
Using OpenACC and NVIDIA Profilers for
Simplified GPU Refactoring

Case Study: PRIMo (Parallel Raster Inundation Model)

Daniel Howard and Davide Del Vento
NCAR Computational & Information Services Laboratory

Brett Sanders
University of California, Irvine

Adam Luke
Zeppelin Floods, LLC

With Special Thanks for the SDSC GPU Hackathon Support Team
Dave Norton, NVIDIA
Matt Stack, NVIDIA

Mahidhar Tatineni, San Diego Supercomputing Center

PRIMo App
• Explicit finite-volume scheme

• Solution on a cartesian grid

• Compute-intensive Riemann solvers

• Dual grid to exploit detailed topographic data

• Look-up tables requiring

 piecewise linear interpolation

• CPU Parallelism

– Single Process Multiple Data (SPMD) design with

– domain decomposition (Sanders and Schubert, 2019)

• No libraries

• Fortran language

• Our focus

• Performance on a single GPU using OpenACC

• Multi-GPU implementation with MPI & OpenACC

See 2019 publication of CPU based MPI version of PRIMo

Initial Work Adding OpenACC
Code involves an initial loading of raster data. This section could not be
accelerated on GPU due to data movement limitations. Parallel I/O separate goal

Primary target for OpenACC regions was the main timestepping loop and
associated routines, including Riemann Flux solver routines.

Suggested Approach, initially with serial/single GPU model…
1. Start with selecting and adding !$acc kernels/parallel regions

2. Verify correctness of code, can use -ta=autocompare at compile

3. Then add !$acc data regions to minimize data movement

4. Verify correctness again and iterate.

Parallel regions without data regions forces compiler to be robustly
conservative in ensuring correctness, copying all needed variables when
entering/exiting parallel regions.

Will initially be slower. But much harder to isolate bugs if you skip steps.

PRIMo Pseudocode
!!! Data clauses !!!
!$acc enter data copyin(u,v,eta) create(detax, detay)

!!! Main time loop !!!
do while (t<=tstop .and. n<=ntmax)

 ! Call needed functions. GPU kernels are inside functions
 call fluxes(nxu,nyu,eta,detax,detay)
 ...

 ! Make sure GPU vars are on CPU
 !$acc update host(maxlambda)
 !!! Run any CPU code here !!!

!$acc update device(maxlambda)

 call advance ! Advance solution to the next time step
 !$acc update host(dt)

t=t+dt
 enddo

!!! End time loop and data region !!!
!$acc exit data copyout(eta) delete(detax, detay)

Data region can be as big as
you want!

Profiling with NVIDA NSight
NVIDIA NSight ecosystem has excellent tools to assess performance of a model
and isolate where additional refactoring is required. Included with NVHPC SDK

Typical to start with nsys then isolate to specific GPU kernel(s) with ncu
Simple to run… nsys profile program.exe

Good added options include below or use man nsys/ncu & see docs…
nsys -o $PBS_JOBNAME --trace=openacc,cuda
--cuda-memory-usage=true --stats=true ...

PRIMo - Initial Profiling Results
OpenACC automatically
names kernels based on
subroutine and line
number.

Can further segment
profile by adding NVTX
ranges and appropriately
linking NVTX library at
compile time. Need
NVTX module for
Fortran.

Advance routine initially
a bottleneck for the
application.

Fix Advance - Subroutines in
OpenACC Compute Kernels

Testing subroutines called inside advance routine’s GPU kernel, we determined
that the compiler was casing excess data movement when calling vfr() routine.

To note, it’s possible and usually sufficient to use !$acc routine declaration to
tell compiler to create GPU code for a function called inside a kernel. But...

Problem arises passing slice or subrange of variable for Fortran function.
New sub data objects are instantiated at each call, slowing the program.

subroutine advance
!$acc routine(vfr) seq

!$acc parallel loop
do …

…
vfr(x,y,z(1:small_range))

enddo
end subroutine advance

PRIMo – Fix by Inlining Subroutine
Can actually see
all routines now.

The runtime split
ratio for each
kernel matches
closely to a CPU
only profile of the
model using Arm
Forge.

Further
optimizations can
be pursued by
using NVTX
ranges to isolate
sections of code
to similar kernel
chunks.

For 27,000 x 7,000 grid test case of Hurricane Harvey for 100s test run, ~56x speedup 1 V100 GPU vs 1 CPU
This speedup is for main compute region of model and does not include initialization or I/O.

Preliminary Performance Results

Still need to address initialization I/O speeds and multi-GPU implementation correctness

Analysis of Kernels with ncu
advance()metrics for inlined VFR version compared to function call VFR baseline via Nsight Compute.

Subsets of GUI metrics below but can be obtuse. See recommendation flags. Hover cursor in GUI for details.

Simple to run, see docs… ncu --set full -f -o HoustonExt_funcVFR --kernel-regex
advance_1509_gpu --launch-skip 85 --launch-count 2 ./bin/primo_acc.exe $MODEL

Source/SASS analysis with ncu
Under GUI “Source” page, so long as executable is compiled with line table information, can directly
correlate performance time to specific lines in code and underlying assembly code.

This allows you to generate and investigate a heatmap of time spent in code as well as other stats.

Lots of Profiler Data… What’s Important?

Amount of information from a profiler is overwhelming. Whether you do a deep
dive into these reports is up to you, but try and focus on important metrics

1. Occupancy = # active threads / max # threads per compute unit
a. Important to check whether GPU SMs are kept busy
b. If low occupancy, try adjusting workgroup size or kernel resource usage

2. Issue Efficiency
a. Measurement of instructions issued per cycle vs max possible per cycle
b. There are profiler counters to check for kernel stalls related to…

i. Memory dependency, execution dependency, synchronization,
memory throttle, constant miss, texture busy, or pipeline busy

3. Peak Bandwidth Percentage
a. Compares your achieved bandwidth to the theoretical max.
b. Look for opportunities to...

i. coalesce memory loads
ii. store values in local cache memory (OpenACC cache directive)
iii. reuse data to minimize host to device memory movement

Takeways
1. Refactor GPU codes in incremental steps to avoid bugs, guarantee

correctness. -ta=autocompare is a good tool.

2. Minimize data movement. Consider wrapping whole compute
intensive region(s) in a data region if there is enough GPU memory.

3. Ensure performant code by running nsys first (maybe Arm
Map/others). Check idle regions and/or kernel launches that use
excessive amount of time.

4. Compilers can still implement code inefficiently when using
OpenACC. Use ncu to verify.

5. Organizing and setting aside dedicated time for a small-medium size
team to focus on improving model, such as via gpuhackathons.org, is a
great option to consider. We made significant progress ourselves here.

6. Excessive time spent optimizing is less important than following good
Software Engineering practices.

Some useful resources...
1. Textbooks

a. Parallel and High Performance Computing, 9e Robey & Zamora -
Chapter 13 on GPU Profiling

b. Programming Massively Parallel Processors, 3e Kirk & Hwu

2. Courses and Webinars
a. NCSA - Intro to Nsight Systems (2018) - video
b. NCSA - Intro to Nsight Compute (2018) - video
c. OLCF - Nsight Compute (2020) - video / slides
d. UIUC ECE 408 - 4 part series on Nsight profilers (2020), Youtube

Session 3 of 4 goes most in depth on Nsight Compute
e. EU POP CoE - Profiling GPU Apps w/ Nsight (2020) - video / slides

3. Guides and Blog posts
a. NVIDIA Blog - Using Nsight Compute to Inspect your Kernels
b. NVIDIA Blog - Custom Profiles with NVTX (C/C++), post on Fortran

4. Developer Materials
a. NVIDIA Documentation for Nsight Systems
b. NVIDIA Documentation for Nsight Compute

