
UNFOLD NAMOUF NAMINF FORCEDOUTVNYQ VREF VMIN VMAX IFIXAX IWINDO
UNFOLD NAMOUF NAMINF AUTOTEMPNAMTPF VNYQ ISPCNX LEVEL IFIXAX IWINDO
UNFOLD NAMOUF NAMINF AUTOFILKNAMTPF VNYQ ISPCNX LEVEL IFIXAX IWINDO
UNFOLD NAMOUF NAMINF AUTOSLOPNAMTPF VNYQ ISPCNX LEVEL IFIXAX IWINDO
UNFOLD NAMOUF NAMINF FORTEMP NAMTPF VNYQ IFIXAX IWINDO
VALUE IOPCOD NAMVAR VALUE
WINDOW ISPCNX X1 X2 Y1 Y2 Z1 Z2
WRITVOL LUN NAMTAP NAMVOL IPOS NFSKIP FEET FORMAT
WTRANS LUNIT NAMVOL IbegTM IENDTM ISPCNX XTRANS YTRANS ZTRANS IWINDO
NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN NAMTRN
END

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....

Appendix A-3
Examples of CEDRIC commands

This is a summary of all CEDRIC commands where some values or different options have been substituted for the parameter Names to show more specifically how the syntax looks in practice. A complete listing of all the FUNCTIONs is also included.

BADVAL -1000.0
CHANGE NAMFLD INDEX XX.X YY.Y ZZ.Z 0.0
CHANGE NAMFLD DISTANCE XX.X YY.Y ZZ.Z BAD
CODED PRINT Z 1. FULL
CODED MICRO X 1. WINDOW
CODED PRINT Y 1. FULL
PRI 1.0 0.0 5.0 20. 20.
SEC 1.0 0.0 5.0 20. 20.
ALL 1.0 0.0 5.0 20. 20.

SUPERCALIFRAGILISTICEXPEALODOUS (AND OTHER WORDS OF WISDOM)

CONVERG NAMOUF U V 3.
CONVERG NAMOUF U V 5.
COORD CART
COORD COPLANE
CREATE MIN.X MAX.X SPAC.X MIN.Y MAX.Y SPAC.Y MIN.Z MAX.Z SPAC.Z
CREATE OFF
CROSS NAMOUF NAMREF NAMLAG LAGI LAGJ IZERO JZERO Z FULL
DEFINE NAMBLK

DIGITAL PRINT Z 1. FULL
DIGITAL MICRO X 1. FULL
DIGITAL BOTH Y 1. WINDOW
PRI 1.0 3.
SEC 1.0 3.
ALL 1.0 3.

EXPAND NAMBLK
FIELDSETPRI NAMFLD1 NAMFLD2 NAMFLD3
FIELDSETSEC NAMFLD4 NAMFLD5 NAMFLD6 NAMFLD7 NAMFLD8
FILTER NAMOUF NAMINF UNI Z FULL
FILTER NAMOUF NAMINF HAN Y FULL
FILTER NAMOUF NAMINF INV X FULL
FILTER NAMOUF NAMINF TWO Z WINDOW
FILTER NAMOUF NAMINF LEI 3.0 Z FULL
FILTER NAMOUF NAMINF L3D 1.0 Z FULL
FILTER NAMOUF NAMINF LEI NSTEP Z FULL
FILTER NAMOUF NAMINF LEA NSTEP Z WINDOW
FILTER NAMOUF NAMINF LT3 2.0 Z FULL
Examples of CEDRIC commands

Parameter values rather than Names appear in some instances

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....

FIXIDS IWORD IVALUE IWORD IVALUE IWORD IVALUE IWORD IVALUE

FUNCTIONNAME 1.0 Z WINDOW

NAMOUF P FUNCNAM NAMFLD1 NAMFLD2 C1 C2 C3 C4

FUNCTIONNAME 1.0 Z FULL

NAMOUF P DF/DI NAMFLD1
NAMOUF P DF/DJ NAMFLD1
NAMOUF P DDI+DDJ NAMFLD1 NAMFLD2
NAMOUF P DDI-DDJ NAMFLD1 NAMFLD2
NAMOUF P DDJ-DDI NAMFLD1 NAMFLD2
NAMOUF P *D/DI NAMFLD1 NAMFLD2
NAMOUF P *D/DJ NAMFLD1 NAMFLD2
NAMOUF P DDI*DDJ NAMFLD1 NAMFLD2
NAMOUF P * NAMFLD1 NAMFLD2 C1
NAMOUF P SQRT NAMFLD1
NAMOUF P TENLOG NAMFLD1 C1 C2
NAMOUF P ORELSE NAMFLD1 NAMFLD2
NAMOUF P SQ+SQ NAMFLD1 NAMFLD2
NAMOUF P RHOWGT NAMFLD1 C1
NAMOUF P + NAMFLD1 NAMFLD2 C1 C2
NAMOUF P - NAMFLD1 NAMFLD2 C1 C2
NAMOUF P / NAMFLD1 NAMFLD2 C1
NAMOUF P RHONORM NAMFLD1 C1
NAMOUF P LINEAR NAMFLD1 C1 C2
NAMOUF P ABS NAMFLD1
NAMOUF P ONLYIF NAMFLD1 NAMFLD2
NAMOUF P ONLYIFC>NAMFLD1 NAMFLD2 C1
NAMOUF P ONLYIFC<NAMFLD1 NAMFLD2 C1
NAMOUF P LN NAMFLD1 C1 C2
NAMOUF P EXP NAMFLD1 C1
NAMOUF P POWER NAMFLD1 C1 C2
NAMOUF P RELPLANENAMFLD1 C1
NAMOUF P XYDIST C1 C2
NAMOUF P FUNZ C1 C2
NAMOUF P SIN NAMFLD1 C1 C2
NAMOUF P ONLYIFNONAMFLD1 NAMFLD2
NAMOUF P RANGE C1 C2 C3
NAMOUF P COS NAMFLD1 C1 C2
NAMOUF P RANDOM C1 C2
NAMOUF P MAX NAMFLD1 NAMFLD2
NAMOUF P MIN NAMFLD1 NAMFLD2
NAMOUF P ATAN2 NAMFLD1 NAMFLD2
NAMOUF P AZ C1 C2
NAMOUF P EL C1 C2 C3
NAMOUF P CON C1
NAMOUF P BAD
NAMOUF P FUNX C1 C2
NAMOUF P FUNY C1 C2

END

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....

Appendix A-5
+++++ Examples of CEDRIC commands ++++
Parameter values rather than Names appear in some instances

FUNCTIONNAME 1.0 Z WINDOW
NAMOUF P FUNCNAM NAMFLD1 NAMFLD2 C1 C2 C3 C4
END

FUNCTIONNAME 1.0 Z FULL
NAMOUF P PROFILE NAMFLD1 C1
NAMOUF P LOGTEN NAMFLD1 C1 C2
NAMOUF P MODULO NAMFLD1 C1
NAMOUF P FLOOR NAMFLD1 C1
NAMOUF P CEILING NAMFLD1 C1
NAMOUF P PROJECT NAMFLD1 NAMFLD2 C1
NAMOUF P BITCOUNTNAMFLD1
NAMOUF P NORMAL C1 C2
NAMOUF P PROFMIN NAMFLD1 C1
NAMOUF P PROFMAX NAMFLD1 C1
NAMOUF P IFNOC1C2NAMFLD1 NAMFLD2 C1 C2
NAMOUF P INSIDE NAMFLD1 NAMFLD2 C1 C2
NAMOUF P OUTSIDE NAMFLD1 NAMFLD2 C1 C2
NAMOUF P COUNT NAMFLD1 C1
NAMOUF P MEANAX1 NAMFLD1
NAMOUF P MEANAX2 NAMFLD1
NAMOUF P RELI NAMFLD1 C1
NAMOUF P RELJ NAMFLD1 C1
NAMOUF P RELIJ NAMFLD1 C1 C2
NAMOUF P LAT(X,Y) C1 C2
NAMOUF P LON(X,Y) C1 C2
NAMOUF P SDEVAX1 NAMFLD1
NAMOUF P SDEVAX2 NAMFLD1
NAMOUF P XCART C1 C2
NAMOUF P YCART C1 C2
NAMOUF P USTOPO C1 C2
END

FUNCTIONNUMBER -1.0 Z WINDOW
NAMOUF P 1-62 NAMFLD1 NAMFLD2 C1 C2 C3 C4
END

FUNCTIONNAME 1.0 Z WINDOW
NAMOUF C CONPLANEINFLD CONSET
END

Appendix A-6
+++++ Examples of CEDRIC commands ++++
Parameter values rather than Names appear in some instances

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
GRAPHICSIX*IY*IZZ 2. FULL
CONTOUR PRI CONT 0010100 DIGSCL UNI 0.0 60.0 10.0
CONTOUR SEC HAFT 0010100 DIGSCL NON 0.0 60.0 10.0
CONTOUR ALL BOTH 0010100 DIGSCL NON 0.0 60.0 10.0
ALPHA NAMFLD 1.0 0.0 5.0 26 26 -1.0
DIGITAL NAMFLD 1.0 3.0 -1.0
VECTOR NAMHOR NAMVER ARROW -1. 2.0 1.0 FIX
VECTOR NAMHOR NAMVER STREAM 2.0
SCATTER NAMHOR -50. 50. NAMVER -50. 50. 0.
OVERLAY IFPRIM IFOVLY C S L
END
GRAPHICS 2* 2* 1Z 1.0 RELATIVE: SINGLE RADAR INPUT FIELDS WINDOW
VECTOR DFILLMAP FILLMAP ARROW 1.0 5.0 1.0 PRO
CONTOUR DZDM FALL 00111000 UNI -20.0 50.0 5.0
CONTOUR VRTH FALL 00011010 UNI -12.5 12.5 1.0
CONTOUR VRFL FALL 00011000 UNI -12.5 12.5 1.0
END
GRAPHICSMICRO Z 2.0 RELATIVE: REFLECTIVITY AND CART WINDS FULL
VECTOR U V ARROW -1.0 5.0 1.0 PRO
CONTOUR DZDM2 FALL 00011010 UNI -20.0 50.0 5.0
CONTOUR VRFL2 FALL 00011010 UNI -12.5 12.5 1.0
CONTOUR DZDM3 FALL 00111010 UNI -20.0 50.0 5.0
CONTOUR VRFL3 FALL 00011010 UNI -12.5 12.5 1.0
CONTOUR CONV FALL 00011000 UNI -10.5 10.5 1.0
CONTOUR WUP FALL 00011000 UNI -12.5 12.5 1.0
CONTOUR WDN FALL 00011000 UNI -12.5 12.5 1.0
CONTOUR WVAR FALL 00011000 UNI -12.5 12.5 1.0
CONTOUR WUP-DN FALL 00011000 UNI -12.5 12.5 1.0
CONTOUR HSPD FALL 00111010 UNI 0.0 20.0 1.0
END
HISTO MICRO Z 1.0 VOLUME RELATIVE: MEASUREMENT STATISTICS FULL
VRNE 1.0 -20.0 20.0 0.5 ON BLUE 10.0 DISPLAY
VRTH 1.0 -20.0 20.0 0.5 ON BLUE 15.0 DISPLAY
VRFL 1.0 -20.0 20.0 0.5 ON BLUE 15.0 DISPLAY
END
HISTO MICRO Z 1.0 VOLUME RELATIVE: SYNTHESIS STATISTICS FULL
U 1.0 -10.0 10.0 0.2 ON BLUE 10.0 DISPLAY
V 1.0 -10.0 10.0 0.2 ON BLUE 10.0 DISPLAY
CONV 1.0 -10.0 10.0 0.2 ON BLUE 15.0 DISPLAY
WUP 1.0 -10.0 10.0 0.2 ON BLUE 15.0 DISPLAY
WDN 1.0 -10.0 10.0 0.2 ON BLUE 15.0 DISPLAY
WVAR 1.0 -10.0 10.0 0.2 ON BLUE 15.0 DISPLAY
WUP-DN 1.0 -10.0 10.0 0.2 ON BLUE 15.0 DISPLAY
END
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......

Appendix A-7
+++++ Examples of CEDRIC commands ++++
Parameter values rather than Names appear in some instances

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....

INTEGR NAMOUF NAMINF NAMTOP -1.0 YES CONST 0.0 ZLOWER ZUPPER
INTEGR NAMOUF NAMINF NAMTOP 1.0 NO FRACT 1.0 ZLOWER ZUPPER
INTEGR NAMOUF NAMINF NAMTOP -1.0 YES FIELD FIELD ZLOWER ZUPPER
LAPLACE NAMOUF DFDX DFDY .001 400.

COMMENT
ITERATIVE ITERATION COMMAND FOR TWO EQUATION SOLUTION

COMEND

MASS2 UNEW VNEW WNEW D*0.1 FIELD WIDN 10.01 D=1.0 D=15.0
D=1.0 ZRAD1 2.5 0.120 0.04

PATCHER NAMOUF NAMINF FILLCON 5. 3. 4. Z WINDOW
PATCHER NAMOUF NAMINF FILLALL 2. Z FULL
PATCHER NAMOUF NAMINF DECILOC 3. 4. NYQ/2 Z WINDOW
PATCHER NAMOUF NAMINF DECIGLO 2.0 Z FULL

QUIT
READVOL LUNIT NEXT 000000. 240000. NO
READVOL LUNIT NEXT 000000. 240000. YES
READVOL LUNIT VOLNAME NO

* Reading Dick Oye's netCDF closest point griddler
* READVOL LUNIT NEXT HHMMSS. CCYYMMDDYES DZgrid0 VEgrid0
* Reading WRF model netCDF output files
* READVOL LUNIT NEXT HHMMSS. CCYYMMDDYES WRF DEBUG

REGRESS PRINT Z 1. BOTH VARIND VARDEP WINDOW
ROTATE U V W U V W
LINEAR DBZCP2
UNFOLD VRCP3 NYQ3
UNFOLD VRCP4 NYQ4

END

RENAME NAMOLD AS NAMNEW NAMOLD AS NAMNEW NAMOLD AS NAMNEW
SAMPLER NAMOUF U V W XX.X YY.Y ZZ.Z FULL
SHIFTER NAMOUF NAMINF NAMTIME 000000. 0.0 0.0 UNI
STATS PRINT Z 1. PRI PLAN VOLUME FULL
STATS BOTH Y 1. ALL BOTH WINDOW
WADJ 0.0 50.0
PRI 0.0 0.0
SEC 0.0 0.0
ALL 0.0 0.0

END

Appendix A-8
+++++ Examples of CEDRIC commands ++++

Parameter values rather than Names appear in some instances

P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
SURFACE MICRO 1 XY 2. -6. 2.5 FULL FULL
SURFACE MICRO 1 XY 2. -6. 2.5 FIELD WINDOW
SURFACE MICRO 1 XY 2. -6. 2.5 NONE FULL
SYNTHES NSNVOL NRADS DTEST1 DTEST2 DTEST3 DTEST4 000000. 0.0 0.0
LUNIT NAMVOL 000000. 240000. NO NAMVEL UNI NAMTIM NO
INPUT NAMFDL1 NAMFDL2 NAMFDL3 NAMFDL4 NAMFDL5
OUTPUT NAMFDL1 NAMFDL2 NAMFDL3 NAMFDL4 NAMFDL5
END
THREED MICRO Z XSTR YSTR ZSTR XEYE YEYE ZEYE
PRI 0.0 ABOVE
SEC 0.0 BELOW
ALL 0.0 ABOVE
END
TRANSFERLUNIT NEXT 000000 240000 NO NAMFDL1 NAMFDL2 NAMFDL3 NAMFDL4
NAMFDL5 NAMFDL6 NAMFDL7 NAMFDL8 NAMFDL9
COMMENT
IF TRANSFERING EXACTLY FOUR FIELDS, MUST INCLUDE A BLANK LINE
COMEND
UNFOLD NAMOUF NAMINF AUTO 3. 4. NYQ/2 VNYQ Z FULL
UNFOLD NAMOUF NAMINF FORCEIN VNYQ 0.0 -100.0 100.0 Z FULL
UNFOLD NAMOUF NAMINF FORCEOUTVNYQ 0.0 0.0 0.0 Z FULL
UNFOLD NAMOUF NAMINF AUTOTEMPNAMEPFF VNYQ INDEX LEVEL Z FULL
UNFOLD NAMOUF NAMINF AUTOTEMPNAMEPFF VNYQ DISTANCELEVEL Z FULL
UNFOLD NAMOUF NAMINF AUTOFILLNAMEPFF VNYQ INDEX LEVEL Z FULL
UNFOLD NAMOUF NAMINF AUTOFILLNAMEPFF VNYQ DISTANCELEVEL Z FULL
UNFOLD NAMOUF NAMINF AUTOSLOPNAMEPFF VNYQ INDEX LEVEL Z FULL
UNFOLD NAMOUF NAMINF AUTOSLOPNAMEPFF VNYQ DISTANCELEVEL Z FULL
UNFOLD NAMOUF NAMINF FORTEMP NAMEPFF VNYQ Z WINDOW
VALUE OFF
VALUE ON
VALUE NONE
VALUE DELETE VALUE
VALUE SET NAMVAR TO VALUE
WINDOW FULL
WINDOW INDEX MIN.X MAX.X MIN.Y MAX.Y MIN.Z MAX.Z
WINDOW DISTANCEMIN.X MAX.X MIN.Y MAX.Y MIN.Z MAX.Z
WRTTOL LUNIT UNKNOWN NAMVOL BEG 0. 0.0
WRTTOL LUNIT NAMTAP NAMVOL ADD 0. 0.0
WRTTOL LUNIT NAMTAP NAMVOL SKI 0. 0.0
WRTTOL LUNIT NAMTAP NAMVOL APP 0. 0.0
WTRANS LUNIT NAMVOL HHMMSS HHMMSS INDEX XTRANS YTRANS ZTRANS FULL
NAME1 NAME2 NAME3 NAME4 NAME5 NAME6 NAME7 NAME8 NAME9 NAME10
END
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......

Appendix A-9
APPENDIX B

TABLE OF CEDRIC FUNCTIONS

This appendix contains a table of all the available CEDRIC functions. The FUNCTION command is used to group together and execute any sequence of these functions. This enables the user to algebraically manipulate and to combine data fields. When a data field is operated on by a function each individual value within the designated window is altered. Functions may be referenced either by name or by number.

The following abbreviations are employed in the function definitions:

- F_1 — Field number 1
- F_2 — Field number 2
- C_1 — Constant number 1
- C_2 — Constant number 2
- C_3 — Constant number 3
- ∂ — the partial derivative
- $+$ — the add operator
- $-$ — the subtract operator
- $/$ — the divide operator
- e — the exponential function, $e \approx 2.7182818$
- $\sqrt{()}$ — square root of a quantity
- $(^2)$ — quantity squared
- Mean — the mean of all values of a field within an (I,J) plane
- Min — the minimum of all values of a field within an (I,J) plane
- Max — the maximum of all values of a field within an (I,J) plane
- Good — count the number of good ($\neq \text{BAD}$) values of a field within an (I,J) plane
- MOD — modulo of a quantity with respect to some reference, $\text{MOD}(F, C) = 0$ when $F = C$
- BAD — missing data flag
- X — The X–distance (km) associated with a Cartesian grid point
- Y — The Y–distance (km) associated with a Cartesian grid point
- Z — The Z–distance (km) associated with a Cartesian grid point

An example of FUNCTIONs to compute the advective change of f, where $\text{FINP} = f$ and $\text{FADV} = \mathbf{V} \cdot \nabla f$.

$$\mathbf{V} \cdot \nabla f = u \partial f / \partial x + v \partial f / \partial y + w \partial f / \partial z.$$

<table>
<thead>
<tr>
<th>FUNCTIONNAME</th>
<th>Z</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER T RELPLANEFINP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWER T RELPLANEFINP</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>DF/DZ P UPER LOWER</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTIONNAME</th>
<th>Z</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF/DX T DF/DI FINP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U*DF/DX T * U</td>
<td>DF/DX</td>
<td></td>
</tr>
<tr>
<td>DF/DY T DF/DJ FINP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V*DF/DY T * V</td>
<td>DF/DY</td>
<td></td>
</tr>
<tr>
<td>W*DF/DZ T * W</td>
<td>DF/DZ</td>
<td></td>
</tr>
<tr>
<td>HDF T + UDF/DX V*DF/DY</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>FADV P + WDF/DZ HDF</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Appendix B-1
CEDRIC FUNCTIONS

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>Description of the Function</th>
<th>#F</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DF/DI</td>
<td>$\frac{\partial F}{\partial I}$, where I refers to the current I-axis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>DF/DJ</td>
<td>$\frac{\partial F}{\partial J}$, where J refers to the current J-axis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>DDI+DDJ</td>
<td>$(\frac{\partial F}{\partial I}) + (\frac{\partial F}{\partial J})$, where (I,J) refer to the current non-fixed axes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>DDI-DDJ</td>
<td>$(\frac{\partial F}{\partial I}) - (\frac{\partial F}{\partial J})$, where (I,J) refer to the current non-fixed axes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>DDJ-DDI</td>
<td>$(\frac{\partial F}{\partial I}) - (\frac{\partial F}{\partial J})$, where (I,J) refer to the current non-fixed axes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>*D/DI</td>
<td>$F_1(\frac{\partial F_2}{\partial I})$, where I refers to the current I-axis</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>*D/DJ</td>
<td>$F_1(\frac{\partial F_2}{\partial J})$, where J refers to the current J-axis</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>DDI*DDJ</td>
<td>$(\frac{\partial F_1}{\partial I}) (\frac{\partial F_2}{\partial J})$, where (I,J) refer to current non-fixed axes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>$C_1F_1F_2$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>SQRT</td>
<td>$\sqrt{F_1}$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>TENLOG</td>
<td>Convert from dB scale to linear scale: $C_110^{C_2 F_1}$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>OREELSE</td>
<td>F_1, if $F_1 \neq \text{BAD}$; otherwise F_2, if $F_2 \neq \text{BAD}$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>SQ+SQ</td>
<td>$F_1^2 + F_2^2$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>RHOWGT</td>
<td>Density weighting function: $F_1C_1e^{-C_2Z}$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>$C_1F_1 + C_2F_2$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>$C_1F_1 - C_2F_2$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>/</td>
<td>C_1F_1/F_2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>RHONORM</td>
<td>Inverse of density weighting function: $F_1/(C_1e^{-C_2Z})$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>LINEAR</td>
<td>$C_1F_1 + C_2$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>ABS</td>
<td>$</td>
<td>F_1</td>
<td>$</td>
</tr>
<tr>
<td>21</td>
<td>ONLYIF</td>
<td>F_1; only if $F_2 \neq \text{BAD}$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>ONLYIFC></td>
<td>F_1; only if $C_1 > F_2$; i.e. $F_2 < C_1$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>ONLYIFC<</td>
<td>F_1; only if $C_1 < F_2$; i.e. $F_2 > C_1$</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Appendix B-2
CEDRIC FUNCTIONS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th># NAME</th>
<th>Description of the Function</th>
<th>ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 LN</td>
<td>Logarithm to the base e: $C_1 \ln(C_2 F_1)$</td>
<td></td>
<td>#F: 1, #C: 2</td>
</tr>
<tr>
<td>25 EXP</td>
<td>$C_1 e^{F_1}$</td>
<td></td>
<td>#F: 1, #C: 1</td>
</tr>
<tr>
<td>26 POWER</td>
<td>$C_1 F_1^{C_2}$</td>
<td></td>
<td>#F: 1, #C: 2</td>
</tr>
<tr>
<td>27 RELPLANE</td>
<td>F_1 at (current level + C_1)</td>
<td></td>
<td>#F: 1, #C: 1</td>
</tr>
<tr>
<td>28 XYDIST</td>
<td>Horizontal distance of (X,Y) locations from (C_1, C_2): $H(X, Y) = [(X - C_1)^2 + (Y - C_2)^2]^{1/2}$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>29 FUNZ</td>
<td>Linear function of height Z: $C_1 Z + C_2$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>30 SIN</td>
<td>Sine function: $\sin(C_1 F_1 - C_2)$</td>
<td></td>
<td>#F: 1, #C: 2</td>
</tr>
<tr>
<td>31 ONLYIFNO</td>
<td>F_1; only if $F_2 = BAD$</td>
<td></td>
<td>#F: 2, #C: 0</td>
</tr>
<tr>
<td>32 RANGE</td>
<td>Slant range of (X,Y,Z) locations from (C_1, C_2, C_3): $R(X, Y, Z) = [(X - C_1)^2 + (Y - C_2)^2 + (Z - C_3)^2]^{1/2}$</td>
<td></td>
<td>#F: 0, #C: 3</td>
</tr>
<tr>
<td>33 COS</td>
<td>Cosine function: $\cos(C_1 F_1 - C_2)$</td>
<td></td>
<td>#F: 1, #C: 2</td>
</tr>
<tr>
<td>34 RANDOM</td>
<td>Uniformly distributed random variable in the interval $[C_1, C_2]$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>35 MAX</td>
<td>Maximum value of two functions at each (I,J) grid point: $Max[F_1, F_2]$</td>
<td></td>
<td>#F: 2, #C: 0</td>
</tr>
<tr>
<td>36 MIN</td>
<td>Minimum value of two functions at each (I,J) grid point: $Min[F_1, F_2]$</td>
<td></td>
<td>#F: 2, #C: 0</td>
</tr>
<tr>
<td>37 ATAN2</td>
<td>Arc tangent function: $\tan^{-1}(F_2/F_1)$</td>
<td></td>
<td>#F: 2, #C: 0</td>
</tr>
<tr>
<td>38 AZ</td>
<td>Azimuth angle of (X,Y) grid points relative to (C_1, C_2): $Az(X, Y) = \tan^{-1}[(X - C_1)/(Y - C_2)]$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>39 EL</td>
<td>Elevation angle of (X,Y,Z) grid points relative to (C_1, C_2, C_3): $El(X, Y, Z) = \tan^{-1}[(Z - C_3)/[(X - C_1)^2 + (Y - C_2)^2]^{1/2}]$</td>
<td></td>
<td>#F: 0, #C: 3</td>
</tr>
<tr>
<td>40 CON</td>
<td>Set the output field to the constant C_1</td>
<td></td>
<td>#F: 0, #C: 1</td>
</tr>
<tr>
<td>41 BAD</td>
<td>Set the output field to BAD, the missing data flag</td>
<td></td>
<td>#F: 0, #C: 0</td>
</tr>
<tr>
<td>42 FUNX</td>
<td>Linear function of distance X: $C_1 X + C_2$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>43 FUNY</td>
<td>Linear function of distance Y: $C_1 Y + C_2$</td>
<td></td>
<td>#F: 0, #C: 2</td>
</tr>
<tr>
<td>44 PROFILE</td>
<td>Profile of the mean value: $C_1 Mean[F_1]$</td>
<td></td>
<td>#F: 1, #C: 1</td>
</tr>
</tbody>
</table>

Appendix B-3
CEDRIC FUNCTIONS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>#</th>
<th>NAME</th>
<th>Description of the Function</th>
<th>#F</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>LOGTEN</td>
<td>Convert from linear to dB (log base 10) scale: $C_1 \log(C_2 F_1)$</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>MODULO</td>
<td>Modulo function: $MOD(F_1, C_1)$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>FLOOR</td>
<td>F_1, only if $F_1 > C_1$; otherwise C_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>CEILING</td>
<td>F_1, only if $F_1 < C_1$; otherwise C_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>PROJECT</td>
<td>Projection of (U, V) components onto a plane whose West to East orientation is $Az = C_1$, and $(U, V) = (F_1, F_2)$. If $C_1 = X$ or is “blank”, the X-axis angle will be used. If $C_1 = Y$, the Y-axis angle will be used.</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>BITCOUNT</td>
<td>Counts the number of “1” (non-zero) bits contained in each datum of F_1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>NORMAL</td>
<td>Normally distributed random variable: mean value of C_1 and a standard deviation of C_2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>PROFMIN</td>
<td>Profile along the current fixed axis of the minimum value of F_1: $C_1 \text{Min}[F_1]$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>PROFMAX</td>
<td>Profile along the current fixed axis of the maximum value of F_1: $C_1 \text{Max}[F_1]$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>IFNOC1C2</td>
<td>F_1, if $F_2 \neq C_1$; otherwise C_2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>INSIDE</td>
<td>F_1, if $C_1 \leq F_2 \leq C_2$</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>OUTSIDE</td>
<td>F_1, if $F_2 < C_1$ or $F_2 > C_2$</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>COUNT</td>
<td>Constant times number of good values in F_1: $C_1 \text{Good}[F_1]$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>MEANAX1</td>
<td>For each J, store the mean value of F_1 along the i-axis at each I-location of F_{out}: $F_{out}(I, J) = \sum_i F_1(i, J) / M$</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>MEANAX2</td>
<td>For each I, store the mean value of F_1 along the j-axis at each J-location of F_{out}: $F_{out}(I, J) = \sum_j F_1(I, j) / N$</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>RELI</td>
<td>$F_1(I + C_1, J)$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>RELJ</td>
<td>$F_1(I, J + C_1)$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>RELIJ</td>
<td>$F_1(I + C_1, J + C_2)$</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B-4
63 LAT(X,Y) Compute latitude of each grid point using C_1 and C_2 as latitude and longitude of origin. If C_1 and C_2 are missing, the latitude and longitude of the origin will be obtained from the housekeeping.

64 LON(X,Y) Compute longitude of each grid point using C_1 and C_2 as latitude and longitude of origin. If C_1 and C_2 are missing, the latitude and longitude of the origin will be obtained from the housekeeping.

65 SDEVAX1 Compute standard deviation of F_1 along I axis, holding J and K fixed, for all J and K. Result is a field of standard deviations. For a given (J,K), all I points will have the same value (the standard deviation along that axis).

66 SDEVAX2 Compute standard deviation of F_1 along J axis, holding I and K fixed, for all I and K. Result is a field of standard deviations. For a given (I,K), all J points will have the same value (the standard deviation along that axis).

67 XCART Compute x-coordinate of each longitude-latitude grid point using C_1 and C_2 as latitude and longitude of origin. If C_1 and C_2 are missing, the latitude and longitude of the origin will be obtained from the housekeeping.

68 YCART Compute y-coordinate of each longitude-latitude grid point using C_1 and C_2 as latitude and longitude of origin. If C_1 and C_2 are missing, the latitude and longitude of the origin will be obtained from the housekeeping.

67 USTOPO Compute topographic heights (decameters) within the continental US from the Defense Mapping Agency (DMA) 30-sec data base. The input constants C_1 and C_2 are the latitude and longitude of origin. If C_1 and C_2 are missing, the latitude and longitude of the origin will be obtained from the housekeeping. Requires that ascii.topodata be linked to topo.dat within the directory where CEDRIC is executed.
EFFECTIVE USE OF COLOR GRAPHICS IN CEDRIC

The color graphics options in CEDRIC ultimately should make it easier for scientists to understand the physical meaning and content of plots and data sets. One of the most useful options is with the CONTOUR subcommand of the GRAPHICS card. Here users can turn on color area filling of contour levels. The result is a plot that is much easier to understand. Users turn on the area filling with the P4 parameter. To emphasize the different levels further, we recommend that black contour lines be drawn in with the color area filling. Options to overlay colored contour lines or colored vectors on color area filled plots are also useful. We suggest using white vectors or white contour lines for the overlayed fields. Other colors can change when overlayed on various other colors. For instance, yellow contour lines look yellow on top of grey, but look black on top of blue. See the main part of this manual for the details about invoking the color options.

When a CEDRIC run with graphics commands is completed, the plots are contained in a metacode file called “gmeta” in the directory that CEDRIC was executed from. Many things can be done with this file to view its contents. One tool for viewing the metacode file is a workstation running some kind of windowing system like X windows. The file should be transported from the Cray to the workstation via the network utilities “rcp” or “ftp”. Once on the workstation, the commands of interest are “ctrans” and “idt”. These programs are part of the NCAR Graphics package. Both of these commands pop up a window that allows the user to view the various frames in the metacode file. The difference between “idt” and “ctrans” is that “idt” allows the user to jump around to random frames in the metacode file while with “ctrans”, the user can only step forward, one frame at a time in the file.

One addition to the Graphics options is the option to fill between contour levels with shades of grey. These plots are especially useful for getting copies on a postscript printer. If you have a metacode file with grey area filled contours, use “ctrans” with the “-d ps.color” option to create a postscript file that can be printed on a black and white postscript laser printer.

Producing hard copies of the metacode file on “shavano” (Cray-YMP) is also an option. One can produce color microfilm and color slides directly from the graphics file. The basic command used is “sendtg” and can be executed from the job script that is run on the Cray. To produce color microfilm, we suggest:

```
sendtg gmeta macr=viewercl titl='XXXXXXX' qual=better
```

To produce color slides, use:

```
sendtg gmeta macr=slidesclq mnt=yes qual=better
```

For detailed information about processing metacode files on the Cray, contact the consulting office in the Scientific Computing Division at NCAR.
APPENDIX D
CEDRIC CARTESIAN FILE DESCRIPTION

CEDRIC has used several different file structures throughout its history. The format currently in use has no physical record structure. It is written using the standard C input-output libraries and is a byte stream. Information at the beginning of the file reveals how many logical CEDRIC volumes are contained in the file and what their starting byte addresses are relative to the beginning of the file. CEDRIC files are meant to be portable to most machines in use in the scientific community. The basic requirements are that the machine have C on it and that it represent integers using two’s complement. Several words at the beginning of the file indicate the byte ordering convention used by the machine that wrote the file. The machine reading the file will do any byte swapping necessary.

Below is a very brief description of the structure of CEDRIC files. It is not intended that this information be detailed enough that any routines can be written to read and write CEDRIC volumes. We can provide either guidance in that regard or an input-output software package.

FILE—a file consists of 1 or more VOLUMEs. At the beginning of the file is information about the number of VOLUMEs in the file, their byte addresses, and other miscellaneous information.

VOLUME—each volume contains a 3-dimensional set of radar FIELDs mapped to an ordered (X,Y,Z) or (X,Y,C) coordinate system. Volumes are associated with a fixed time of day and may contain a field with temporal information corresponding to each individual location. VOLUMEs are preceded by a 510-word logical record containing header information describing the characteristics of the volume. Within a VOLUME, the data corresponding to each radar FIELD is organized in LEVELs associated with a constant height (Z) or constant coplane angle (C).

LEVEL—A constant Z- or C-level contains the data from each FIELD at that height. LEVELs are preceded by a 10-word logical record containing header information describing the characteristics of the LEVEL. FIELD order is indicated in the VOLUME header. This header is described on the following pages. Within a LEVEL, the data from each field is contiguous; that is, all the data from Field 1 followed by all the data from Field 2 and so forth.

FIELD—Each field contains the information for a single parameter such as radial velocity, reflectivity, U-component, V-component, and so forth. Within a LEVEL, the data from each radar FIELD is organized as a two-dimensional FORTRAN array such that the lower left corner corresponds to the (1,1) element and the upper right corner corresponds to the (M,N) element; where M increases along the X-axis and N increases along the Y-axis. Each element of a FIELD is a 16-bit integer word.

ILLUSTRATION OF FILE STRUCTURE

FILE . . .
 · VOLUME 1 . .
 · · LEVEL 1 . .
 · · · · FIELD 1 . .
 · · · · . .
 · · · . .
 · · . .
 · · . .

 · · · · FIELD last
 · · · · LEVEL last
 . .
 · · VOLUME last
END of FILE
The header for CEDRIC volumes consists of 510, 16-bit words that are to be interpreted as either two ASCII alphanumeric characters (A) or as signed integers (2’s complement). Several of the integer values are scaled so that their true representation will be their integer value times or divided by this scaling factor. The two general scaling factors are: CF for angle scaling (a value of 64) and SF for general scaling (a value of 100). Header words that are updated by CEDRIC are listed as “CD”; those that are generated during interpolation using SPRINT are listed as “SP”.

<table>
<thead>
<tr>
<th>WORDS</th>
<th>TYPE</th>
<th>SCALING</th>
<th>UPDATES</th>
<th>DESCRIPTION OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-004</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Tape catalogue number (6 char) or disk file name (8 char; 2 per word)</td>
</tr>
<tr>
<td>005-006</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Program name (4 char; 2 per word)</td>
</tr>
<tr>
<td>007</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Program version (2 char; 2 per word)</td>
</tr>
<tr>
<td>008-009</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Project name (4 char; 2 per word)</td>
</tr>
<tr>
<td>010-012</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Scientist name (6 char; 2 per word)</td>
</tr>
<tr>
<td>013-015</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Radar station or data origin (6 char; 2 per word)</td>
</tr>
<tr>
<td>016-017</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Output coordinate system (CRT, ELEV, or CPL) (4 char; 2 per word)</td>
</tr>
<tr>
<td>018-020</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Tape catalogue number (6 char; 2 per word); depends on computer installation</td>
</tr>
<tr>
<td>021-023</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Beginning date of radar volume (YYMMDD)</td>
</tr>
<tr>
<td>024-026</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Beginning time of radar volume (HHMMSS)</td>
</tr>
<tr>
<td>027-029</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Ending date of radar volume (YYMMDD)</td>
</tr>
<tr>
<td>030-032</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Ending time of radar volume (HHMMSS)</td>
</tr>
<tr>
<td>033-034</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Coordinate origin: Latitude (DEG-MIN)</td>
</tr>
<tr>
<td>035</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Coordinate origin: Latitude (SEC)</td>
</tr>
<tr>
<td>036-037</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Coordinate origin: Longitude (DEG-MIN)</td>
</tr>
<tr>
<td>038</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Coordinate origin: Longitude (SEC)</td>
</tr>
<tr>
<td>039</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Z-coordinate of the origin: Height in meters (MSL); always 0.0</td>
</tr>
<tr>
<td>040</td>
<td>I</td>
<td>(*CF)</td>
<td>SP,CD</td>
<td>Degrees clockwise from North to positive X-axis</td>
</tr>
<tr>
<td>041-042</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>X,Y-coordinates of the origin (km)</td>
</tr>
<tr>
<td>043-044</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Time zone (4 char; 2 per word)</td>
</tr>
<tr>
<td>045-047</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Job identification number (6 char; 2 per word)</td>
</tr>
<tr>
<td>048-050</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Submitter’s name (6 char; 2 per word)</td>
</tr>
<tr>
<td>051-054</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Date of program run (MMDDYY); (8 char; 2 per word)</td>
</tr>
<tr>
<td>055-058</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Time of program run (HHMMSS); (8 char; 2 per word)</td>
</tr>
<tr>
<td>059</td>
<td></td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Tape edition number (Incremented by Edit2D)</td>
</tr>
<tr>
<td>061</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Length of header record (always 510)</td>
</tr>
<tr>
<td>062</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Computer installation (2 char; 2 per word)</td>
</tr>
<tr>
<td>063</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of bits per data value (always 16)</td>
</tr>
<tr>
<td>064</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Blocking mode (always 2)</td>
</tr>
<tr>
<td>065</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Block size or physical record length (always 3200)</td>
</tr>
<tr>
<td>066</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Data set: subsectioned = “SU” or original = “OR”</td>
</tr>
<tr>
<td>067</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Missing data flag (always -32768)</td>
</tr>
<tr>
<td>068</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>General scaling factor: SF = 100</td>
</tr>
<tr>
<td>069</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Angle scaling factor: CF = 64</td>
</tr>
<tr>
<td>070</td>
<td></td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORDS</td>
<td>TYPE</td>
<td>SCALING</td>
<td>UPDATES</td>
<td>DESCRIPTION OF CONTENTS</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>071–074</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 1 (8 char, 2 per word)</td>
</tr>
<tr>
<td>075–078</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 2 (8 char, 2 per word)</td>
</tr>
<tr>
<td>079–082</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 3 (8 char, 2 per word)</td>
</tr>
<tr>
<td>083–086</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 4 (8 char, 2 per word)</td>
</tr>
<tr>
<td>087–090</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 5 (8 char, 2 per word)</td>
</tr>
<tr>
<td>091–094</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Input file label 6 (8 char, 2 per word)</td>
</tr>
<tr>
<td>095</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>096</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of data records per field per plane</td>
</tr>
<tr>
<td>097</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of data records per plane</td>
</tr>
<tr>
<td>098</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of data records per volume, excluding all headers</td>
</tr>
<tr>
<td>099</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Total number of records per volume, including all headers</td>
</tr>
<tr>
<td>100</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Total number of records per volume, excluding level headers</td>
</tr>
<tr>
<td>101–104</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Volume scan designation (8 char, 2 per word)</td>
</tr>
<tr>
<td>105</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of planes in volume scan</td>
</tr>
<tr>
<td>107</td>
<td>I</td>
<td>(/SF)</td>
<td>SP</td>
<td>Volume scanned (km^3)</td>
</tr>
<tr>
<td>108</td>
<td>I</td>
<td>(/SF)</td>
<td>SP</td>
<td>Total number of sampling points</td>
</tr>
<tr>
<td>109</td>
<td>I</td>
<td>(*SF)</td>
<td>SP</td>
<td>Average sampling density (sample point per km^3)</td>
</tr>
<tr>
<td>110</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Number of samples integrated in time series</td>
</tr>
<tr>
<td>111</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Physical volume number within disk file</td>
</tr>
<tr>
<td>112–115</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116–118</td>
<td>I</td>
<td>None</td>
<td>CD</td>
<td>Beginning date of the volume (YYMMDD)</td>
</tr>
<tr>
<td>119–121</td>
<td>I</td>
<td>None</td>
<td>CD</td>
<td>Beginning time of the volume (HHMMSS)</td>
</tr>
<tr>
<td>122–124</td>
<td>I</td>
<td>None</td>
<td>CD</td>
<td>Ending date of the volume (YYMMDD)</td>
</tr>
<tr>
<td>125–127</td>
<td>I</td>
<td>None</td>
<td>CD</td>
<td>Ending time of the volume (HHMMSS)</td>
</tr>
<tr>
<td>128</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Volume Time (Sec)</td>
</tr>
<tr>
<td>129</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Index Number-time (4)</td>
</tr>
<tr>
<td>130–131</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132–133</td>
<td>I</td>
<td>(*SF)</td>
<td></td>
<td>Minimum and maximum ranges of the volume scanned (km)</td>
</tr>
<tr>
<td>134</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Average number of gates per beam</td>
</tr>
<tr>
<td>135</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Average spacing of gates (m)</td>
</tr>
<tr>
<td>136–137</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Minimum and maximum number of gates</td>
</tr>
<tr>
<td>138</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Index number for range (always 1)</td>
</tr>
<tr>
<td>140–141</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142–143</td>
<td>I</td>
<td>(*CF)</td>
<td></td>
<td>Clockwise minimum and maximum azimuths of the sweep (deg)</td>
</tr>
<tr>
<td>144</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Average number of beams per scanned sweep</td>
</tr>
<tr>
<td>145</td>
<td>I</td>
<td>(*CF)</td>
<td></td>
<td>Average increment between beams per sweep (deg)</td>
</tr>
<tr>
<td>146–147</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Minimum and maximum number of beams per sweep</td>
</tr>
<tr>
<td>148</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Number of steps per beam (average over scanned volume)</td>
</tr>
<tr>
<td>149</td>
<td>I</td>
<td>None</td>
<td></td>
<td>Index number for azimuth angle (always 2)</td>
</tr>
<tr>
<td>150</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix D-3
<table>
<thead>
<tr>
<th>WORDS</th>
<th>TYPE</th>
<th>SCALING</th>
<th>UPDATES</th>
<th>DESCRIPTION OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>A</td>
<td>SP</td>
<td></td>
<td>Coplane (CO) or ppi (sector scan) (PP) flag</td>
</tr>
<tr>
<td>152-153</td>
<td>I</td>
<td>(*CF)</td>
<td>SP</td>
<td>Minimum and maximum elevation angle of the volume scanned (deg)</td>
</tr>
<tr>
<td>154</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Number of elevation angles scanned</td>
</tr>
<tr>
<td>155</td>
<td>I</td>
<td>(*CF)</td>
<td>SP</td>
<td>Average elevation angle between sweeps (deg)</td>
</tr>
<tr>
<td>156</td>
<td>I</td>
<td>(*CF)</td>
<td>SP</td>
<td>Average elevation angle (deg)</td>
</tr>
<tr>
<td>157</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Scan-direction indicator (+1 = from lowest to highest elevation angle)</td>
</tr>
<tr>
<td>158</td>
<td>I</td>
<td>(*CF)</td>
<td>SP</td>
<td>Baseline angle (CW from true North, coplane only)</td>
</tr>
<tr>
<td>159</td>
<td>I</td>
<td>None</td>
<td>SP</td>
<td>Index number for the angle scanned, either coplane or elevation (always 3)</td>
</tr>
<tr>
<td>160-161</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>X-coordinate; minimum and maximum values (km)</td>
</tr>
<tr>
<td>162</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>X-coordinate: number of grid points</td>
</tr>
<tr>
<td>163</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>X-coordinate: grid spacing (m)</td>
</tr>
<tr>
<td>164</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>X-coordinate: index number (0,1,2,3,4)</td>
</tr>
<tr>
<td>165-166</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Y-coordinate; minimum and maximum values (km)</td>
</tr>
<tr>
<td>167</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Y-coordinate: number of grid points</td>
</tr>
<tr>
<td>168</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Y-coordinate: grid spacing (m)</td>
</tr>
<tr>
<td>169</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Y-coordinate: index number (0,1,2,3,4)</td>
</tr>
<tr>
<td>170-171</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Z-coordinate; minimum and maximum values (m)</td>
</tr>
<tr>
<td>172</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Z-coordinate: number of grid points</td>
</tr>
<tr>
<td>173</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Z-coordinate: grid spacing (m)</td>
</tr>
<tr>
<td>174</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Z-coordinate: index number (0,1,2,3,4)</td>
</tr>
<tr>
<td>175</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of fields (Maximum of 25)</td>
</tr>
<tr>
<td>176-179</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of first field (8 char, 2 per word)</td>
</tr>
<tr>
<td>180</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Scaling factor for first field, actual value = value in file divided by scaling factor</td>
</tr>
<tr>
<td>181-184</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of second field (8 char, 2 per word)</td>
</tr>
<tr>
<td>185</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Scaling factor for second field, actual value = value in file divided by scaling factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>296-299</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of 25th field (8 char, 2 per word)</td>
</tr>
<tr>
<td>300</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Scaling factor for 25th field, actual value = value in file divided by scaling factor</td>
</tr>
<tr>
<td>301</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of grid points per field per plane</td>
</tr>
<tr>
<td>302</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of landmarks</td>
</tr>
<tr>
<td>303</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of radars</td>
</tr>
<tr>
<td>304</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Nyquist velocity (if word 303 = 1)</td>
</tr>
<tr>
<td>305</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Radar constant (if word 303 = 1)</td>
</tr>
<tr>
<td>306-308</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of landmark #1, must be “ORIGIN” (6 char, 2 per word)</td>
</tr>
<tr>
<td>309-310</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Landmark #1: (X,Y) coordinates (km), always (0,0)</td>
</tr>
<tr>
<td>311</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Landmark #1: Z-coordinate (m), always (0)</td>
</tr>
</tbody>
</table>

Appendix D-4
<table>
<thead>
<tr>
<th>WORDS</th>
<th>TYPE</th>
<th>SCALING</th>
<th>UPDATES</th>
<th>DESCRIPTION OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>312-314</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of landmark #2; name of radar if word 303 = 1 (6 char, 2 per word)</td>
</tr>
<tr>
<td>315-316</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Landmark #2 (X,Y) coordinates (km)</td>
</tr>
<tr>
<td>317</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Landmark #2: Z-coordinate (m)</td>
</tr>
<tr>
<td>318-320</td>
<td>A</td>
<td></td>
<td>SP,CD</td>
<td>Name of landmark #3; name of 2nd radar if word 303 > 1 (6 char, 2 per word)</td>
</tr>
<tr>
<td>321-322</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Landmark #3 (X,Y) coordinates (km)</td>
</tr>
<tr>
<td>323</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Landmark #3: Z-coordinate (m)</td>
</tr>
<tr>
<td>342-344</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Name of landmark #7; name of landmark if word 303 > 5 (6 char, 2 per word)</td>
</tr>
<tr>
<td>345-346</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Landmark #7 (X,Y) coordinates (km)</td>
</tr>
<tr>
<td>347</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Landmark #7: Z-coordinate (m)</td>
</tr>
<tr>
<td>348-395</td>
<td></td>
<td></td>
<td></td>
<td>Landmarks 8-15</td>
</tr>
<tr>
<td>396-510</td>
<td></td>
<td></td>
<td></td>
<td>—RESERVED FOR PROGRAM USE—</td>
</tr>
</tbody>
</table>

The header for CEDRIC levels consists of 10, 16-bit words that are to be interpreted as either two ASCII alphanumeric characters (A) or as signed integers (2’s complement). Several of the integer values are scaled so that their true representation will be their integer value times or divided by this scaling factor. The general scaling factor is SF for general scaling (a value of 100). Header words that are updated by CEDRIC are listed as “CD”; those that are generated during interpolation using SPRINT are listed as “SP”.

<table>
<thead>
<tr>
<th>WORDS</th>
<th>TYPE</th>
<th>SCALING</th>
<th>UPDATES</th>
<th>DESCRIPTION OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Always = “LE”</td>
</tr>
<tr>
<td>002</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Always = “VE”</td>
</tr>
<tr>
<td>003</td>
<td>A</td>
<td>SP,CD</td>
<td></td>
<td>Always = “L”</td>
</tr>
<tr>
<td>004</td>
<td>I</td>
<td>(*SF)</td>
<td>SP,CD</td>
<td>Coordinate of the plane (or level); (X, Y, or Z km)</td>
</tr>
<tr>
<td>005</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Plane (or level) number within the volume</td>
</tr>
<tr>
<td>006</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of fields</td>
</tr>
<tr>
<td>007</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of grid points per plane (or level)</td>
</tr>
<tr>
<td>008</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of records per field</td>
</tr>
<tr>
<td>009</td>
<td>I</td>
<td>None</td>
<td>SP,CD</td>
<td>Number of records per plane</td>
</tr>
<tr>
<td>010</td>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix D-5
APPENDIX E

RUNNING CEDRIC ON THE CRAY-YMP AT NCAR

In order to use CEDRIC on the NCAR CRAY computer, the user must construct an input deck with the appropriate Unix shell script commands for accessing and disposing any datasets that are to be created or manipulated. The user is assumed to be reasonably familiar with the Unix operating system and especially its commands and their structures. Those who are not familiar with Unix should contact the Scientific Computing Division (SCD) at NCAR for documentation or assistance. Alternatively, an excellent reference on writing Unix Bourne shell scripts is:

The following is a complete template for setting up a CEDRIC run, including the actual CEDRIC command structure. Please refer to it for the remainder of this discussion. The first part of the script contains resource declarations. The amount of CPU time, the memory needed, and so forth are specified with the “QSUB” commands. Normally, a line that begins with a “#” is treated as a comment by the Cray. However, one exception is when a line starting with a “# ” is followed by “QSUB”. In that case, the parameters immediately following the “QSUB” are passed to the batch processing utility as resource requests.

Following the resource declarations are the input dataset acquisitions. Each dataset or file is acquired from the Mass Store System (MSS) with the “msread” command and placed on the Cray disks. These disk files must then be linked to FORTRAN unit numbers that will be used later when CEDRIC executes. The CEDRIC executable code must also be acquired from the MSS. Output volumes need to be linked as well before the execution of CEDRIC.

After the listing of the CEDRIC input card images comes the actual execution of the code. After execution, any output files are sent to the MSS with the “mswrite” command. There are many options for dealing with the graphics metacode file created by CEDRIC as well. The graphics file produced by CEDRIC always has the name “gmeta”. This file can be sent to the Text and Graphics System (TAGS) for laser printing or for development on microfilm or microfiche. The file can also be transferred via the Internet to remote workstations for viewing. Remote viewing is accomplished using “ctrans” or “idt” that are part of the NCAR Graphics package.

++++++++++A COMPLETE SCRIPT FOR RUNNING CEDRIC ON THE NCAR CRAY-YMP+++++++++++

```
# QSUB -q econ # put in economy queue
# QSUB -s /bin/sh # use the Bourne shell
# QSUB -lT 5:00 # upper limit on CPU time for this script (here 5 min.)
# QSUB -lM 7Mw # internal Cray memory needed to run Cedric
# QSUB -lF 40Mw # upper limit on the sum of the sizes of files
# created by this script
#start accounting
ja

# move to large temporary directory since permanent directories are too small
cd $TMPDIR

# acquire the cedric executable; no compiling necessary
msread -f BI cedric.e /ANDERSNB/CEDRIC/cedric.e || exit
chmod +x cedric.e

# acquire input dataset from Mass Store and linked to fortran unit
# CHANGE the filenames here to yours
msread wdaft21 /TUTTLE/TREC/CART/CP3/25JUN01 || exit
ln -s wdaft21 fort.21

# link output volume to a fortran unit
ln -s wdaft31 fort.31
```

Appendix E-1
the following is the cedric input being redirected to cedric.inp
input is terminated by 'EOFA'
cat > cedric.inp << EOFA
COMMENT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
COMEND
DEFINE
FUNCTIONNAME 1.0 Z WINDOW
 UEDIT P ONLYIFC<UTREC VVAR 0.5
 VEDIT P ONLYIFC<VTREC VVAR 0.5
 UEDIT P ONLYIFC>UEDIT VELVAR 8.0
 VEDIT P ONLYIFC>VEDIT VELVAR 8.0
END
PATCHER UEDIT UEDIT DECILOC 3.0 4.0 1.5
PATCHER UEDIT UEDIT DECILOC 3.0 4.0 1.5
PATCHER VEDIT VEDIT DECILOC 3.0 4.0 1.5
PATCHER VEDIT VEDIT DECILOC 3.0 4.0 1.5
PATCHER VEDIT UEDIT FILLCON 5.0 3.0 4.0
PATCHER VEDIT VEDIT FILLCON 5.0 3.0 4.0
FILTER UEDIT UEDIT TWO
FILTER VEDIT VEDIT TWO
WINDOW DISTANCE 2.0 3.0
GRAPHICS Z 1.0 MAGTHR=0.5 WINDOW
 VECTOR UEDIT VEDIT STREAM 1.0 10.0 5.0 PRO
END
WRITVOL 31.0 APP
DEFEND
READVOL 21. NEXT 100000.
EXPAND
QUIT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
EOFA

run the program
cedric.e < cedric.inp
a continuation of the Cray shell script
#
dispose the cedric output file; CHANGE the filename here to yours
mswrite wdaft31 /ANDERSNB/TEST/output.mud

save metacode file in a semi-permanent directory
first, see if directory exists if so move file; if not, create then move file
CHANGE 'andersnb' to your login id in the rest of this script
if (test -d /usr/tmp/andersnb) then
 mv gmeta /usr/tmp/andersnb/gmeta_test1
else
 mkdir /usr/tmp/andersnb
 mv gmeta /usr/tmp/andersnb/gmeta_test1
fi

send color plotfile to color microfilm
sendtg /usr/tmp/andersnb/gmeta_test1 macr=viewercl qual=best
send black and white plotfile to fiche
sendtg /usr/tmp/andersnb/gmeta_test1 macr=fiche titl=Cedric_Test_Run
send black and white plotfile to Xerox printers on Mesa
plotmp /usr/tmp/andersnb/gmeta_test1
generate accounting statistics
ja -cst
exit

Following are four simple setups to illustrate some of the basic aspects of the CEDRIC command structure.
In all cases the above Unix shell script or one very similar to it must surround the CEDRIC commands.
These setups are intended to convey some idea of how CEDRIC commands are structured, and how they
are executed. Considerably more complicated setups are possible—some easily exceeding several hundreds
of commands. This command structure can be viewed as a high-level (higher than Fortran) programming
language that allows the user to construct a whole program, including subroutines (DEFINE blocks) that have
been tailored to the user’s needs.

+++++ Sample deck #1 ++++

Accessing a radar volume

The following deck accesses the first Cartesian radar volume found on the input tape assigned to unit 11 in
the JCL. Statistics for the Z-planes of all the fields in the volume are also generated. This deck should be run
by anyone using CEDRIC for the first time, since it is an excellent way to familiarize oneself with the required
CRAY JCL without getting hung up on the details of the CEDRIC command set. The information following
the QUIT command can be used as a positioning guide when supplying the parameterization required by
CEDRIC commands, since any card images following the QUIT command are ignored.

READVOL 11.0 NEXT
COMMENT
 THIS COMMENT WILL BE SENT APPEAR IN THE OUTPUT LISTING.
 SO WILL THIS ONE !!!
COMEND
*
* COMMANDS WITH AN (*) IN COLUMN 1 ARE ALSO TREATED AS COMMENTS
*
STATS Z ALL
QUIT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.......

Appendix E-3
Accessing a radar volume and displaying data

The following deck accesses the first Cartesian radar volume found on the input tape assigned to unit 11.0 whose starting time is after 150000. A spatial window is set to permit the optional viewing of only those Z-locations between 3.0 and 8.0 kilometers inclusive. A field window is also defined to permit designation of the two fields DZNE and DMNE as being PRIMARY so that they can be optionally referred to using the shorthand notation PRI in place of an actual field name. Statistics and HISTO displays are generated for DZNE and DMNE using this facility for all Z-planes. CODED and DIGITAL displays of both fields are produced for every second Z-plane within the optional spatial window. Finally, the spatial window is reset to permit the viewing of all Z and X locations, but to restrict Y-locations to the range 10.0 km to 40.0 km. GRAPHICS contour displays of the DZNE field for every third Y-plane within that window are subsequently produced.

```plaintext
COMMENT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....
COMEND
READVOL 11. NEXT 150000. YES
WINDOW DISTANCE 3.0 8.0
FIELDSETPRI DZNE DMNE
STATS Z PRI
HISTO PRINT Z 
PRI 1.0 -120.0 70.0 10.0
END
CODED PRINT Z 2.0 WINDOW
DZNE 1.0 0.0 5.0 0. 15.
DMNE 1.0 -110. 5.0 6. 17.
END
DIGITAL PRINT Z 2.0 WINDOW
PRI 1.0 5.0
END
WINDOW DISTANCE 10.0 40.0
GRAPHICS Y 3.0 ++++ THIS IS TITLING INFORMATION ++++ WINDOW
CONTOUR DZNE CONT UNI -10. 70. 10.
END
QUIT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....
```

Appendix E-4
The following deck CREATEs a user defined Cartesian coordinate system into which all data from the radar volume called 8021809C is remapped upon transfer into CEDRIC. As in the previous examples, the input tape logical unit number is 11. The user can alter any of the (X,Y,Z) limits of the coordinate system as it appears on tape but may not modify the spacing. The DZNE field is filtered using the FILTER command; results are stored in a new field called DZFILT and statistics are generated for the new field. The FUNCTION command is used to produce the following new fields:

- **DZTHRSH** contains the results of thresholding DZNE with a floor of 10.0 dBZ;
- **DZDIFF** contains the difference between DZNE and DZFILT;
- **DZSUM** contains the sum of DZNE and the absolute value of DZDIFF.

Finally, GRAPHICS contour and scatter plots are produced for every level, The fields DZSUM and DZTHRSH are deleted, and the edited volume is written to an output dataset called V12345 that has been assigned to fortran logical unit 35.

```
COMMENT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.......
COMEND
CREATE -20. 30. 1.0 5. 70. 1.0 2. 12. 0.5
READVOL 11. 8021809C YES
FILTER DZFILT DZNE UNIFORM
STATS Z DZFILT
FUNCTIONNAME
  DZTHRSH PERM FLOOR DZNE 10.0
  DZDIFF PERM - DZNE DZFILT
  ABSDIF TEMP ABS DZDIFF
  DZSUM PERM + DZNE ABSDIF
END
GRAPHICS Z SAMPLE ANALYSIS OF REFLECTIVITY FIELDS
  CONTOUR DZTHRSH BOTH 10101000 UNIFORM 10. 70. 10.
  CONTOUR DZDIFF CONT UNIFORM -10. 10. 2.0
  SCATTER DZNE -10. 70. DZFILT -10. 70. 1.0
END
DELETE DZSUM DZTHRSH
WRITVOL 35. V12345 1809EDT BEG
QUIT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10.....
```
The following deck CREATEs a user defined Cartesian coordinate analysis space and SYNTHESizes radial velocity information from 6.0 independent Doppler radar volumes to produce the orthogonal components (U,V,W) of air motion. Differential advection is performed for the analysis time 181000 using a storm motion of 292.5 (deg) at 18.0 (M/S). Velocity and time fields are specified for each radar and reflectivity information is transferred to the output file from the first and second radars. These dBZ fields are renamed DZCP2 and DZCP3, respectively. Uniform (W=1.0) weighting is used. The output of the SYNTHESIS becomes the active edit file and a statistical display is generated for every field that was created. Each input volume must be assigned to a unique logical unit number. In this example units 41.0 through 46.0 were used. If more than one input volume is contained on a single dataset, transfers to a temporary unit may be performed prior to the SYNTHESIS by using READVOL and WRITVOL commands. The SYNTHESIS output volume SYN1810 is written to an output dataset called V45678 that has been assigned to fortran logical unit 51.

```
COMMENT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
COMEND
CREATE -30. 50. 1.0 0.0 80. 1.0 1.0 18.0 1.0
SYNTHES SYN1810 6.0 .05 100. 100. 181000. 292.5 18.0
 41. 1809 YESVFTHDIFTIMEYES
 42. 1810 YESVFTHDIFTIMEYES
 43. 1810 YESVFTHDIFTIME
 44. 1810 YESVETHDIFTIME
 45. 1810 YESVETHDIFTIME
 46. 1806 YESVETHDIFTIME
END
STATS Z ALL
WRITVOL 51. V45678 SYN1810 BEG
QUIT
P1......P2......P3......P4......P5......P6......P7......P8......P9......P10......
```

Appendix E-6
1. Cartesian components of motion from radial velocities

The normal meteorological coordinate system consists of northward distance \(y \), eastward distance \(x \), and upward distance or height \(z \) above mean sea level of a curved earth. The velocity components corresponding to these coordinates are \(v \), \(u \), and \(w \). All distances are in kilometers, and all velocities are in meters per second. The mapping to height above mean sea level is made in the interpolation (SPRINT) and analysis (CEDRIC) software packages, and it will not be explicitly listed here. Usually Doppler radars detect particles so there is an additional component of motion, fallspeed of particles in still air, to be considered. The normal convention of positive radial velocity away from the radar is used.

This mathematical formulation comes from the lead author’s unpublished notes that have been accumulated over the years, and parallels the formulations presented by Armijo (1969), Bohne and Srivastava (1975), Ray et al. (1978) and Ray et al. (1980).

\[\hat{v}_r = \hat{u} \sin a \cos e + \hat{v} \cos a \cos e + (\hat{w} + \hat{w}_t) \sin e, \]

where \(a \) and \(e \) are the azimuth and elevation angles of the beam. The azimuth angle is measured clockwise from true north (the positive \(y \) axis), and the elevation angle is measured upward from the horizontal plane through the radar. The circumflex indicates an average value within the radar sample volume defined by pulse length and beamwidth. Two or more radar measurements are usually combined along with the mass continuity equation to obtain the unknown components of air motion \((\hat{u}, \hat{v}, \hat{w}) \). In the case of only two radar measurements additional information about the precipitation fallspeed, \(\hat{w}_t \), is needed to obtain a solution for the four unknown components of motion. A similar procedure is followed with three or more radar measurements to separate the vertical air motion from the precipitation fallspeed.

It is more convenient to express the radial velocity in terms of Cartesian coordinates since solutions are obtained after interpolation of the radar measurements at locations in spherical coordinates \((r, a, e) \). Further, if the radar echo (storm) is moving with components \((U, V) \), and the radial velocity samples are taken at time \(t + \Delta t \), the above equation is replaced with (adapted from Gal-Chen, 1982)

\[\frac{\hat{v}_r r_{t+\Delta t}}{r_t} = \left[\hat{u} \left(\frac{x - x_o + U \Delta t}{r} \right) + \hat{v} \left(\frac{y - y_o + V \Delta t}{r} \right) + \hat{w} \left(\frac{z - z_o}{r} \right) \right]_t, \]

for a radar at \((x_o, y_o, z_o) \) with slant range \(r = \left[(x - x_o)^2 + (y - y_o)^2 + (z - z_o)^2 \right]^{1/2} \).

Radial velocities are first multiplied by slant ranges from the radar at the sample time \(t + \Delta t \). This field is then advected at the storm motion to new locations, where it is divided by slant ranges at the synthesis time \(t \). The coefficients of \(\hat{u} \) and \(\hat{v} \) on the right hand side of (2) have been modified to account for a change in radar pointing direction.

Appendix F-1
For M radars, the linear system of equations to be solved at time t is
\begin{equation}
\dot{a}_m + \ddot{b}_m + \ddot{W}c_m = d_m \quad m = 1, 2, 3, \ldots,
\end{equation}
where (a_m, b_m, c_m) are the coefficients and d_m is the term involving radial velocity on left hand side in (2), a set for each radar. In the method of least-squares, the error equation
\begin{equation}
Q = \Sigma E^2_m = \Sigma(\dot{u}_a + \ddot{b}_m + \ddot{W}c_m - d_m)^2
\end{equation}
is minimized with respect to the unknown quantities $(\ddot{u}, \ddot{v}, \ddot{W})$. The resulting normal equations to be solved for three or two unknown quantities are:
\begin{align}
\ddot{u}\Sigma a_m a_m + \ddot{v}\Sigma a_m b_m + \ddot{W}\Sigma a_m c_m &= \Sigma a_m d_m \\
\ddot{u}\Sigma b_m a_m + \ddot{v}\Sigma b_m b_m + \ddot{W}\Sigma b_m c_m &= \Sigma b_m d_m \\
\ddot{u}\Sigma c_m a_m + \ddot{v}\Sigma c_m b_m + \ddot{W}\Sigma c_m c_m &= \Sigma c_m d_m,
\end{align}
or
\begin{align}
\ddot{u}\Sigma a_m a_m + \ddot{v}\Sigma a_m b_m &= \Sigma a_m d_m - \ddot{W}\Sigma a_m c_m \\
\ddot{u}\Sigma a_m b_m + \ddot{v}\Sigma b_m b_m &= \Sigma b_m d_m - \ddot{W}\Sigma b_m c_m.
\end{align}

For the linear system of three equations
\begin{align}
\ddot{u} A_1 + \ddot{v} B_1 + \ddot{W} C_1 &= D_1 \\
\ddot{u} A_2 + \ddot{v} B_2 + \ddot{W} C_2 &= D_2 \\
\ddot{u} A_3 + \ddot{v} B_3 + \ddot{W} C_3 &= D_3,
\end{align}
the solutions are:
\begin{align}
\ddot{u} &= D^{-1}
\left[
D_1(B_2 C_3 - B_3 C_2) - D_2(B_1 C_3 - B_3 C_1) + D_3(B_1 C_2 - B_2 C_1)
\right] \\
\ddot{v} &= D^{-1}
\left[
D_1(A_2 C_3 - A_3 C_2) - D_2(A_1 C_3 - A_3 C_1) + D_3(A_1 C_2 - A_2 C_1)
\right] \\
\ddot{W} &= D^{-1}
\left[
D_1(A_2 B_3 - A_3 B_2) - D_2(A_1 B_3 - A_3 B_1) + D_3(A_1 B_2 - A_2 B_1)
\right],
\end{align}
where the determinant of coefficients
\begin{equation}
D = A_1(B_2 C_3 - B_3 C_2) - A_2(B_1 C_3 - B_3 C_1) + A_3(B_1 C_2 - B_2 C_1).
\end{equation}
The vertical component \ddot{W} can be separated into air motion and fallspeed either by using (\ddot{u}, \ddot{v}) in the mass continuity equation to obtain \ddot{w} or by calculating fallspeed from radar reflectivity factor (or some other means).

For the system of two equations
\begin{align}
\ddot{u} A_1 + \ddot{v} B_1 &= D_1 - \ddot{W} C_1 \\
\ddot{u} A_2 + \ddot{v} B_2 &= D_2 - \ddot{W} C_2,
\end{align}
the solutions are
\begin{align}
\ddot{u} &= \frac{D_1 B_2 - D_2 B_1}{D} + \frac{\ddot{W}}{D} B_1 C_2 - B_2 C_1 = \ddot{u}' + \epsilon_4 \ddot{W} \\
\ddot{v} &= \frac{D_2 A_1 - D_1 A_2}{D} + \frac{\ddot{W}}{D} A_1 C_1 - A_1 C_2 = \ddot{v}' + \epsilon_4 \ddot{W},
\end{align}
where the determinant of coefficients
\begin{equation}
D = A_1 B_2 - A_2 B_1.
\end{equation}

Appendix F-2
The quantities \hat{u} and \hat{v} depend not only on the radar measurements through (u', v') but also on an unknown \hat{W}. The so-called over-determined, dual-Doppler approximations (e.g., Kessinger et al. 1987) use (u', v') as estimates of (\hat{u}, \hat{v}). Since ϵ_u and ϵ_v depend only on geometry, the impact of neglecting the vertical component in (10) can be assessed if the bounds of \hat{W} can be estimated.

It is clear from the preceding equations that the solutions for $(\hat{u}, \hat{v}, \hat{W})$ are geometrically weighted sums of the interpolated radial velocities. Since the different radar radial velocity measurement errors are independent (the error in a particular radar measurement does not depend on other radar measurement errors even though the measurements themselves are related), the variance of the solutions given by (8) and (10) can be written as sums of radial velocity variance, weighted by the square of the geometric terms. From (8),

$$
\sigma^2(\hat{u}) = \Sigma g^2_{um} \sigma^2(\hat{v}_m)
$$

$$
\sigma^2(\hat{v}) = \Sigma g^2_{vm} \sigma^2(\hat{v}_m)
$$

$$
\sigma^2(\hat{W}) = \Sigma g^2_{Wm} \sigma^2(\hat{v}_m),
$$

which, if all radial velocity variances $\sigma^2(\hat{v}_r)$ are equal, can be rewritten as normalized variances

$$
\sigma^2_N(\hat{u}) = \frac{\sigma^2(\hat{u})}{\sigma^2(\hat{v}_r)} = \Sigma g^2_{um}
$$

$$
\sigma^2_N(\hat{v}) = \frac{\sigma^2(\hat{v})}{\sigma^2(\hat{v}_r)} = \Sigma g^2_{vm}
$$

$$
\sigma^2_N(\hat{W}) = \frac{\sigma^2(\hat{W})}{\sigma^2(\hat{v}_r)} = \Sigma g^2_{Wm}.
$$

Likewise, from (10)

$$
\sigma^2_N(u') = \frac{\sigma^2(u')}{\sigma^2(\hat{v}_r)} = \Sigma g^2_{um}
$$

$$
\sigma^2_N(v') = \frac{\sigma^2(v')}{\sigma^2(\hat{v}_r)} = \Sigma g^2_{vm}.
$$

These normalized variances can be used to estimate the impact of geometry on the transformation from non-orthogonal radial velocities to the orthogonal Cartesian components. This geometric transformation is such that errors in the solutions generally exceed errors in the measured radial velocities.

Once horizontal wind components are found, the mass continuity equation can be used to obtain the vertical component of air motion. There are two ways to proceed, the first uses

$$
\frac{\partial(\rho u)}{\partial z} + \frac{\partial(\rho v)}{\partial x} + \frac{\partial(\rho w)}{\partial y} = 0,
$$

so that

$$
\int_{z_k}^{z_{k+1}} \frac{\partial(pw)}{\partial z} dz = - \int_{z_k}^{z_{k+1}} \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz
$$

or, in finite difference form,

$$
(pw)_c = (pw)_p - \delta \Delta z \left[\rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right]_{p-c},
$$

where

$$
\delta = \begin{cases} +1, & \text{for upward integration} \\ -1, & \text{for downward integration.} \end{cases}
$$

The overbar represents an average of divergence values from the previous (p) and current (c) levels. The boundary condition $(pw)_b$ must be specified at every (x, y, z_b) at the bottom of the domain if integrating upward or at the top of the domain if integrating downward. This can be done by setting the boundary value
to a constant, by using a fraction of the first level divergence times a height increment, or by constructing a field using options such as found in the FUNCTION command. Equation (14) can also be integrated using a variational scheme where both upper and lower boundary conditions are specified within each integration column. Vertical motions rather than density-weighted values are output, where the user specifies the density weighting (an exponential form is provided, but another form can be constructed with the FUNCTION command).

An alternative path is available that is more mathematically rigorous when \((u, v)\) come from the two-equation solution. The first step is to correct \((u', v')\) for precipitation fallspeed using (10),

\[
\begin{align*}
\rho u^2 & = u' + \epsilon_u \hat{w}_t \\
\rho v^2 & = v' + \epsilon_v \hat{w}_t,
\end{align*}
\]

then substitute

\[
\begin{align*}
\rho u & = u^2 + \epsilon_u w \\
\rho v & = v^2 + \epsilon_v w
\end{align*}
\]

into the mass continuity equation and integrate. The proper form of the mass continuity equation becomes

\[
\frac{\partial (\rho w)}{\partial z} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho v^2)}{\partial y} + \frac{\partial (\rho \epsilon_u w)}{\partial x} + \frac{\partial (\rho \epsilon_v w)}{\partial y} = 0.
\]

This partial differential equation can no longer be solved as done in (14) since the desired vertical component appears in the two terms involving horizontal derivatives. These terms cause the solutions for \(w\) at adjacent \((x, y)\) grid points to be coupled. In finite difference form, the mass continuity equation becomes

\[
\begin{align*}
\frac{(\rho w)_c}{A} & = \frac{(\rho w)_p}{B} - \delta \Delta z \left[\rho \left(\frac{\partial u_2}{\partial x} + \frac{\partial v_2}{\partial y} \right) \right]_{p-c} - \delta \Delta z \left[\frac{\partial (\rho \epsilon_u w)}{\partial x} + \frac{\partial (\rho \epsilon_v w)}{\partial y} \right]_{p-c}. \\
\text{(15a)}
\end{align*}
\]

Term D consists of two parts:

\[
\begin{align*}
\frac{\delta \Delta z}{2} \left[\frac{\partial (\rho \epsilon_u w)}{\partial x} + \frac{\partial (\rho \epsilon_v w)}{\partial y} \right]_{p} - \delta \Delta z \left[\frac{\partial (\rho \epsilon_u w)}{\partial x} + \frac{\partial (\rho \epsilon_v w)}{\partial y} \right]_{p-c}, \\
\text{(15b)}
\end{align*}
\]

where \(D_1\) is a function of horizontal derivatives at the previous level and \(D_2\) is a function of horizontal derivatives at the current level of integration.

To understand this integration scheme, start at a level where boundary conditions have first been applied. The horizontal divergence in (15a) is adjusted in the manner dictated by term \(D_1\), and \((\rho w)_c\) is estimated by integrating one level in the vertical direction. These first estimates of vertical motion at the current level are then multiplied by the \((\epsilon_u, \epsilon_v)\) geometric factors and differentiated according to \(D_2\) in (15b) to readjust the layer convergence, and (15a) is reintegrated. Since only \(A\) and \(D_2\) change, for the \(n\)th iteration

\[
A_n = B + C + D_1 + D_2_{n-1},
\]

which proceeds from the previous to current levels until \(A\) in (15a) stops changing. The change in \(A\) is calculated at each grid point, and these differences are globally averaged for comparison with \(\epsilon_o\), a parameter set by the user:

\[
| (\rho w)_{c,n} - (\rho w)_{c,n-1} | \leq \epsilon_o.
\]

Once this condition is satisfied, iterative integration is done from the current to the next level and so on until all levels have been integrated.

Appendix F-4
b. Synthesis tests

The synthesis in CEDRIC outputs several fields, depending on whether the three-equation or the two-equation solution is selected:

- **U**: component of motion in the x direction, either \(\hat{u} \) in (8) or \(u' \) in (10),
- **V**: component of motion in the y direction, either \(\hat{v} \) in (8) or \(v' \) in (10),
- **W**: upward component of motion, \(\hat{W} \) in (8),
- **USTD**: normalized standard deviation, square root of normalized u-variance in (12) or (13),
- **VSTD**: normalized standard deviation, square root of normalized v-variance in (12) or (13),
- **WSTD**: normalized standard deviation, square root of normalized W-variance in (12), available only when three-equation solution is selected,
- **EWU**: geometric factor that multiplies vertical component \(W \) in (10), available only when two-equation solution is selected,
- **EWV**: geometric factor that multiplies vertical component \(W \) in (10), available only when two-equation solution is selected.

The user specifies input parameters \(DTERT1, DTERT2, DTERT3 \) against which the above geometric parameters are tested. Selection of the two- or three-equation solution along with these test values determines the synthesis outcome at each \((x, y, z)\) grid point. If only one radial velocity is present, no solution exists and all output fields are set to a bad data flag.

Two-equation solution (the number of radars, \(M \geq 2 \)):

- if the magnitudes of \(EWU, EWV \) are both less than \(DTERT1 \),
- and \(USTD, VSTD \) are both less than \(DTERT2 \),

 the output \((U, V)\) are given by \((u', v')\) in (10).

Three-equation solution is selected (the number of radars, \(M \geq 3 \)):

- if \(USTD, VSTD \) are both less than \(DTERT2 \),
- the output \((U, V)\) are given by \((\hat{u}, \hat{v})\) in (8),
- and if \(WSTD \) is less than \(DTERT3 \),

 the output \(W\) is given by \(\hat{W} \) in (8).

If only two radial velocities are present at the grid point, the procedure follows the one for a two-equation solution.

2. Coplane components of motion from radial velocities

Lhermitte and Miller (1972) first introduced COPLAN radar scanning where measurements are taken in a cylindrical coordinate system that is more natural for two radars (Fig. 1). One axis is along the baseline joining the two radars, another is perpendicular to the baseline, and the third is the coplane (dihedral) angle associated with a series of planes defined by the two radar beams and the horizontal plane passing through the radars. This coordinate system simplifies the mathematical formulation, and it is the same one used by Armijo (1969) in his transformation that was needed to solve the mass continuity equation for vertical motion. Miller and Strauch (1974) expanded on the coplane coordinate concept, including a detailed analysis of the errors involved in the synthesis. Doviak et al. (1976) also dealt with error analysis, and they included errors associated with the integration of the mass continuity equation. A series of papers by French scientists (Testud and Chong; Chong et al.; and Chong and Testud, 1983) revisited all aspects of coplane analysis, including interpolation, synthesis, and integration of the mass continuity equation.

Appendix F-5
a. Mathematical formulation

When the original radar sampling process is done in coplanes formed by the beams from two radars, a
procedure similar to the one for the two-equation solution is followed. If only two radar measurements are
available, rewrite (1) as
\[
\hat{u} \sin a' + \hat{v} \cos a' = \frac{\hat{v}_1}{\cos e_1} - \hat{W} \tan e_1 \\
\hat{u} \sin a' + \hat{v} \cos a' = \frac{\hat{v}_2}{\cos e_2} - \hat{W} \tan e_2,
\]
(16)
where the angle \(a' = a - a_o\) is measured from the baseline (at azimuth angle \(a_o\)) that joins the two radars.

Equation (16) has the solution
\[
\hat{u} = D^{-1} \left[\frac{\hat{v}_1 \cos a'}{\cos e_1} - \frac{\hat{v}_2 \cos a'}{\cos e_2} \right] - \hat{W} \tan \alpha \\
\hat{v} = D^{-1} \left[\frac{\hat{v}_2 \sin a'}{\cos e_2} - \frac{\hat{v}_1 \sin a'}{\cos e_1} \right],
\]
(17)
where \(D = \sin(a'_1 - a'_2) = \sin(a_1 - a_2)\), and the coplane relations (Lhermitte and Miller, 1970)
\[
\tan \alpha = \tan e \sin a', \quad i = 1, 2
\]
(18)
have been used. The quantity \(\alpha\) is the dihedral angle between the coplane defined by the two intersecting
radar beams and the horizontal plane passing through the two radar locations. The radar beam is steered
in the elevation angle direction as it is rotated in azimuth for a fixed coplane angle according to (18).
Measurements are taken at range-azimuth locations in a series of these planes, with \(\alpha\) increasing upwards
from the horizontal plane of the two radars.

An alternative to (17) that will uncouple the vertical component from \(\hat{u}\) is to introduce coplane coordinates
\[
x_c = (x^2 + z^2)^{1/2} \\
y_c = y \\
\alpha = \tan^{-1}(z/x),
\]
and solve for components of the motion within coplanes:
\[
\hat{u}_c(x_c, y_c) = \frac{r_1 \hat{v}_1(y_c - y_{c1}) - r_2 \hat{v}_2(y_c - y_{c2})}{2d x_c} \\
\hat{v}_c(x_c, y_c) = \frac{r_2 \hat{v}_2 - r_1 \hat{v}_1}{2d},
\]
(19)
where \(2d\) is the distance between the two radars located at \((0, y_{c1})\) and \((0, y_{c2})\). The coplane coordinates
\(x_c\) and \(y_c\) are measured perpendicular and parallel to the radar baseline. Since the component of motion
perpendicular to the radar beam is not measured by the radar, the component normal to the coplanes does
not appear in (19). In coplanes, distances from the radars are
\[
r_1 = \left[x_c^2 + (y_c - y_{c1})^2 \right]^{1/2} \\
r_2 = \left[x_c^2 + (y_c + y_{c2})^2 \right]^{1/2}.
\]
Normalized variances within each coplane are similar in form to the ones for Cartesian components in (13).
The two-equation Cartesian solution (in a relative coordinate system with \(y\) along the two-radar baseline)
and the coplane solution give identical results in the horizontal plane (\(\alpha = 0^\circ\)).

After \(\hat{u}_c\) is corrected for fallspeed, the coplane components of air motion are:
\[
\hat{u}'_c = \hat{u}_c - \hat{w} \sin \alpha \\
\hat{v}'_c = \hat{v}_c.
\]
Appendix F-6
These components are integrated in the mass continuity equation written in the form

\[
\frac{1}{x_c} \frac{\partial (\rho w'_c)}{\partial \alpha} + \frac{1}{x_c} \frac{\partial}{\partial x_c} (px_c u'_c) + \frac{\partial}{\partial y_c} (\rho v'_c) = 0
\]

(20)

to obtain the component normal to the coplanes. A finite difference form of (20) similar to (14) is used, with an exponential density weighting provided. Once these coplane components are calculated, horizontal wind components are obtained:

\[
\hat{u} = u'_c \cos \alpha - w'_c \sin \alpha \\
\hat{v} = v'_c \\
\hat{w} = u'_c \sin \alpha + w'_c \cos \alpha.
\]

(21)

The velocity transformation in (21) is done when the winds at coplane coordinates are interpolated to Cartesian coordinates with the REMAP command.

b. Synthesis tests

For coplane synthesis, CEDRIC outputs a subset of fields:

U: component of motion perpendicular to the baseline, \(\hat{u}_c \) in (19)

V: component of motion parallel to the baseline, \(\hat{v}_c \) in (19)

USTD: normalized standard deviation, similar to the square root of normalized u-variance in (13),

VSTD: normalized standard deviation, similar to the square root of normalized v-variance in (13),

The user specifies input parameters \(DTEST2 \) and \(DTEST3 \) against which the above geometric parameters are tested. Selection of coplane coordinate option (housekeeping words are tested or the COORD command is used) along with these test values determines the synthesis outcome at each \((x_c, y_c, c)\) grid point. If only one radial velocity is present, no solution exists and all output fields are set to a bad data flag.

Two-radar coplane solution (the number of radars, \(M = 2 \)):

if \((USTD, VSTD)\) are both less than \(DTEST2 \),

the output \((U, V)\) are given by \((u_c, v_c)\) in (19).

\((EWU, EWV)\) are zero in coplane coordinates so they are not output.

The following steps are taken for multiple-Doppler radar wind synthesis:

1. Interpolate the radar measurements using the SPRINT software package. If measurements were originally taken in the coplane coordinate system, interpolation within these coplanes is selected. If measurements were taken in the normal radar spherical coordinate system, interpolation to Cartesian coordinates should be done. There is little advantage in interpolating to coplanes if the data were not taken in this coordinate system. The SPRINT package has no provision for such interpolation; however, the REORDER package of ATD/RDP does.

2. Select the appropriate coordinate system synthesis, integration and interpolation path in CEDRIC. This is done automatically if the appropriate housekeeping words are correctly set. Otherwise, the user must invoke the COORD command to force the correct choice of mathematical formulation.

3. Specify the necessary parameters in the SYNTHES command in CEDRIC. The three-equation solution fields come from (8) and (12). The Cartesian synthesis allows for an over-determined, two-equation solution with the various fields given by (10) and (13). For coplane synthesis at coplane coordinates, only two radars are allowed, and the solutions come from (19).

4. Invoke the CONVERGE command to compute horizontal or coplane convergence, the negative of divergence of the horizontal winds in (8) or (10) or the coplane winds in (19).
5. Specify the necessary parameters in the INTEGR command for Cartesian (14) or coplane (20) integration. If the user wishes to use the iterative integration of (15), the MASS2 command is used.

References:

Appendix F-8
COORDINATE SYSTEMS THAT CAN BE USED IN CEDRIC

The most common coordinate system that data will be in for use in CEDRIC is a three dimensional Cartesian coordinate system. A staggered grid is not allowed. There are other specialized coordinate systems that can be used, however.

One of these is a coplane coordinate system. This is only a brief discussion of the coplane coordinate system. Users unfamiliar with the coplane coordinate system and its associated mathematics should examine Miller and Strauch (1974) and Appendix F in the CEDRIC documentation.

As a radar antenna rotates in azimuth, the elevation angle is continuously changed to keep the beam in a flat plane passing through the baseline joining two radars. This plane contains the intersecting beams from the two radars and the baseline. In this scanning scheme, measurements are taken at range-azimuth locations within each plane nearly simultaneously by the two radars, and then the two antennas step to the next tilted coplane. The coplane angle is the angle formed by the tilted coplane and the horizontal plane through the radar positions, and it is measured upward from the horizontal tangent plane.

The gridded coplane coordinate system consists of three orthogonal directions: if you look in a direction from one radar toward the other (along the baseline between the radars) and with the region of interest to your right then the positive X-direction is perpendicular and outward from the baseline toward the region of interest, the positive Y-direction is parallel to the baseline in the direction you are looking, and C remains the coplane angle. Within each coplane, X and Y constitute a two-dimensional Cartesian coordinate system. Data in this coordinate system can be displayed and analyzed as in a Cartesian system. Beware of displays where a dimension other than C is held fixed, however. No stretching is done to account for the curved coordinate system.

Another kind of coordinate system usable in CEDRIC is a PPI-like coordinate system where the levels are constant elevation surfaces instead of constant height surfaces. Graphical displays and some statistical output can be generated for data in this coordinate system; many analysis commands will not work for this coordinate system, however. For the most part, only displays should be generated.