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ABSTRACT

Periodic sampling of the Doppler radar return signal at the pulse repetition frequency causes measured
velocities to be ambiguous (folded) when true meteorological velocities along the radial direction exceed the
Nyquist or folding value. Furthermore, mean radial velocity estimates become more uncertain as the spatial
variability of velocity increases or the returned signal strength decreases. These data have conventionally been
prepared for such uses as multiple-Doppler radar wind synthesis by unfolding and editing them in the sampling
domain (range-azimuth-elevation spherical coordinates).

An alternative method of locally (to the output grid point) unfolding the unedited radial velocities during
their linear interpolation to a regular Cartesian grid is presented. The method preserves the spatial discontinuities
of order twice the Nyquist value associated with velocity folding. A nondimensional velocity quality parameter
is also computed which serves to identify interpolated values that contain too much variance to be reliable.
Editing of radar data is thereby postponed until all radar data are mapped to the analysis coordinate system.
This allows for iterative global unfolding and multiple-Doppler synthesis of complicated convective storm flow
patterns. The resolution of folding in such flow fields may require more information than is usually available
from single radar radial velocity fields in spherical coordinates. Further, the amount of data that must be
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subsequently manipulated is reduced about ten-fold in the process of interpolation.

1. Introduction

Radial velocities measured by Doppler radars are
often interpolated to a regular (x, y, z) grid, especially
when they are used in the multiple radar synthesis of
three-dimensional wind fields. Although the processing
of multiple radar data involves other steps such as the
actual synthesis of three-dimensional winds using
measurements from several viewing directions (e.g.,
Carbone et al., 1980), we have restricted this paper to
the transformation of data from radar space to analysis
space (interpolation), the removal of velocity ambi-
guities (unfolding), and the elimination of spurious
values (thresholding). Common practice is to edit and
unfold individual radar velocity measurements in the
sampling space (range-azimuth~elevation; R, 4, E)
before interpolating them (e.g., Ray and Ziegler, 1977;
Oye and Carbone, 1981). However, this step can be
done after interpolation provided the remapping
method preserves the statistical characteristics of the
measured radial velocities and does not introduce any

* An earlier version of this paper appeared in the Preprints of the
21st Radar Meteorology Conference, Edmonton, Alberta, Canada,
Sept. 1983, sponsored by the American Meteorological Society.

** The National Center for Atmospheric Research is sponsored
by the National Science Foundation.
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biases in the interpolated values. Two especially im-
portant characteristics are the spatial discontinuities
associated with folding of the radial velocities due to
periodic sampling at the pulse repetition rate and the
randomness of velocities when the backscattered signal
strength indicates that only noise is present.

Most radar systems use the covariance or “pulse-
pair” technique (e.g., Zmié, 1977) to estimate the
power-weighted average radial velocity within pulse
volumes at several range locations along the pointing
direction. When only noise is present in the backscat-
tered return, this technique should give mean radial
velocities that are uniformly distributed from —V,, to
V. (the Nyquist co-interval) where V, is the folding or
Nyquist velocity. Unknown biases in the radial velocity
processor can sometimes corrupt the noise distribution,
but it is usually nearly uniform with a few preferential
estimates occasionally occurring.

When the magnitude of the true meteorological ra-
dial velocity within a pulse volume exceeds V,,, sam-
pling the return signal at the pulse repetition rate will
cause estimates of Doppler velocity to be ambiguous
or folded (e.g., Doviak et al., 1978). When this happens
an integer multiple of twice the Nyquist velocity must
be added to the measured pulse-volume average value
to remove this ambiguity (Ray and Zeigler, 1977).
Folding therefore represents an artificial and identifi-
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able spatial discontinuity of order 2V, in the radial
velocity. If the discontinuity is not handled properly
when aliased data are transformed to a regular xyz-
grid, the velocity estimates cannot be correctly unfolded
after interpolation.

The three-dimensional interpolation scheme devel-
oped by Mohr and Vaughan (1979) has been modified
to include range averaging and local velocity unfolding.
They determined the grid point value by a three-di-
mensional linear interpolation of eight measured values
from two consecutive range locations along the four
beams (two azimuths from each of two elevation scans)
surrounding the grid point. All these data are usually
obtained within 10-15 s (30-40 s in extreme cases of
large azimuthal sectors) even though the scan of the
entire volume of interest may take 2-3 min. Radar
data that contain ambiguous measurements can be in-
terpolated with this method without first unfolding them
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in radar sampling space since the extension we propose
preserves the original spatial discontinuities associated
with folding. Further, this local unfolding technique
applied to uniformly distributed noise estimates results
in interpolated noise that remains nearly uniform with
almost the same variability as the original distribution.
The algorithm is discussed and the application of this
procedure to a folded velocity field is presented. The
advantages and cautions associated with this technique
are also discussed.

2. Rectification of folded radial velocities

An example of radial velocities measured at an ele-
vation angle of 9.5° by the NCAR/FOF (Field Ob-
serving Facility) CP-2 10-cm radar on 2 August during
the 1981 Cooperative Convective Precipitation Exper-
iment (CCOPE; Knight, 1982) in southeastern Mon-
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FIG. 1. Horizontal projection of measured radial velocities at an elevation angle of 9.5°
from CP-2. These data were obtained on 2 August 1981 during the CCOPE field program

in southeastern Montana. Numbers at every

eighth gate along every sixth ray represent

the magnitude of the radial velocity (positive values indicate motion away from the radar),

with contours drawn at —25, 0 and 25 m s™.
the local discontinuity associated with folding.

The bold line (F) indicates the position of
Regions of ambiguous or folded (about the

Nyquist velocity of 25.6 m s™') velocities are shaded. Noisy estimates (N) exist to the
northwest and also beyond about 70 km north of the radar. Ranges where the 7 and 9 km
horizontal planes pass through this elevation surface are shown by dashed arcs.
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tana is shown in Fig. 1. These data are part of the
storm-volume scan from 1809:09 to 1812:32 (Moun-
tain Daylight Time) that will be used to demonstrate
the proposed technique. The storm was sampled every
200 m, 0.7° and 1° in range, azimuth, and elevation,
respectively. The local discontinuity associated with
folding is marked with a bold line. At locations away
from the fold discontinuity the radial velocity field is
again continuous, though perhaps ambiguous. Shaded
regions in the figure contain ambiguous velocities while
noise estimates exist beyond about 70 km to the north
and in a patch northwest of the radar. Figure 2 shows
these data after velocities have been unfolded in radar
space using conventional methods (e.g., Oye and Car-
bone, 1981). In this example, noisy estimates (those
mean values from low signal-to-noise power ratio re-
gions or from broad velocity spectra) are retained
though they could have been easily removed. In Section
4 we will compare interpolations of folded (Fig. 1) and
unfolded (Fig. 2) values at 7 and 9 km (dashed arcs)
to demonstrate that the same results can be obtained
using the proposed alternative method.

Conventional editing and unfolding steps can be
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postponed until after interpolation so long as poor es-
timates of velocity and folding can still be identified.
The idea is to designate a local velocity at each (x, y,
z) point and to offset all velocities that affect this point
so that they lie within the ambiguous velocity interval
of this initial estimate prior to interpolation. This is
done independently at each interpolation grid point
and only represents a local resolution of velocity fold-
ing. Interpolated velocities which are folded must be
subsequently de-aliased in Cartesian space using global
techniques.

The true (unfolded) radial velocity U at a (R, 4, E)
measurement point is

U=V+ «Vy; 0))

where V is the measured quantity which may be aliased
and is subject to measurement error, V, = 2V, is the
ambiguous velocity interval, and « is the integer factor
needed to remove Nyquist folding ambiguities from
V. When the measured velocity differs by more than
V, from the value expected at the grid point, the integer
folding factor in Eq. (1) is nonzero and can be ap-
proximated by

k=0,%1, %2+
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F1G. 2. Radial velocities shown in Fig. 1 after ihey have been unfolded in radar space.
Areas where velocities have been de-aliased are shaded. An additional contour at 51.2 m
s~! has been added. This corresponds to the zero contour in the ambiguous zone in

Fig. 1.
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U~V
v, °’
where U, is a preliminary estimate of the true radial

velocity (U) at the (x, y, z) point. The appropriate in-
teger unfolding factor is determined by

_ {INT(K +0.5), if K=0
INT(K — 0.5), if K<0,

where INT represents truncation toward zero. The
quantity U, is arbitrarily set to one of the measured
input values in the neighborhood of the (x, y, z) point,
and the remaining contributing values are forced into
the ambiguous velocity interval centered on U, using
Eqgs. (1) and (2). Strictly this operation does not rep-

K (2a)

resent complete unfolding, but temporary removal of -

a discontinuity that would result in biased estimates
when interpolation to grid- points is performed. To
completely unfold or de-alias the velocities, the addition
or subtraction of another integer multiple of ¥, may
still be needed after interpolation. Henceforth, we will
refer to the removal of the folding discontinuity within
the population of input measurements contributing to
the estimate at each (x, y, z) point as local unfolding
or more simply as “unfolding.”

Since U, comes from the population of input samples
which are contained within the Nyquist co-interval
(unless they have been previously unfolded), the values
of « determined by Eq. (2) will be —1, 0, or +1. It is
assumed that no true velocity is more than V, from
the reference velocity. This is equivalent to assuming
that the largest possible physical gradients of radial ve-
locity that can occur within the sampling cell sur-
rounding the Cartesian grid point are V, /(M — 1)AR
in range, V,/RAA cosE in azimuth, and V,/RAE in
elevation, where AR, AA and AE are the respective
sampling increments. The sampling cell consists of A/
range (R) gates and four adjacent beams, two in azi-
muth (4) and two in elevation (E). Spatial gradients
across the sampling cell larger than these will cause the
true radial velocities to be spread over more than one
V,interval, leading to the requirement that some values
of k exceed unity. In this event, which is uncommon
provided the Nyquist velocity is large (about 25 m s™!)
and radar (R, 4, E) sampling locations are closely
spaced (less than about 1 km), the algorithm will ob-
viously fail to interpolate an unbiased velocity value.

Ragar velocity measurements from a range slab of
thickness M gates centered at slant range R to the in-
terpolation xyz-grid point are range-averaged to obtain
estimates at each of four azimuth-elevation locations
surrounding the xyz-grid point:

. M
U4, E) = 2 Un/M,

m=1

where the U,, have been “unfolded” according to Eqs.
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(1)and (2). This step is done to approximately equalize
the sampling increments in the range and cross-beam
directions and is not intended to represent complete
filtering that may be required. The quantities 4; and
E, represent the respective azimuth and elevation an-
gles of the beams. A caret denotes either range-averaged
or xyz-grid values, and quantities without a caret rep-
resent either measured or “unfolded” velocities at radar
sampling locations. The geometry of the angular sam-
pling cell at the range of the xyz-grid point and inter-
polation are illustrated in Fig. 3. Following Mohr and
Vaughan (1979), these range-averaged data are bi-

‘linearly interpolated using

U4, E) = (

[

Ek+1 - E)
AE

) o5 - (55F)
sl S : +
aa ) T U\ Ay " AE

I Aj+l - A - A - Aj
8 [U’( AA ) * U’“( AA )],m’ ©)
where AE = Ey.y — Ex, AA = Ajy; — A;. The terms
in brackets represent linear interpolations along azi-
muth at the k£ and k + 1 elevation levels. Combining
Egs. (1) and (3), in abbreviated form the “unfolded”
and interpolated radial velocity becomes

U(xs ¥ Z) = 2 (WV)jk + Va 2 (wx)jk-
AE AE

@)

The first term on the right is the geometrically weighted
sum of measured values, while the second term rep-
resents a weighted folding factor to correct for bias that
would result if measured values were not locally un-
folded before interpolation. The quantity w is the geo-
metric weighting factor associated with each (4;, Ey)
location in Eq. (3). The values of « in Eq. (4) are the
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FIG. 3. The geometry of the sampling cell and bilinear interpolation
along 2 constant range surface passing through the Cartesian grid
point (x, y, z). The Uy, represent the averages of M range gate mea-
surements centered at R(x, y, z) and located at the four radar beams
left and right, above and below the point A(x, y, z), E(x, y, 2).
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ones that must be used to remove the local disconti-
nuity from the measured velocities.

The form of the weighting function to be used in
Eq. (4) for interpolating radar information to a regular
Cartesian grid is usually a matter of personal preference.
We choose the linear weighting and range averaging
presented in Eq. (3); other distance weighting schemes
such as the Cressman method (e.g., Ray et al., 1975)
could also be used. All such schemes assign a distance-
weighted average value to the grid point, where the
weight decreases rapidly as the distance from the grid
point increases or else only estimates within some small
radius of the grid point are used. It is not our intent to
debate the virtues of all such schemes; however, if the
method employed uses values only in proximity to the
output grid point, the discontinuity associated with
folding can be removed and then the weighting applied
in the way we present. That is, they can be interpolated
without prior radar-space editing.

Figure 4 illustrates the results of interpolating the
folded radial velocity field (shown in Fig. 1) at two
levels in the storm using the methodology that we pro-
pose. These horizontal planes at 7 (Fig. 4a) and 9 km
(Fig. 4b) intersect the elevation plane in Fig. 1 at the
dashed arcs. The boundary of folded radial velocities
in the southeast portion of the grid is shown by a bold
line, with shading indicating regions of ambiguous ve-
locities as in Fig. 1. A zone of ambiguous velocities
extends northward along the eastern portion of the grid
as also seen in Fig. 1. The patch of noisy measurements
northwest of the radar is also clearly replicated as ev-
idenced by the many contours in the western portion
of the domain. A time associated with each interpo-
lation grid point is also obtained by applying the same
linear interpolation scheme to the original observation
times. In this way the multiple radar synthesis that in-
cludes advective corrections at Cartesian grid points as
formulated by Gal-Chen (1982) can be utilized.

3. Quality of the interpolated velocities

Since the interpolation method is applied to all radar--
measured velocities without prior editing, we need a
way to determine the quality of the interpolated value.
This measure can be used later in Cartesian space to
reject unreliable velocities interpolated from radar
measurements that are too noisy and to identify regions
where local unfolding may have required a folding fac-
tor exceeding unity. When no signal is present covari-
ance-measured radial velocities ideally have variance
o.2 = V,2/3, so that large local variability should tell
us when interpolated values are coming from an input
population dominated by noise. Further, large spatial
gradients of the measured velocities should also lead
to significant variability. When neither of these con-
ditions exist, the spread of velocities should be much
smaller. Thus we compare the sample variance var(U)
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of “unfolded” velocities to be used in the interpola-
tion with the expected value of ¢,2 for white noise to
determine the reliability of the interpolated velocity.
A nondimensional velocity quality parameter

o, y, z) = 1 — var(U)/e,’ %)

is calculated. All measurements affecting a grid point
estimate are locally unfolded using Egs. (1) and (2) and
then their corresponding variance var(U) is obtained.

The nondimensional velocity quality parameter Q
is close to zero when all radial velocities are noise (see
Appendix for the expected value and variance of Q
when a noise population is unfolded), and it approaches
unity as the spatial variability of the measured velocities
decreases. Further, Q can become negative when the
distribution of “unfolded” measurements is more
clustered toward its extreme values with fewer estimates
near the center velocity. The parameter Q reflects vari-
ability from measurement errors in individual velocities
as well as large spatial gradients in the true radial ve-
locity field surrounding the interpolated grid point. It
is, therefore, a better measure of the acceptability of
grid point estimates than is the magnitude of the co-
variance function which is often used to determine re-
liability of individual measurements contributing to
the interpolated estimate. More importantly, Q can be
computed for all radar systems in the same way. Sys-
tems that do not record the magnitude of the covari-
ance function instead flag the velocity as good or bad
at the time of measurement (e.g., the bad data flag bit
used in the NCAR/FOF 5 and 10 cm radars). Unfor-
tunately, such procedures do not allow the data-user
to decide if these values are acceptable for his purposes.

An example of the actual behavior of Q in a noise-
only environment was determined by interpolating ra-
dial velocities from NCAR’s CP-2 radar. The trans- |
mitter was intermittent for a short time on 11 July
1981 during CCOPE so that noise-only data could be
recorded while the antenna was rotating and the pro-
cessing system was still operating. This provided re-
corded data at spatial resolution typically associated
with normal probing of severe convective storms. The
frequency distribution of Q for interpolation at one
horizontal level is shown in Fig. 5 (solid line histogram).
It roughly obeys a Gaussian law with a nearly zero
mean value and standard deviation of about 0.3 so
that interpolated (signal) velocities appear to be ac-
ceptable when Q > 0.6. This can be seen also in the
distribution of Q when both signal and noise are present
(Fig. 5, dashed line histogram). The values to the right
of 0.6 are definitely associated with signal since a value
of Q = 0.8 corresponds to var(U) = 43.7 m? s~2 with
noise variance 7,2 = 218.4 m?* s~2 for this case. (The
Nyquist velocity was 25.6 m s™}).

A histogram of noise input velocities from a volume
scan on 2 August 1981 (Fig. 1) is shown in Fig. 6a. The
percent of the total number of values (3194) appearing
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FIG. 4. Samples of unedited and interpolated (with local unfolding) radial velocities at
(a) 7 km and (b) 9 km. These horizontal sections pass through the 9.5° elevation plane of
Fig. { at the dashed arcs. Numbers represent the radial velocity at selected locations with
contours drawn at 10 m s™* intervals starting at ~30 m s~! in the repeating pattern: dashed,
short-dashed and solid. The zero contour is solid. The bold line (F) marks the position of
the local discontinuity caused by folding. The regions of ambiguous (folded) velocities are
shaded. Noisy velocities (N) exist along the western portion of the grid.
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in each of the bins of width 2 m s™! is represented by
the ordinate. The distribution is nearly uniform with
sample mean of 0.01 m s™! and standard deviation of
14.51 ms™!, compared to theoretical values of 0.0 and

14.78 m s7!, respectively. The distribution of inter--

polated (with local unfolding) velocities corresponding
to the noise-only input velocities in Fig. 6a is shown
in Fig. 6b. Since the reference velocity used for local
unfolding is itself equally likely to occur anywhere
within the ambiguous velocity interval, the effect of
interpolation with unfolding is to create local Gaussian
populations having an expected value of U, and con-
ditional variance equal to that of U for a given U,. The
distribution of U is then a convolution of this (relatively
narrow) Gaussian with the original uniform distribu-

tion (Rohatgi, 1976). The tendency for more values to

be concentrated near zero is mostly a result of con-
volving a Gaussian distribution whose width depends
on the number of original measurements used in the
interpolation with the actual distribution of velocities
coming from the radar processor.

If no local unfolding were invoked the distribution.

of velocities would look like the one shown in Fig. 6c.
If the radial velocities come from statistically similar
populations having zero mean and equal variance ¢,2,
the variance of the grid point estimate is

2 Wi

2T = - 2
o’(U) = o, Y
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where the quantities wy are the geometric weighting
factors in Eq. (3). If the grid point should happen to
coincide with an original sample location, all the
weights except one are zero. If, however, the grid point
is equidistant from all four sample locations (see Fig.
3), the sum of squares of weights is 0.25. Since all values
of A, E are equally likely to occur, the expected. value
of T wj is its areal average of 4/9. Three gates were
used so the expected variance is 0.15¢, or a standard
deviation of 5.7 m s™! compared to the observed value
of 8.04 m s™! (Fig. 6¢). As can be seen the distribution
of interpolated (with local unfolding, Fig. 6b) noise-
only measurements is clearly “noiselike” and is similar
to the one found in radar space (Fig. 6a). The impor-
tance of the local unfolding is further evidenced by
noting the character of the contours in the western
portion of Fig. 4a and contrasting that with what would
happen if no local unfolding were invoked during in-
terpolation (Fig. 6¢). Some of the chaotic character
would be lost.

4. Comparison with conventional methods

All radial velocities except noisy ones (as determined
by the bad data flag bit) were carefully unfolded in
radar space and then interpolated using the linear
method with three-gate smoothing, but with no addi-
tional local unfolding. Examples of these data are
shown in Fig. 7. Shaded regions in the eastern portion
of the grid where velocities were originally ambiguous
are now unfolded. Noisy estimates in the western por-
tion were interpolated with local unfolding to replicate
the effects discussed in Section 3.

For comparison, unedited original measurements
such as those shown in Fig. 1 were interpolated with
local unfolding and then unfolded in Cartesian space
(Fig. 8), using global techniques described by Mohr
and Miller (1983). These data were also thresholded
on the velocity quality parameter (Q > 0.6) to eliminate
the noisy portion. At grid locations outside regions of
noise the average difference between velocity estimates
derived by conventional methods and our method
was 0.05 m s™' with a standard deviation of only
0.11 ms™\,

To further substantiate this equality of methods, we
constructed several scatter plots to show point-by-point
comparisons of velocities derived by conventional
methods with those obtained by the proposed method.
The following radial velocity fields were created:

VGUF—velocities were unfolded in radar space and
then interpolated with no additional un-
folding,

value is marked by a vertical dashed line. Each bin of width 2 m s™!
designates the percent of all velocities (total of 3194) that occurred
within the bin. The average value and standard deviation of the dis-
tribution is shown in the upper right hand corner.
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VNUF—unedited velocities were interpolated with
local unfolding,

VLUF —the field VNUF was unfolded in Cartesian
space,

VBIA —unedited velocities were
without local unfolding,

VGTH—the field VGUF was thresholded on @, and

VLTH —the field VLUF was thresholded on Q.

interpolated

Figure 9a shows a scatter plot of the conventional
method velocity (VGUF) along the abscissa versus the
interpolated with local unfolding velocity (VNUF).
There are two regression lines of VNUF that are offset
by ¥, = 51.2 m s™! above and below (or right and left
of) the one-to-one line. These represent values that
need to be unfolded in Cartesian space, while values
along the one-to-one line were never ambiguous in the
first place. These velocities (VNUF) are shown in Fig.
9b after unfolding has been accomplished in Cartesian
space. The few points that do not lie along the one-to-
one line are from the noisy regions, as seen in Fig. 9¢
where these values have been eliminated by threshold-
ing on Q. Note the small improvement in the corre-
lation coefficient from r = 0.998 in Fig. 9b to r = 1.000
in Fig. 9c indicating that both methods are producing
identical results in regions of usable data.

Contrast these results with the ones in Fig. 10 where
unedited velocities were interpolated without local un-

" folding. The shaded area indicates regions where ve-

locities cannot be unfolded by the addition or subtrac-
tion of any integer multiple of the ambiguous velocity.
This is further demonstrated in Fig. 11 where these
biased velocities (VBIA) are plotted against the con-
ventional-method velocities (VGUF). The vertical
scatter of VBIA near the Nyquist velocity typifies the
amount of bias that occurred. The large scatter near
the negative Nyquist is also from biasing as well as
from noisy values. Although the bias in these velocities
cannot be removed, all these interpolated velocity val-
ues can be eliminated by thresholding on the velocity
quality parameter computed using unedited input
measurements.

5. Concluding remarks

We have discussed a way of rectifying folded velocity
measurements taken in radar sampling space to regular
(x, y, z) analysis space. These locally unfolded and in-
terpolated velocities can then be globally unfolded using
techniques described by Mohr and Miller (1983). Noisy
data are eliminated and remaining velocities are un-
folded using the interactive software package CEDRIC
(Mohr and Miller, 1983). This procedure has been
shown to give results identical to those using more
conventional approaches.

Two main advantages of not editing radial velocities
until after interpolation are 1) the amount of radar
data that must be subsequently manipulated is reduced
by a factor of ten to twenty; and 2) all the data from
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different radars are located at common grid points,
thereby facilitating interactive global unfolding and
multiple radar wind synthesis attempts of difficult cases.
When adjacent true velocity values differ by more than
twice the Nyquist velocity, the local unfolding-inter-
polation scheme will fail to interpolate a correct grid
point estimate. Application of Egs. (1) and (2) would
give a folding factor of one, rather than the required
two or more. The interpolated value would therefore
be incorrect.

For a large severe storm there may be as many as
500-1000 range gates per beam, 100-200 beams per
elevation sweep and 15-20 sweeps per storm volume
or about 1-4 X 10° original sampling points per storm
volume. These are typically interpolated to about 100
X 100 grid points at 15-18 vertical levels, or 1.5-1.8
(X10%) values. Large radar data bases such as the one
from the CCOPE Doppler radar network can be written
to mass storage devices (e.g., the terabit memory system
at NCAR) where they can be processed using a batch
version of this interpolation procedure (Mohr et al.,
1981) on the CRAY-1A computer. Most of these radar
measurements can be interpolated without prior radar-
space editing and written to tape for transport to smaller
machines such as a VAX 11/780 computer where the
results can be edited and synthesized in Cartesian anal-
ysis space. This means that about one-tenth as many
magnetic tapes must be handled, and most if not all
of the data needed for a case study can reside on disk
in the smaller machine.

Many times there is insufficient information avall-
able from a single radar to unambiguously unfold all
the measured velocities. If the computation-intensive
step of interpolation does not have to be repeated, pre-
liminary unfolding and synthesis can be attempted.
Incompatibilities between radars will usually show up
as physically impossible resultant vector winds so that
the offending values of radial velocity can then be un-’
folded in a different way and resynthesized. Further-
more, since most meteorologists are more accustomed
to working with data on constant height surfaces rather
than constant elevation angle surfaces (radar spherical
coordinates), Cartesian space is a more comfortable
framework for manipulating the data base and arriving
at believable results. Measurements can be transformed
without radar space editing in most cases so that the
majority of the data processing can be delayed until
all radar estimates are organized onto a common (for
all radars) grid where editing is less tedious and time-
consuming.

 Acknowledgments. The authors acknowledge the
diligent efforts of the NCAR Field Observing Facility

was produced by thresholding VGUF on the velocity quality param-
eter and is plotted versus (¢) VLTH—thresholded VLUF on quality
parameter. The number of points (¥), linear regression coefficient
(n), and standard error [defined as o,(1 — r?)'2, where g, is the or-
dinate] are marked in the lower right-hand corner.
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technical staff in the maintenance and operation of the
CP-2 radar. The success of the CCOPE experiment
would not have been possible without the dedication
of these technicians and engineers.

APPENDIX

Behavior of the Variance and Nondimensional
Velocity Quality Parameter

In this appendix we consider the behavior of the
variance [var(U)] and nondimensional velocity quality
parameter (Q) in Eq. (5) when all radial velocity mea-
surements are random noise. This is of fundamental
importance since we calculate these statistics at each
grid point and use their values to discriminate against
interpolated velocities coming from regions of noise.
The applicability of this exercise is limited, however,
by the extent to which the pulse-pair processor is not
ideal and does not yield a uniform distribution of out-
put velocities in noise. ,

When no return signal is present, covariance-deter-
mined velocities will ideally be distributed uniformly
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from —V, to V,, and thus will have a zero mean and
variance ¢,2 = V,%/3. However, the unfolding of such
a distribution to a reference velocity that is a sample
from the population resuits in a variance somewhat
smaller than ¢,°. The velocity notation used in the main
body of the paper is retained: at radar sampling loca-
tions V; and U; represent measured and unfolded ve-
locities, respectively. The local mean value of the un-
folded velocities is

22U
U= 5 (Al)
with variance [Z = var(U) in Eq. (5)]
| > (U~ OF
Z= ——1 (A2)

The expected value of Z for a uniform noise distri-
bution is derived from the conditional probability den-
sity for the unfolded velocities U;, given that a reference
velocity V; = v; has been chosen. For i # 1, the U; will
be uniformly distributed over a range of 2V, centered
at v,. The conditional probability density of the U,(i
#1)is

1
W, vl—Vn<u,-.<vl+V,,
Puyvulvy) = " (A3)
0, otherwise.

Further, for i = 1 the unfolded velocity will certainly
be Uy, given that Vl = Dy

pU|IV1(ul|vl) = 0(u; —vy), (A4)
where 6 is the Dirac delta function. The conditional
expectation or mean of each of the U, is v,:

EAU) = [ dugspuptudon

= . (AS)

The conditional expectation of Z may be expressed in
terms of the conditional variances of the Uj; given by

0,2, i

A6
0, i=1 (46)

EJ(U; — v))] = {

Then by taking steps identical to those in the derivation
of the expected value of a sample variance (e.g., Bendat
and Piersol, 1971), it follows that

I—1
I

(This Z is actually not a sample estimate of variance
in the usual sense, because the values of U; do not
constitute a random sample of a single random vari-
able, U, being distributed differently than the other
U;.) From the definition of the velocity quality param-
eter in Eq. (5), the expected value of Q becomes

E[Z] = o2 (A7)
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E[Q] =1 — E[Z)/s,}
! AS
=7 (A8)

This will be near zero for most practical choices of 7
(I = 12 for 3-gate range averaging).

In order to distinguish between signal and noise using
the parameter Q, it is important that the variance of
Q in noise not be too large. Otherwise, a significant
number of values of Q in noise, which are expected to
be near zero, may actually be near unity, as they are
for signal. The conditional variance of Q, var[Q], may
be shown to be

4 1 4
var[Q] = 5(1—_15 (1 + Z[ - F)
~ 24
5I°
This indicates that the reliability of Q as a discriminator

against noise is increased by increasing the number of
samples 7 going into each grid point estimate.

(A9)
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