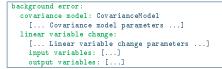
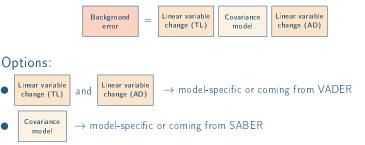
Refactoring of the SABER blocks

Benjamin Ménétrier - IRIT, Toulouse (JCSDA funding) JEDI Algorithms meeting September 26, 2022




Background error covariance matrix

YAML template for background error:

Block representation:

SABER blocks

SABER covariance model:

SABER covariance model Increment from ATLAS fieldset SABER block N (TL)	SABER block 2 (TL)SABER block 1 (Central)SABER block 2 (AD)	SABER block N (AD) Increment to ATLAS fieldset
---	---	--

SABER covariance model:

SABER covariance model Increment from ATLAS fieldset SABER block N (TL)	SABER block 2 (TL)SABER block 1 (Central)SABER block 2 (AD)	SABER block N (AD)	Increment to ATLAS fieldset
---	---	--------------------------	-----------------------------------

What is new in the branch feature/refactor_saber_block?

- Two different classes of blocks:
 - Central block, auto-adjoint.
 - Outer blocks, with forward and adjoint multiplications.
- Different constructors and methods.
- No more <MODEL> templating.
- Sequential construction of blocks to ensure geometry and variables consistency.

SABER covariance model:

SABER covariance model = Increme from AT fieldse	SABER block N (TL)	SABER block 2 (TL) (Central)	SABER block 2 (AD)	block N to A	ement ATLAS Idset
--	--------------------------	------------------------------------	--------------------------	--------------	-------------------------

- For each block, the outer geometry and variables are provided as arguments in the constructor.
- For outer blocks, methods are available to return required inner geometry and variables.
- Blocks are successively constructed in reverse order: inner geometry and variables of block *i* are used as outer geometry and variables of block *i* – 1.
- The outer geometry and variables of the block N must be consistent with the increment

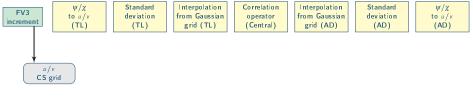
SABER covariance model:

- For each block, the outer geometry and variables are provided as arguments in the constructor.
- For outer blocks, methods are available to return required inner geometry and variables.
- Blocks are successively constructed in reverse order: inner geometry and variables of block *i* are used as outer geometry and variables of block *i* – 1.
- The outer geometry and variables of the block N must be consistent with the increment

SABER covariance model:

- For each block, the outer geometry and variables are provided as arguments in the constructor.
- For outer blocks, methods are available to return required inner geometry and variables.
- Blocks are successively constructed in reverse order: inner geometry and variables of block *i* are used as outer geometry and variables of block *i* 1.
- The outer geometry and variables of the block N must be consistent with the increment

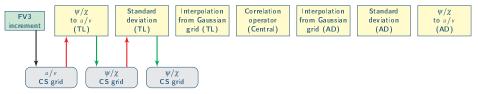
SABER covariance model:

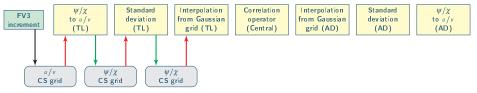

- For each block, the outer geometry and variables are provided as arguments in the constructor.
- For outer blocks, methods are available to return required inner geometry and variables.
- Blocks are successively constructed in reverse order: inner geometry and variables of block *i* are used as outer geometry and variables of block *i* – 1.
- The outer geometry and variables of the block N must be consistent with the increment

ψ/χ	Standard	Interpolation	Correlation	Interpolation	Standard	$\frac{\psi/\chi}{to u/v}$
to u/v	deviation	from Gaussian	operator	from Gaussian	deviation	
(TL)	(TL)	grid (TL)	(Central)	grid (AD)	(AD)	
(1L)	(1L)	grid (TL)	(Central)	grid (AD)	(AD)	(AD)

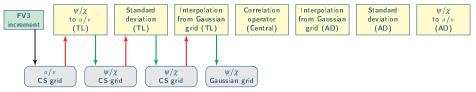
Basic wind covariance:

- → Outer geometry / variables provided in the block constructor

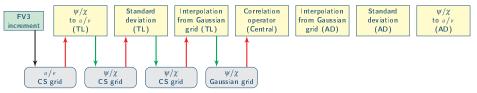

- ----> Geometry / variables obtained from the increment
- -----> Outer geometry / variables provided in the block constructor
- Inner geometry / variables returned by the block


- ----> Geometry / variables obtained from the increment
- -----> Outer geometry / variables provided in the block constructor
- Inner geometry / variables returned by the block

- ----> Geometry / variables obtained from the increment
- → Outer geometry / variables provided in the block constructor
- → Inner geometry / variables returned by the block



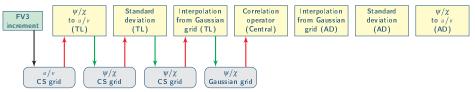
- ----> Geometry / variables obtained from the increment
- → Outer geometry / variables provided in the block constructor
- → Inner geometry / variables returned by the block


Basic wind covariance:

→ Outer geometry / variables provided in the block constructor

→ Inner geometry / variables returned by the block

Basic wind covariance:


า๋าเิงเ

-----> Geometry / variables obtained from the increment

→ Outer geometry / variables provided in the block constructor

→ Inner geometry / variables returned by the block

Basic wind covariance:

าเรา

----> Geometry / variables obtained from the increment

----> Outer geometry / variables provided in the block constructor

→ Inner geometry / variables returned by the block

Remarks:

- For each block, internal checks can ensure that outer geometry and variables provided in the constructor are expected.
- For the central block, there is no such thing as "inner" or "outer" geometry and variables, just geometry and variables.

Methods

Central blocks methods:

- randomize(atlas::FieldSet &)
- multiply(atlas::FieldSet &)
- No more inverse: only an iterative inverse for the whole matrix is used. This might change "Nonlinear Jb" values in tests references.

Outer blocks methods:

- multiply(atlas::FieldSet &)
- multiplyAD(atlas::FieldSet &)
- calibrationInverseMultiply(atlas::FieldSet &)
- Accessors to inner geometry and variables

The calibration inverse is a (possibly approximate) left-inverse of the outer block.

YAML files update

Generic keys:

- saber block name [required]: block name
- active variables [optional]: potentially affected variables
- input fields [optional]: list of model-specific files to read

Old yaml

```
covariance model: SABER
saber blocks:
- saber block name: BUMP_NICAS
  saber central block: true
  input variables: &control vars [...]
  output variables: *control_vars
  active variables: &active vars [...]
 bump:
    # [BUMP parameters]
    universe radius:
      # [universe radius file parameters]
- saber block name: StdDev
  input variables: *control_vars
  output variables: *control vars
  active variables: *active vars
  file:
    # [standard-deviation file parameters]
```

New yaml

```
covariance model: SABER
saber central block:
saber block name: BUMP_NICAS
active variables: &active_vars [...]
bump:
    # [BUMP parameters]
input fields:
    parameter: universe radius
    # [universe radius file parameters]
saber outer blocks:
    - saber block name: StdDev
active variables: *active_vars
input fields:
    parameter: StdDev
    # [standard-deviation file parameters]
```

Conclusions

Work in progress:

- Code is working, but not stable yet.
- Modifications are required in most repos:
 - OOPS: new template-free GeometryData class
 - SABER: full refactoring
 - All models: YAML and references
- YAML / references update for all models is ongoing. Some adjustments in the code might be needed depending on how tests will behave.
- Coordinated merge required once everything is ready.

Upcoming modifications:

- Generic SABER block to call VADER change of variables.
- Refactoring of the halo handling in B and H