
JCSDA: Mark Miesch, David Hahn, Dan Holdaway, Steve Herbener,
Francois Vandenberghe, Xin Zhang, Tom Auligne, Yannick Tremolet +

JEDI core team

JEDI Container and Cloud Platforms
Current Status

AWS: Kevin Jorissen, Karthik Raman

S4: Scott Nolin, Jesse Stroik

NCCS: Kenny Peck, Nick Acks

Thanks also to the Singularity community (particularly David Trugdian,
Vanessa Sochat, Bennet Fauber) for great support

Outline

I) JEDI Portability Overview
✦ Types of containers
✦ Container usage

- CI/CD, development, HPC…

II) HPC SuperContainers
✦ Construction
✦ Usage
✦ Benchmarking

III) JEDI on AWS
✦ single-node
✦ cluster

IV) Summary & Outlook
✦ Status of Singularity

Software container
 (working definition)

A packaged user environment
that can be “unpacked” and

used across different systems,
from laptops to cloud to HPC

Container Providers

‣ Docker
✦ Main Advantages: industry standard, widely supported,

runs on native Mac/Windows OS
✦ Main Disadvantange: Security (root privileges)

‣Singularity
✦ Main Advantages: Reproducibility, HPC support
✦ Main Disadvantage: Not available on all HPC systems

‣ Charliecloud
✦ Main Advantages: Simplicity, no need for root privileges
✦ Main Disadvantages: Fewer features than Singularity,

Relies on Docker (to build, not to run)

Unified Build System

Tagged jedi-stack releases -> tagged containers, AMIs, and HPC environment
modules, ensuring common software environments across platforms

Container Types

‣ Development
✦ Contains: Compilers, dependencies
✦ Omits: JEDI code
✦ Used for: CI/CD, Development, Optimization

‣Application
✦ Contains: Compiled JEDI bundles, runtime dependencies
✦ Omits: Compilers, compile-time dependencies
✦ Used for: Run JEDI releases across platforms

‣ Tutorial
✦ Contains: Compilers, dependencies, JEDI source code,

compiled JEDI bundles, run scripts, input files
✦ Writable
✦ Used for: Online tutorials, JEDI Academies

Current containers

‣ Development
✦ gnu-openmpi-dev (D, S, C)
✦ clang-mpich-dev (D, S, C)
✦ intel19-impi-dev (D, S, C)

‣Application
✦ intel19-impi-app (S ⇒ S)

‣ Tutorial
✦ gnu-openmpi-tut (⇒ D, S ⇒ S)

Docker Hub
Sylabs cloud
AWS S3 (public)
AWS S3 (private)

Distribution

II: SuperContainers

HPC Supercontainers are application containers
that are designed to be used across multiple nodes

on HPC systems, including cloud-based clusters

‣Singularity
‣ Intel runtime libraries (multi-stage build)
‣fv3-bundle (currently)
‣Enhanced components

- Infiniband drivers (Mellanox or linux inbox OFED)
- PMI (PMI0 and/or slurm PMI2)
- UCX and components

- KNEM, XPMEM
‣Built with NVIDIA’s HPC-container-maker (hpccm)

- https://github.com/jcsda/containers

https://github.com/jcsda/containers
https://github.com/jcsda/containers

SuperContainers Usage

Executed in multi-container (hybrid) mode to exploit
system MPI configuration

mpiexec -np 864 <…> singularity exec <container> <application>

- Each MPI task launches its own container
- MPI inside & outside container must be compatible
- Must take measures to avoid conflicts between host

& container environment

Contrast with the solo-container/single-node mode
typically used for development containers

SuperContainers Usage

Portion of a
modulefile

used to
eliminate

host/
container

environment
conflicts on
S4 & AWS

SuperContainers Usage

slurm batch script for AWS (with container)

JEDI Benchmarking

Benchmark FV3-GFS JEDI 3DVar Application
- Resolution c192
- ~9 of 12 million obs pass QC
- Inner loop: 30 iterations
- Outer loop: 2 iterations
- 864 MPI tasks (12x12x6)

~12 million obs
Aircraft, Radiosonde, Rass,

Satwind, Scatwind, Vadwind,
AMSUA-NOAA19, AIRS-AQUA,
IASI-METOPA, CRISFSR-NPP

Analysis
(illustrative example)
tile5, level 54 of 64Platforms

- Discover: NASA NCCS
- S4: SSEC/Univ. Wisconsin
- AWS

- 24 c5n.18xlarge nodes
- 36 cores/node
- Elastic Fabric Adapter

(EFA)

Container Benchmarking

No overhead for running in the container

Estimated AWS cost

On demand $23

Spot $7

Container Benchmarking

Full disclosure - that
wasn’t actually the

same container
running on Discover

Replacing generic
OFED infiniband drivers

with Mellanox drivers
needed to achieve
native performance

It should be possible
to include both but

not yet tested

Container Benchmarking

More tips/tricks for Discover

• Since singularity was configured with an unprivileged
(non-setuid) installation mode, the container image
must be converted first to a sandbox directory and
then the container must be run from the sandbox

singularity build --sandbox jedi-intel19-impi-hpc-app-
sandbox/ jedi-intel19-impi-hpc-app.sif

• It is necessary to use mpiexec instead of mpirun

III: JEDI on AWS

‣ Single Development node
✦ For development, optimization…
✦ jedinode.py

‣Cluster
✦ For applications, optimization, testing…
✦ AWS ParallelCluster See current

PRs in
jedi-tools,
jedi-docsUnified approach to facilitate maintenance:

Intel compilers and environment modules
(gnu-openmpi, intel-impi) provided by means
of an external volume that is auto-mounted
at boot time

III: JEDI on AWS

‣ Single Development node
✦ Easy to use
✦ Can terminate/stop from EC2 console
✦ Custom AMI
✦ Intel 19 compilers/mpi
✦ gnu-openmpi, intel-impi stacks
✦ Docker, Singularity, Charliecloud

III: JEDI on AWS

‣ ParallelCluster
✦ Autoscaling: cluster size adjusts on demand
✦ EFS, FSx for lustre
✦ Intel 19 compilers/mpi
✦ gnu-openmpi, intel-impi stacks
✦ AWS-provided AMI; security patches, latest hardware

support
✦ Post-install script: Singularity, git-lfs…
✦ Spot pricing or on demand
✦ VPC (public master, private compute nodes) with

subnets in us-east-1c (best availablity)
✦ Dynamic placement group for collocated resources

IV: Summary & Outlook

‣ Containers
✦ Development, Application, Tutorial
✦ Great for getting up and running fast with JEDI without

sacrificing performance
✦ Key for our public releases

‣Supercontainers
✦ Not plug and play - takes a little fiddling to get good

performance
✦ Can run multi-node HPC applications with no overhead

‣ AWS
✦ Use jedinode.py for single devel nodes
✦ Use ParallelCluster for multi-node clusters

Singularity outlook

Singularity was developed by Greg Kurtzer and colleagues at
Lawrence Berkeley Lab (2015). In 2017, Kurtzer formed a new
company called Sylabs to provide Singularity and related
services, such as the Sylabs cloud container repository.

May, 2020: Kurtzer (Sylabs CEO) announced that he will be
“starting a new company [hpcng], which will leverage Singularity
as a foundational building block”. Greg will remain as the
Singularity Open Source project lead and the new company with
be a “non-commercialized”, open source, “community-focused
GitHub organization”

https://github.com/hpcng

HPCNG = “The Next Generation of High Performance Computing”

https://github.com/hpcng
https://github.com/hpcng

Singularity outlook: MacOS

Good news! Singularity Desktop for Mac exists in a beta version!
https://sylabs.io/singularity-desktop-macos/

Bad news: I haven’t been able to get it to work yet with the jedi
containers

More bad news: Unclear if users will have sufficient numbers/
experience/inclination to maintain Singularity for Mac as a
community project

More bad news: Mac as a platform might become
more difficult in the future with Apple’s recent
announcement to move away from x86 architectures
to ARM. Maintaining containers for two platforms
might become a challenge

https://sylabs.io/singularity-desktop-macos/
https://sylabs.io/singularity-desktop-macos/

Extra slides

JEDI Software Dependencies

‣ Essential
✦ Compilers, MPI
✦ CMake
✦ SZIP, ZLIB
✦ LAPACK / MKL, Eigen 3
✦ NetCDF4, HDF5
✦ udunits
✦ Boost (headers only)
✦ ecbuild, eckit, fckit

‣ Useful
✦ ODB-API, eccodes
✦ PNETCDF
✦ Parallel IO
✦ nccmp, NCO
✦ Python tools (py-ncepbufr, netcdf4, matplotlib…)
✦ NCEP libs
✦ Debuggers & Profilers (kdbg, valgrind, TAU…)

Common versions among users
and developers minimize
stack-related debugging

Containers vs Virtual Machines

Julio SuarezContainers work with the host system
Including access to your home directory

Container Technologies

Kurtzer, Sochat & Bauer (2017)

This is why we will continue to support all three
(Docker, Singularity, Charliecloud)

Younge et al 2017

Containers can
achieve near-

native
performance

(negligible
overhead) but
only if you tap
into the native
MPI libraries

Volta
Cray XC30

Sandia Nat. Lab.

HPC containers
promising, but
currently not

“plug and play”

Shamis et al 2015

