NHUG HPCD Update

Irfan Elahi Director of High-Performance Computing Division & Project Director NWSC-3 (Derecho)

March 1, 2022

Welcome NHUG Members

NCAR HPC User Group (NHUG) - Scope

- User Group / Forum for HPC users
- Provide Feedback / Wishlist
 Ourrent / Future HPC systems / services
- Working Groups
 - Develop collaborations between subsets of user community aligned by interests
- Monthly NHUG Meetings

NHUG communication Channels

wiki

Slack

Slido

Derecho Status Update

CY-2022 Milestones and Deliverables

Quarter 3

- Pre-delivery Factory Trials
- Delivery of Derecho and Storage System
- Commissioning, Functional Testing

Commissioning and Functional Testing

Quarter 4

- ATP and Benchmarking
- Solution Acceptance

Derecho (NWSC-3) HPE/Cray Solution

- Complete proposal received from HPE/Cray
 - Includes HPC and PFS
 - Peak: 19.87 PetaFlops
 - 60PB usable file system
- HPE CSEP Exceeds RFP
 requirement
 - 3.51 CSEP
 - CPU 2.84 CSEP
 - GPU 0.67 CSEP
- Large installed base
- Includes onsite 1x FTE support

CSEP (Cheyenne Sustained Equivalent Performance) - CPU Partition

80% sustained performance of Derecho will come from CPU-Only Compute nodes. Graph shows the distribution for CPU-only benchmarks for Derecho

CSEP - GPU Partition

Derecho Nodes

CPU Cabinet

4 nodes per compute blade 1 slingshot injection 64 blades per cabinet 256 nodes per cabinet 210.7 kW 0.65 tons of mech cooling ~1.3 PFLOPS

0.29 CSEP

GPU Cabinet

- 2 nodes per compute blade 4 x GPU per node 4 Slingshot Injections 64 blades per cabinet 128 nodes per cabinet 190 kW 0.59 tons of mech cooling
- ~10.3 PFLOPS
- 1.04 CSEP

GPU Node To Slingshot

Derecho - Storage & File System

- 6 x HPE/Cray ClusterStor E1000 systems
- 60 petabytes of usable file system space
 - Can be expanded to 120 petabytes
- 300 GB/s aggregate I/O bandwidth
- 5,088 × 16-TB drives
- 40TB SSD for Lustre file system metadata
- Two metadata management units (MDU) & 4 MDTs
 - One MDT exported per one MDS
 - Configured in highly available storage pairs
- Cray Lustre Parallel File System

Derecho - Network Environment

Critical electrical and mechanical components on UPS

Storage and file system will have 99% availability

Optimization of user environment to

reduce failure

Architected with features for higher RASUM

> Derecho Compute nodes will have 98% availability

Total Facility Power Consumption (Max MW)

System Power Consumption (sustained MFLOP/sec per Watt)

180			
	Cray J90	□ HP SPP-2000	
160	SGI Origin2000	SGI Origin2000	
	■IBM POWER3 WH-2	Compaq ES40	
140 -	□SGI Origin3800	□ IBM POWER4 p690 ~171 sus MFLOPs/Watt	
	□IBM AMD/Opteron Linux	BM BlueGene/L (frost)	
	■IBM POWER5 p575 (bluevista)	■IBM POWER5+ p575 (blueice)	
120	■IBM POWER6 Power575 (bluefire)	Cray XT5m (lynx)	
	IBM iDataPlex/FDR-IB (yellowstone)	SGI ICE-XA/EDR-IB (cheyenne)	
100	■ HPE Cray XE (TBD)		
80			
		Chevenne	
		~73 sus MFLOPs/Watt	
60			
40			
	Bluevista / Blueice 75.5 sus MFLOPs/Watt	Yellowstone	
20	~1.4 sus MFLOPs/Watt ~7.4 sus MFLOPs/Watt Lynx	~24 sus MFLOPS/Watt	
	~14 su ~0.2 sus MFLOPs/Watt	us MFLOPs/Watt	
0 20	000 2001 2002 2003 2004 2005 2006 2007 2008 2009	2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022	2023 202

Summary of University ASD Submissions

- 8 Submissions Considered
 - 322.4 million cpu-core-hours requested
 - 152,200 GPU-hours requested
- Each request reviewed by three panel members
- Each reviewer provided rating (excellent to reject)
 - Excellent=5 Reject=0
- Ratings averaged to rank order the proposals
- All proposals were rated good/very good (3.5) or better
 - This indicates that all proposals were of very high quality

Summary of NCAR ASD Submissions

- Two phase process
- First Phase Strategic Prioritization
 - 18 one page submissions
 - Reviewed by 15 member panel from NCAR Scientist Assembly (NSA)
 - 10 selected for 2nd phase
 - Based on strategic merit
 - Rough fit to available resources
 - 1 Proposal designated as an alternate in the event that other projects failed to make progress
- Second Phase
 - 10 full proposal prepared similar to CHAP proposals
 - Reviewed by NSC panel for computational efficiency and effectiveness
 - No issues identifies, all approved to move forward

