
1

Copyright © 2009 University Corporation for Atmospheric Research
and Massachusetts Institute of Technology Lincoln Laboratory

NextGen Network Enabled Weather (NNEW)
Federal Fiscal Year 2009

Information Technology Demonstration

Implementation Verification Procedures

Version 1.6

9/15/2009

National Center for Atmospheric Research

MIT Lincoln Laboratory

National Oceanic and Atmospheric Administration/Global Systems Division

2

Copyright © 2009 University Corporation for Atmospheric Research
and Massachusetts Institute of Technology Lincoln Laboratory

DOCUMENT REVISION REGISTER

Version Date Content Changes Editors Contributors

0.1 08/17/09 Initial template with new input for
registry/repository

 Farrukh Najmi

0.2 8/20/09 Addition of WFS-RI, Security, QoS, and
Ontology Alignment verification

Arnaud Dumont Kajal Claypool

0.3 8/27/09 Addition of WCS-RI implementation
verification

Arnaud Dumont Rob Weingruber

0.4 8/29/09 Addition of Flight Hazard and Higher-
Order Service composition verification

Arnaud Dumont Marcel Casado

1.1 9/9/09 Final revision of Registry Repository Farrukh Najmi

1.2 9/9/09 Final addition of NWS section Arnaud Dumont Matthew Peroutka
Steve Olson

1.3 9/11/09 Final edits of WCS-RI section Arnaud Dumont Rob Weingruber

1.4 9/13/09 Final additions to WFSRI and Ontology Arnaud Dumont Kajal Claypool

1.5 9/13/09 Final additions to Flight Hazard Services Arnaud Dumont Marcel Casado

1.6 9/15/09 Final edits and formatting for dry run and
including comments and edits of run

Aaron Braeckel
Arnaud Dumont

Rob Weingruber
Marcel Casado

Please direct comments or questions to the contributors of the sections listed above.

For overall comments or questions, contact:

Arnaud Dumont
National Center for Atmospheric Research
Research Applications Laboratory
3450 Mitchell Lane
Boulder, CO 80301
dumont@ucar.edu
 (303)497-8434

mailto:dumont@ucar.edu�

3

Copyright © 2009 University Corporation for Atmospheric Research
and Massachusetts Institute of Technology Lincoln Laboratory

TABLE OF CONTENTS

1. Overview 7

2. Test Requirements 8

2.1 System Dependencies 8

2.2 Demonstration Applications 9

3. Implementation Verification - Registry / Repository 12

3.1 Test Environment and Setup 12

3.1.1 Client Software 12
3.1.2 Registry and Federation Setup 12
3.1.3 Initial Data Setup 13
3.1.4 Launching the Registry Administration UI version 4.4 14
3.1.5 Launching the Registry Administration UI version 4.5-SNAPSHOT 14

3.2 Discovery of Dataset by Weather Phenomenon Type 15

3.2.1 Dataset Discovery - Unfiltered Local Search 15
3.2.2 Dataset Discovery - Unfiltered Federated Search 17
3.2.3 Dataset Discovery - Local Search Filtered By Dataset Field 18
3.2.4 Dataset Discovery - Federated Search Filtered By Dataset Field 21
3.2.5 Dataset Discovery - Semantic Filtered Search 23
3.2.6 Dataset Discovery – REST Search Filtered By Dataset Field 27

3.3 Discovery of Datasets by Weather Cube Domain Classification 30

3.3.1 Viewing an Existing Taxonomy 31
3.3.2 Dataset Discovery - Local Search Filtered By Any Weather Cube Domain 32
3.3.3 Dataset Discovery - Local Search Filtered By “Unrestricted” Weather Cube Domain34

3.4 Discovery of Services Instances 35

3.4.1 Service Discovery - Unfiltered Local Search 36
3.4.2 Service Discovery - Unfiltered Federated Search 37
3.4.3 Service Discovery - Local Search Filtered By Service Type 38
3.4.4 Service Discovery - Federated Search Filtered By Service Type 43
3.4.5 Service Endpoint Retrieval 45
3.4.6 Viewing Datasets Related to a Service 47

3.5 Creation of an Experimental Weather Cube Taxonomy 49

3.6 Publication of an Experimental Data Set and Accompanying Experimental Data Access
Service 52

3.6.1 Publish Dataset 52
3.6.2 Publish Service Instance 55

3.7 Fault Tolerance Support in Registry Client API 63

4. Implementation Verification – Web Coverage Service Reference Implementation (WCSRI) 65

4.1 Test Environment and Setup 66

4.1.1 Dependency Installations 66

4.2 WCSRI Administration 68

4.2.1 Services Metadata 69
4.2.2 Configuring a New Coverage 70
4.2.3 Starting Fuse/ServiceMix 72

4.3 WSDL Verification 74

4.4 Verification using Maven and Black Box Testing 75

4.5 Verification using SoapUI GUI and ToolsUI 76

4.5.1 Starting SoapUI and Configuring the WCSRI Endpoint 76
4.5.2 Executing the Black Box Test Suite 79
4.5.3 Executing GetCapabilities 79
4.5.4 Executing DescribeCoverage 81
4.5.5 Executing GetCoverage for a Volume 81
4.5.6 Visualizing GetCoverage Volume Results 83
4.5.7 Executing GetCoverage for a Corridor 86
4.5.8 Visualizing GetCoverage Corridor Results 89

4.6 Verification with NNEW FY09 Integrated Java Application 91

5. Implementation Verification – Web Feature Service Reference Implementation (WFSRI) 97

5.1 Test Environment and Setup 101

5.1.1 Administration Client 101
5.1.2 Publish Clients 101
5.1.3 Retrieval Clients 103
5.1.4 CIWS Display 104

5.2 Register New Producer Using the WFSRI Administrator 105

5.3 Create Feature Table 106

5.4 Register Feature Type Using the WFSRI Administrator 107

5.5 Transaction Insert 109

5.5.1 Using the Generic Client 109
5.5.2 Using the ATOM-WFS Bridge 111

5.6 GetCapabilities Using the Generic Client 112

5.7 DescribeFeatureType Using the Generic Client 113

5.8 GetFeature Request/Response 114

5.8.1 Unfiltered Access 115
5.8.2 Spatial Subsetting 116
5.8.3 Temporal Subsetting 116

5.9 GetFeature Subscription Using Google Earth Subscription Client 117

5.9.1 Unfiltered Subscription 117
5.9.2 Spatial Filtering Subscription 119

5.10 Security 119

5.10.1 Verification of Unauthorized Access 119
5.10.2 Verification of Authorized Access 120

5.11 Client-Side Service Adaptor – CIWS Display 120

5.11.1 Precip Product 121

5.12 Winter Precip Product 121

5.13 Echo Tops Product 122

5.14 Lightning Product 123

5.15 AIXM Overlays 124

6. NWS Data discovery and access 126

6.1 Introduction 126

6.2 Test Environment and Setup 126

6.3 Discovery of NDFD/NDGD SOAP Service 126

6.4 SOAP Query of NDFD/NDGD Data 128

6.5 Web Coverage Service Query of NDFD/NDGD Data 133

7. Implementation Verification – Flight Hazard Service and High Level Service Capability 140

7.1 Test Environment and Setup 140

7.1.1 Client Software 140
7.1.2 Composite Services Setup 141

7.2 Verification of 4D Trajectory Capabilities and Flight Hazard Service Composition with Flight
Hazard Tool Web UI 142

7.2.1 Weather Hazards Along a Flight Trajectory - Archived Use Case 142
7.2.2 Weather Hazards Along a Flight Trajectory – “Near Future” Use Case 149

7.3 Verification of Flight Hazard Composition Service and Composite Services with SoapUI150

7.3.1 Atomic Services Test Steps 150
7.3.2 Flight Hazard Service Composition Test Case 159
7.3.3 Flight Hazards Service – Black Box Test Case 163

7.4 Verification Derived Data with ToolsUI 164

8. Ontology Alignment Tool 168

8.1 Test Environment and Setup 168

8.1.1 Ontology Alignment UI 168

8.2 Loading Ontology 168

8.3 Manual Alignment of Ontologies 170

8.4 Semi-Automated Alignment of Ontologies 171

8.5 Loading an Existing Alignment 173

9. References 176

 7

1. Overview

This document provides procedures for verification of work completed for NNEW during the federal
fiscal year 2009 (FY ’09). In many cases, these capabilities are extensions to the capabilities developed
for NNEW in previous years, 2007-2008. Specific mention will be made when appropriate.

NNEW implementation during FY ’09 was focused primarily on 5 areas: implementing federated
registry/repositories, developing a Web Coverage Service Reference Implementation (WCSRI),
developing a Web Feature Service Reference Implementation (WFSRI), orchestrating services in the Fuse
ESB container mandated by the FAA’s System-Wide Information Management (SWIM) program, and
developing an initial security infrastructure for managing data access.

 8

2. Test Requirements

The verification procedures outlined in this document may be executed on any computer that satisfies a
minimum set of requirements. System requirements include basic system dependencies and demonstration
applications.

System dependencies can be satisfied by installing publicly available components, typically released by
parties unaffiliated with the NNEW project. In all cases, these components are available without licensing
costs.

Demonstration applications are specialized tools that facilitate interaction with NNEW standard services
or formats. In many cases, these applications were created by NNEW developers primarily for the
purpose of this test. Those tools may be unavailable or unsupported after the test is complete.

2.1 System Dependencies

System dependencies are required to run the demonstration applications. These include computer
memory, network connectivity, libraries, and utility packages. All of the items below must be installed
prior to installing and configuring the demonstration applications:

• Memory

The test computer should have a minimum of 1048M of RAM. This memory is primarily needed
for responsiveness when running the NNEW FY ’09 IT Demonstration Integrated Java
Application. Performance for visualization of some of the larger datasets is greatly improved for
clients with 512M or 1G of RAM.

• Internet Connection

The test computer must be able to initiate an outgoing TCP/IP connection to port 80 of a remote
host. The test computer must also be able to receive data across the connection it initiates. This
fundamental capability can be verified using any commercial off-the-shelf web browser.

The test computer may be connected via a proxy server and/or have its data filtered through a
web filter, as long as the intervening software does not corrupt digital signatures on data. Some
web filters have been known to invalidate the certificate signatures on valid data when they
attempt to inspect its contents. If you encounter corrupted certificate errors when running the
tests, please contact your system administrator for assistance.

• Java Web Start

The test computer must have the latest stable version of Java installed. This is currently Java
1.6.0_16 (eg: build_1.6.0_16-b03). Java may be downloaded and installed by pointing a web
browser to the following URL:

http://java.com

Installation requires administrator privileges on most platforms.

The latest version of Java includes Java Web Start. Java Web Start is a client-side Java Virtual
Machine environment that facilitates execution of code downloaded from the internet. Java Web

http://java.com/�

 9

Start provides many security protections not available when running applications directly. It also
allows signed applications to request access to local printers, create and load files on the local file
system, initiate outgoing TCP/IP connections, etc. The NNEW FY ’09 IT Demonstration
Integrated Java Application and Catalog/Registry Interface Application both require Java Web
Start.

• Maven

The Maven exec plugin is required by the SoapUI application.

• Subversion

Subversion is required to download source code and components from the NNEW code
repository.

• Fuse ESB 4.1.0.2 (ServiceMix)

The Fuse ESB is the platform on which the WCSRI and WFSRI services are hosted. This ESB is
required by the FAA System-Wide Information Management (SWIM) program.

• NetCDF 4 C Libraries

The NetCDF 4 C libraries must be installed and available via the $LD_LIBRARY_PATH
variable when running the Fuse ESB. The NetCDF 4 libraries are used by the MIT NetCDF JNI
libraries, described below.

• HDF5

The HDF5 library is required by the NetCDF 4 libraries. It is available for download from the
NetCDF web site.

• MIT Lincoln Labs NetCDF JNI Libraries

The Lincoln Labs NetCDF JNI C libraries must be built, installed and available via the
$LD_LIBRARY_PATH variable when running the Fuse ESB Demonstration Applications.

2.2 Demonstration Applications

Several applications were developed or modified to demonstrate the FY ‘09 implementation. These
applications were created because there is no way for a person to interact with NNEW system using
existing, off-the-shelf, software; security requires authentication of clients, access services adhere to rigid
protocols for information exchange, and returned datasets are typically encoded in compact binary
formats. In addition, the 4D Weather Functional Requirements for NextGen Air Traffic Management
specifically calls for “Weather integrated directly into sophisticated decision-support capabilities.” That
requirement clearly pushes development focus towards machine-to-machine interoperability and away
from human interfaces. As a result, the NNEW team has chosen to avoid documenting the interactions
needed for users to test the implementation directly, and instead, provides custom applications that test
the implementation.

The demonstration applications range from simple, single-use, tools to complex, integrated, displays. In
addition to verifying the implementation, these applications demonstrate the flexibility of the operational

 10

concept: many types of clients, interacting with the system using several different protocols, and
requesting data at many different granularities. The demonstration applications are:

• NNEW FY ‘09 Integrated Java Application

This is an extension of the Phase II demonstration application. It integrates most of the products
produced for the NNEW FY ‘09 demonstration. This tool demonstrates the use of the service
registries, gridded data services, and feature services from all three NNEW laboratories.

• Catalog/Registry User Interface Application

This tool connects to a registry and allows for interactive uploading, querying, and downloading
of service information (WSDL’s and associated schemas), dataset metadata, classification
taxonomies, and other artifacts associated with geospatial data artifacts, such as coordinate
reference system dictionaries. The UI may be launched by pointing your web browser to the
following URL:
http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp

• WFSRI Administration User Interface

This is the user interface for administration of the Web Feature Service Reference
Implementation.

• Ontology Alignment User Interface

This application facilitates the alignment of ontologies.

• Firefox Web Browser

A standards-compliant web browser is required to run several of the web applications and web
user interfaces. While these tests may run on non-standards-compliant browsers, user satisfaction
may be impacted. To ensure that graphical layout, event handling, and performance are
optimized, the latest stable release of Mozilla Firefox is highly recommended. This application
may be downloaded from:

http://www.firefox.com

• SoapUI 2.5.1 and 3.0

SoapUI is an application that provides viewing and invocation of SOAP XML requests, as well as
viewing of SOAP XML responses. Version 2.5.1 is required for Section 7, Implementation
Verification – Flight Hazard Service and High Level Service Capability. Version 3.0 is required
for all other sections that use SoapUI. Both versions may be installed on a test system in parallel.

• Ncdump

The ncdump application is a simple script for printing out the data structures of NetCDF files. It
is used in this verification as a way to confirm the metadata of weather variables in returned data
files (their name, dependent dimensions, units, etc). Ncdump comes bundled with the NetCDF
library. The library can be downloaded from the following URL (please ensure that the
downloaded libraries support NetCDF version 4):

http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp�
http://www.firefox.com/�

 11

http://www.unidata.ucar.edu/software/netcdf

• ToolsUI

The ToolsUI application is a Java Web Start application that provides viewing of the data
structures of NetCDF files. The version of ToolsUI must support NetCDF 4.

http://www.unidata.ucar.edu/software/netcdf�

 12

3. Implementation Verification - Registry / Repository

The NNEW registry is used to store high-level information about datasets and their associated services.
Service interface information is used at build-time to generate client applications that conform to a given
interface. At run time, a common usage model for the registry is to discover datasets using concepts such
as ‘air_temperature’, and then discover the service(s) capable of serving those datasets. The ability to
discover datasets classified as members of the NextGen Single Authoritative Source (SAS) for weather is
also an important use case.

The NNEW registry is deployed as a federated registry consisting of a group of individual registry
instances, each operated independently by a different NNEW member Organization. Interoperability
between different registries in the federation is enabled by the OASIS ebXML RegRep 4 specifications.

The test cases in this chapter cover these core build-time and run-time usage scenarios.

3.1 Test Environment and Setup

3.1.1 Client Software

The series of registry tests defined in this document use the following registry client software:

• A Java-based Registry Administration UI – This registry client provides a UI that enables publish
and discovery of datasets, service instances, service interfaces, taxonomies and more. Its
discovery features allow searching individual registries using local searches or searching registry
federations consisting of multiple registries using federated searches.

• A RegistryTestClient command line program - This registry client is a test program that is used
to test the fault-tolerance and client-side support for federated queries within the registry client
API library regrep4-client .

In addition to above clients, the NNEW Phase Integrated Java Application is also used as a user-oriented
registry client application within this test plan.

3.1.2 Registry and Federation Setup

The 2009 test plan defines the following registry and federation setup:

• NNEW Federation 1 - A federation with the following registries

o Lincoln Labs Registry 1 - A registry actively operated by MIT Lincoln Labs. Abbreviated
as “MIT-LL registry”.

o NWS Registry 1 – A registry actively operated by National Weather Service.
Abbreviated as “NWS Registry”

o GSD Registry 1 – A registry operated by NOAA / GSD. This registry is not actually
active for the 2009 Test plan and exists only to test fault-tolerance aspects of federated
search.

http://wxforge.wx.ll.mit.edu/gf/project/regrep4-client/scmsvn/?action=browse&path=/*checkout*/trunk/client/src/test/java/edu/mit/ll/regrep/client/RegistryTestClient.java�
http://wxforge.wx.ll.mit.edu/gf/project/regrep4-client/scmsvn/?action=browse&path=/trunk/client/�

 13

Exact configuration for above federation is available as an ebRIM file

• FAA Technology Center 1 – A registry actively operated by the FAA Technology Center. This
registry will be used a backup registry for the registries in NNEW Federation for the registry
client API fault-tolerance tests. Abbreviated as “FAA Registry”.

3.1.3 Initial Data Setup

At the start of the test, each registry is pre-loaded with the following types of information:

• Dataset descriptions for datasets provided by the organization that operates the registry. A
Dataset description consists of a file formatted to the ISO 19139 metadata standard, a worldwide
standard that is slated to replace the FGDC standard in the U.S. in the years ahead. The following
datasets are pre-loaded into each registry:

o Datasets in MIT-LL Registry:

 MIT-LL Datasets: Vertically Integrated Liquid (VIL), EchoTops, Lightning

 NCAR Datasets: CEIL, CIP-20, CIPSEV-20, FLTCAT, GTG2, METARS-1,
PIREPS-1, RUC20_Air_Temperature, RUC20_Relative_Humidity,
RUC20_Wind, VIS

 DoD Datasets: DOD_Air_Temperature

o Dataset in NWS Registry:

 NWS Datasets: WindDirection-NDFD-CONU, WindSpeed-NDFD-CONUS

 GSD Datasets: MDCRS-1, METARS-1, PIREPS-1, RR_Air_Temperature-1,
RR_Wind-1, Surface_Air_Temperature-1, Surface_Dewpoint-1, Surface_Wind-1

• Service descriptions for the services provided by the organization that operates that registry.
Service information is specified as a combination of ISO 19139 metadata and W3C WSDL files.
The following service descriptions are pre-loaded into each registry:

o Service in MIT-LL Registry:

 MIT-LL Services: MIT WCS-01/02/03, MIT WFS

 NCAR Services: NCAR WCS, NCAR WFS-01

 DoD Services: DOD-JMBL-01

o Services in NWS Registry:

 NWS Services: NDFD-WFS-01

 GSD Services: NOAA-WCS-01, NOAA-WCS-02, NOAA-WFS-01

http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/*checkout*/trunk/federations/federations-rim.xml&revision=56�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/datasets/mit-ll/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/datasets/mit-ll/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/datasets/dod/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/datasets/nws/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/datasets/noaa-gsd/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/services/mit-ll/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/services/ncar/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/services/dod/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/services/nws/�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/services/noaa-gsd/�

 14

• Taxonomies and other configuration for each registry. These include any taxonomies, object
types, association types and other configuration that are required by the NNEW registry profile.
An example is the weather cube taxonomy. These pre-loaded objects are defined using the
ebXML RegRep 4 Registry Information Model schema.

Note that all test metadata is defined in the wxcube-metadata project at WxForge. The hyperlinks above
link to organization specific directories within the project. Testers MUST checkout the wxcube-metadata
project in a test directory (refered to as $TEST_DATA_DIR in this plan).

3.1.4 Launching the Registry Administration UI version 4.4

For most tests we will be using the Registry Administration UI version 4.4. This version of the UI may be
launched by one of the following methods:

• Point your web browser to the following URL:
http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp

• Use the javaws program as follows:
javaws http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp

This will launch a Registry Administration UI version 4.4 that has the various NNEW registries
configured. By default, the admin UI will connect to the MIT-LL registry. To select another registry (e.g.
NWS) you may select the URL for that registry in the “Registry Base URL” field of the “Options” dialog
which is access via the Tools / Option menubar action. Note that switching registry URL may take up to a
minute and no busy indicator is shown during the action.

3.1.5 Launching the Registry Administration UI version 4.5-SNAPSHOT

For federated search tests we will be using the Registry Administration UI version 4.5-SNAPSHOT1

• Point your web browser to the following URL:

.
This version of the UI may be launched by one of the following methods:

http://www.wellfleetsoftware.com/files/ui/4.5-nnew/jnlp/wellgeo-ui-swing.jnlp

• Use the javaws program as follows:
javaws http://www.wellfleetsoftware.com/files/ui/4.5-nnew/jnlp/wellgeo-ui-swing.jnlp

This will launch a Registry Administration UI version 4.5-SNAPSHOT that also has the various NNEW
registries configured. By default, the admin UI will connect to the MIT-LL registry. To select another
registry (e.g. NWS) you may select the URL for that registry in the “Registry Base URL” field of the
“Options” dialog which is access via the Tools / Option menubar action. Note that switching registry
URL may take up to a minute and no busy indicator is shown during the action.

1 The reason for using a newer version of the UI is that it shows the name of the source registry for
objects in federated search results

http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata/scmsvn/?action=browse&path=/trunk/taxonomies/ebrim-classificationScheme-TriAgencyDataCube.xml&view=markup�
http://wxforge.wx.ll.mit.edu/gf/project/wxcube-metadata�
http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp�
http://www.wellfleetsoftware.com/files/ui/4.4/jnlp/wellgeo-ui-swing.jnlp�
http://www.wellfleetsoftware.com/files/ui/4.5-nnew/jnlp/wellgeo-ui-swing.jnlp�
http://www.wellfleetsoftware.com/files/ui/4.5-nnew/jnlp/wellgeo-ui-swing.jnlp�

 15

3.2 Discovery of Dataset by Weather Phenomenon Type

This test demonstrates the query capabilities of the Registry/Repository. In particular, it demonstrates:

1. Unfiltered Search: Discovery of all registered datasets without specifying any specific filter
criteria.

2. Filtered Search: Discovery of all registered datasets filtered by a particular weather phenomenon
type. The filter provides an exact match or a regular expression match to the specified weather
phenomenon.

3. Semantic Filtered Search: Discovery of all registered datasets filtered by a particular weather
phenomenon type and other phenomenon similar to it. The filter in this case expands the specified
weather phenomenon to all similar phenomenon using an ontology.

4. Federated Search: Discovery of datasets within multiple registries in a registry federation.

3.2.1 Dataset Discovery - Unfiltered Local Search

This test performs an unfiltered search for all registered data sets in the MIT-LL Registry.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Click on the Search tab in upper left corner of UI to access the Search Tool panel.

3. Make sure that the Federated Query Options combo box shows “Local Query” as selection

4. Select “Find Data Set” in the Select Query combo box.

5. Click the “Search” button at the top of the Search Tool panel. An unfiltered list of all the
registered datasets will appear. Click on the “Name” column heading to sort the datasets by name
/ Name (alphabetical order).

6. Verify that the list of datasets returned includes the following:

• Current Icing Potential
• Current Icing Potential
• Current Icing Severity
• DoD Model Air Temperature
• Echo Tops (Experimental)
• Echo Tops (Pending SAS)
• Echo Tops (SAS)
• Echo Tops (SAS Backup)
• Flight Category at Surface
• Geometric Height at Cloud Base

 16

• Lightning
• METARS
• National Convective Weather Forecast Model
• PIREPS (ADDS Source)
• RUC Model - 20 kilometer resolution
• Turbulence
• Vertically Integrated Liquid (VIL)
• Visibility at Surface

Note: The sorting based on Name is transient and does not currently remain in effect from query-to-

query. This has been submitted as a feature request for the UI.

 17

Figure 3.1: Dataset Discovery - Unfiltered Local Search: Shows datasets from MIT-LL registry

3.2.2 Dataset Discovery - Unfiltered Federated Search

This test performs an unfiltered search for all registered data sets across all registries in the NNEW
Federation 1 which currently includes MIT-LL and NWS registries.

1. Launch the Registry Admin UI version 4.5-SNAPSHOT as described in section 3.1.5.

2. Repeat the previous test “Dataset Discovery - Unfiltered Local Search” with one change; Make
sure that in step 3, the Federated Query Options combo box shows “NNEW Federation 1” as
selection.

 18

3. Verify that the list of datasets returned includes datasets from both the MIT-LL and NWS
registries as indicated by the last column labeled “Registry” in search result.

Figure 3.2: Dataset Discovery - Unfiltered Federated Search

Shows datasets from MIT-LL and NWS Registries

3.2.3 Dataset Discovery - Local Search Filtered By Dataset Field

This test performs a filtered search for all data sets within MIT-LL registry with the weather phenomenon
type air_temperature, where air_temperature is a Climate and Forecast (CF) conventions term; and
weather phenomenon type temperatureAir, where temperatureAir is a Joint METOC Broker Language
(JMBL) term.

1. If necessary, launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it
will connect with the MIT-LL registry.

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

 19

3. Make sure that the Federated Query Options combo box shows “Local Query” as selection

4. Select “Find Data Set” in the Select Query combo box.

5. Type the following text in the “Dataset Field”:
air_temperature

6. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon type
of air_temperature are returned. Click on the “Name” column heading to sort the datasets by
name / Name (alphabetical order).

7. Observe the matching data sets that are returned include:

1. METARS
2. PIREPS (ADDS Source)
3. RUC Model - 20 kilometer resolution

 20

Figure 3.3: Dataset Discovery - Local Search Filtered By Dataset Field:

Shows filtered results from MIT-LL registry matching Data Set Field = air_temperature

7. Repeat the search only this time type the following text in the “Data Set Field”:
temperatureAir

8. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon
type of temperatureAir are returned.

9. Verify that the single matching data set that is returned is:

• DOD Model Air Temperature

 21

Figure 3.4: Dataset Discovery - Local Search Filtered By Dataset Field:
Shows filtered results from MIT-LL registry matching Data Set Field = temperatureAir

3.2.4 Dataset Discovery - Federated Search Filtered By Dataset Field

This test performs a filtered search for all data sets across all registries in the NNEW Federation 1 which
currently includes MIT-LL and NWS registries. The filter is the same as previous test with the weather
phenomenon type air_temperature, where air_temperature is a Climate and Forecast (CF) conventions
term; and weather phenomenon type temperatureAir, where temperatureAir is a Joint METOC Broker
Language (JMBL) term.

1. Launch the Registry Admin UI version 4.5-SNAPSHOT as described in section 3.1.5.

 22

2. Repeat the previous test “Dataset Discovery - Local Search” with one change; Make sure that in
step 3, the Federated Query Options combo box shows “NNEW Federation 1” as selection.

Verify that the list of datasets returned in step 7 includes datasets from both the MIT-LL and NWS
registries as indicated by the last column labeled “Registry” in search result:

• MDCRS

• PIREPS

• Rapid-Refresh model air temperature

• Surface air temperature

• METARS

• PIREPS (ADDS Source)

• RUC Model - 20 kilometer resolution

 23

Figure 3.5: Dataset Discovery - Federated Search Filtered By Dataset Field
Shows filtered results from MIT-LL and NWS registries matching Data Set Field = temperatureAir

3.2.5 Dataset Discovery - Semantic Filtered Search

This test performs a semantically-enhanced filtered search for all data sets with the weather phenomenon
type temperatureAir, where temperatureAir is a Joint METOC Broker Language term; air_temperature,
where air_temperature is a Climate and Forecast conventions term; and CloudLiquidWater, a Joint
METOC Broker Language term for vertically integrated liquid. The Climate and Forecast term equivalent
to CloudLiquidWater is atmosphere_cloud_liquid_water_content. The test uses the weather phenomenon
ontology, Climate and Forecast, and Joint METOC Broker Language taxonomies, and alignments
between these different entities.

Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will connect with
the MIT-LL registry.

 24

1. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

2. Make sure that the Federated Query Options combo box shows “Local Query” as selection

3. Select “Find Data Set” in the Select Query combo box.

4. Type the following text in the “Data Set Field”:
temperatureAir

5. Type the following value in the “Data Set Threshold”:
0.5

The threshold indicates that data sets whose weather phenomenon type matches the specified
weather phenomenon type at the threshold value or above are returned to the user. The threshold
takes a value in the range of 0.0 to 1.0. Set the threshold to 0.5 to pick up any datasets whose
weather phenomenon type matches temperatureAir with a 0.5 confidence or higher.

6. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon type
of temperatureAir and similar (confidence > 0.5) weather phenomenon types are returned. Click
on the “Name” column heading to sort the datasets by Name (alphabetical order).

7. Verify the matching data sets that are returned are:

• DOD Model Air Temperature
• METARS
• PIREPS (ADDS Source)
• RUC Model – 20 kilometer resolution

 25

Figure 3.6: Snapshot of the Registry UI showing the results of semantic filtered search, with

Data Set Field = temperatureAir, and Data Set Threshold = 0.5.

8. Repeat the Search for Data Set (Step 4). Type the following text in the “Data Set Field”:
air_temperature

9. Type the following value in the “Data Set Threshold”:
0.5

10. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon type
of air_temperature and similar (confidence > 0.5) weather phenomenon types are returned. Click
on the “Name” column heading to sort the datasets by Name (alphabetical order).

11. Verify that the matching data sets are the same as the ones returned in Step 7.

 26

Figure 3.7: Snapshot of the Registry UI showing the results of semantic filtered search, with

Data Set Field = air_temperature and Data Set Threshold = 0.5.

12. Repeat the Search for Data Set (Step 4). Type the following text in the “Data Set Field”:
CloudLiquidWater

13. Leave the “Data Set Threshold” blank.
14. Click the “Search” button. No records are found as this constitutes a search without ontologies.
15. Type the following value in the “Data Set Threshold”:

0.5

16. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon type
of CloudLiquidWater and similar (confidence > 0.5) weather phenomenon types are returned.

17. Verify that the following data set is returned:

• Vertically Integrated Liquid (VIL)

 27

Figure 3.8: Snapshot of the Registry UI showing the results of semantic filtered search, with Data Set

Field = CloudLiquidWater and Data Set Threshold = 0.5

18. Type the following value in the “Data Set Threshold”:
0.8

19. Click the “Search” button. No results should be returned as there are no registered datasets with
weather phenomenon type CloudLiquidWater or similar (confidence > 0.8) weather phenomenon
types.

3.2.6 Dataset Discovery – REST Search Filtered By Dataset Field

This test is identical in function to the earlier test name “Dataset Discovery - Local Search Filtered By
Dataset Field”. The only difference is that this test verifies the ability to search the registry using its
REST interface using an HTTP GET URL to initiate the search and get results in ebXML RegRep’s
ebRIM XML format. The REST interface is suitable for building REST clients to the registry.

The search URL includes the query ID as well as query parameters as URL parameters as shown in the
template URL below:

 28

#Template URL for parameterized query invocation
<server base url>/search?queryId=<the query id>&{<param-name>=<param-
value>}*&format=<application/xml | application/json>

Applying this to our dataset discovery query filtered by dataset field we have the following URL for the
MIT-LL registry:

http://ngenwww2.wx.ll.mit.edu:8080/omar-server-
test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&fi
eld=air_temperature&format=application/xml

1. Click on above URL to open it in a web browser

2. Verify that the matching data sets that are returned include:

• METARS

• PIREPS (ADDS Source)

• RUC Model - 20 kilometer resolution

Figure 3.9: Dataset Discovery - REST Search Filtered By Dataset Field = air_temperature

http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=air_temperature&format=application/xml�
http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=air_temperature&format=application/xml�
http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=air_temperature&format=application/xml�

 29

3. Now we will change the URL to specify field name “temperatureAir” using the following
URL:

http://ngenwww2.wx.ll.mit.edu:8080/omar-server-
test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscovery
Query&field=temperatureAir&format=application/xml

4. Click on above URL to open it in a web browser

5. Verify that the matching data sets that are returned include:

• DOD Model Air Temperature

Figure 3.10: Dataset Discovery - REST Search By Dataset Field = temperatureAir

6. Now perform the last REST query but specify format=application/json instead of
format=application/xml and verify that the result is returned in JSON format.

http://ngenwww2.wx.ll.mit.edu:8080/omar-server-

http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=temperatureAir&format=application/xml�
http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=temperatureAir&format=application/xml�
http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=temperatureAir&format=application/xml�
http://ngenwww2.wx.ll.mit.edu:8080/omar-server-test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscoveryQuery&field=temperatureAir&format=application/json�

 30

test/rest/search?queryId=urn:ogc:specification:regrep:profile:ISO19139:query:DatasetDiscovery
Query&field=temperatureAir&format=application/json

7. Click on above URL to open it in a web browser

8. Verify that the browser return a JSON format document representing the DOD Model Air
Temperature dataset. If you wish to see the document in a pretty formatted then specify above
URL in the following web site which offers a JSON formatter:

http://jsonformat.com/

Figure 3.11: Dataset Discovery - REST Search With Results in JSON Format

3.3 Discovery of Datasets by Weather Cube Domain Classification

The weather cube is partitioned into multiple domains and sub-domains. One of the important sub-
domains is the Single Authoritative Source (SAS), referred to often in the high-level weather cube
CONOPS documents. This test demonstrates browsing for data sets by weather domain capabilities of the
Registry/Repository. In particular, it demonstrates:

1. Viewing an existing taxonomy using the Registry Admin UI.

2. Unfiltered Search: Discovery of all registered data sets irrespective of weather cube domain.

3. Filtered Search: Discovery of all registered data sets for a particular sub-domain.

http://jsonformat.com/�

 31

3.3.1 Viewing an Existing Taxonomy

Domains can be organized as a taxononomy. This test performs the viewing of a pre-loaded taxonomy
using the Registry Admin UI.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Click on the “Taxonomies” Tab.

3. Scroll down to the “FAA/NOAA/DOD Data Cube Domain Taxonomy”

4. Expand the “Taxonomy” tree node by clicking on the handle.

5. Verify that the structure of the taxonomy matches the test taxonomy that has been defined and
stored in the registry.

• DataCube
o Restricted

 Restricted-Government
 Restricted-Commercial

o Unrestricted
 Regulatory

• Regulatory-Government
• Regulatory-Commercial

 SAS
• Backup
• PendingPrimary
• Primary

 32

Figure 3.12: Snapshot of the Registry Admin UI showing the test taxonomy

3.3.2 Dataset Discovery - Local Search Filtered By Any Weather Cube Domain

This test performs the discovery of all datasets registered as classified by the data cube domain taxonomy.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

3. Make sure that the Federated Query Options combo box shows “Local Query” as selection

4. Select “Find Data Set” in the Select Query combo box.

5. Type the following text in the “Classification” Field:
DataCube

Note: The '*' is a wildcard character to match zero or more arbitrary characters

6. Click the “Search” button. A filtered set of all registered datasets with weather phenomenon
classified by the NNEW DataCube taxonomy are returned. Click on the “Name” column heading
to sort the datasets by name / Name (alphabetical order).

 33

7. Observe the matching data sets that are returned include:

8. All data sets are currently registered as being members of the cube. Verify that all data sets are
returned and include the following:

• Current Icing Potential
• Current Icing Potential
• Current Icing Severity
• DoD Model Air Temperature
• Echo Tops (Pending SAS)
• Echo Tops (SAS)
• Echo Tops (SAS Backup)
• Flight Category at Surface
• Geometric Height at Cloud Base
• Lightning
• METARS
• National Convective Weather Forecast Model
• PIREPS (ADDS Source)
• RUC Model - 20 kilometer resolution
• Turbulence
• Vertically Integrated Liquid (VIL)
• Visibility at Surface

 34

Figure 3.13: Dataset Discovery - Local Search Filtered By Any Weather Cube Domain

Shows datasets classified by Weather Cube taxonomy from MIT-LL registry

3.3.3 Dataset Discovery - Local Search Filtered By “Unrestricted” Weather Cube Domain

This test performs the discovery of all datasets registered as members of the “Unrestricted” domain.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

3. Make sure that the “Federated Query Options” combo box shows “Local Query” as selection

 35

4. Select “Find Data Set” in the Select Query combo box.

5. Type the following text in the “Classification” Field:

DataCube/Unrestricted

6. Click the “Search” button.

7. Verify that all data sets in MIT-LL registry with the exception of “Lightning” dataset and “DOD
Model Air temperature” dataset, are registered under the “Unrestricted” domain. The lightning
data set is classified as “Restricted” for commercial reasons.

8. Type the following text in the “Classification” field:

DataCube/Unrestricted/SAS

9. Click the “Search” button.

10. Verify that the results are the same as that in previous search indicating that all services in
“Unrestricted” are also in the “SAS” domain.

11. Type the following text in the “Classification” Field:

DataCube/Unrestricted/SAS/Primary

12. Click the “Search” button.

13. Verify that the following Primary, Backup, and PendingPrimary SAS data sets are included in the
result set:

• Current Icing Potential
• Current Icing Potential
• Current Icing Severity
• Echo Tops (SAS)
• Flight Category at Surface
• Geometric Height at Cloud Base
• METARs
• National Convective Weather Forecast Model
• PIREPS (ADDS Source)
• RUC Model - 20 kilometer resolution
• Turbulence
• Vertically Integrated Liquid (VIL)
• Visibility at Surface

3.4 Discovery of Services Instances

A ‘Web Coverage Service’ is any service capable of retrieving data as ISO ‘Coverages,’ which
encompass gridded data but also other forms of coverages, such as vertical wind profiles or measurements
of weather phenomenon along a trajectory. The OGC Web Coverage Service and JMBL are two examples
of services with these capabilities.

 36

This test demonstrates discovery of weather services registered in the Registry/Repository. In particular, it
demonstrates:

1. Unfiltered Search: Discovery of all registered service instances.

2. Filtered Search: Discovery of all registered service instances using the ISO 19119 taxonomy.

3. Service Endpoint Retrieval: Retrieve the service endpoint for a specified service instance.

A service instance will be referred to as a service in this document for brevity.

3.4.1 Service Discovery - Unfiltered Local Search

This test performs an unfiltered search for all registered services in the MIT-LL Registry.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

3. Make sure that the “Federated Query Options” combo box shows “Local Query” as selection

4. Select “Find Service” in the Select Query combo box.

5. Click the “Search” button at the top of the Search Tool panel. An unfiltered list of all the
registered services will appear. Click on the “Name” column heading to sort the datasets by name
/ Name (alphabetical order).

6. Verify that the list of services returned includes the following:

• DOD_JMBLService-01
• MIT_WebCoverageService-01
• MIT_WebCoverageService-02
• MIT_WebCoverageService-03
• MIT_WebFeatureService-01
• NCAR_WebCoverageService-01
• NCAR_WebFeatureService-01
• NCAR_WebFeatureService-01

 37

Figure 3.14: Service Discovery - Unfiltered Local Search: matches all service in MIT_LL registry

3.4.2 Service Discovery - Unfiltered Federated Search

This test performs an unfiltered search for all registered services across all registries in the NNEW
Federation 1 which currently includes MIT-LL and NWS registries.

1. Launch the Registry Admin UI version 4.5-SNAPSHOT as described in section 3.1.5.

 38

2. Repeat the previous test “Service Discovery - Unfiltered Local Search” with one change; Make
sure that in step 3, the Federated Query Options combo box shows “NNEW Federation 1” as
selection.

3. Verify that the list of services returned includes services from both the MIT-LL and NWS
registries as indicated by the last column labeled “Registry” in search result.

Figure 3.15: Service Discovery - Unfiltered Federated Search
Shows results from MIT-LL and NWS Registries

3.4.3 Service Discovery - Local Search Filtered By Service Type

This test performs the discovery within MIT-LL registry of registered services filtered by service type
using the ISO 19119 Geographic services taxonomy.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

 39

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

3. Make sure that the “Federated Query Options” combo box shows “Local Query” as selection

4. Select “Find Service” in the Select Query combo box.

5. Select “Feature Access Service” in the “Service Type” choice box.

6. Click the “Search” button. A filtered set of all registered services with service type of “Feature
Access Service” are returned. Click on the “Name” column heading to sort the datasets by name /
Name (alphabetical order).

7. Verify that the result set contains the following list of services:

• DOD_JMBLService-01
• MIT_WebFeatureService-01
• NCAR_WebFeatureService-01
• NCAR_WebFeatureService-01

 40

Figure 3.16: Service Discovery - Local Search Filtered By Service Type

matches Feature Access Services

8. The Feature Access Service classification used in Step 5 is an abstract classification and does not
represent a particular implementation. To refine the query to return only OGC-compliant Feature
Access Services (OGC WFS spec), specify the “Web Feature Service (WFS) service” sub-type in

the “Service Type” choice box.

9. Click the “Search” button.

10. Click the “Name” to sort the services by name.

 41

11. Verify that the result set contains the following OGC WFS feature access services only and not
the JMBL service that was matched in previous test:

• MIT_WebFeatureService-01
• NCAR_WebFeatureService-01
• NCAR_WebFeatureService-01

Figure 3.17: Service Discovery - Local Search Filtered By Service Type matches Web Feature Service

 42

12. Repeat Step 5 selecting “Coverage Access Services” in the “Service Type” choice box.

13. Click the “Search” button.

14. Click on the “Name” to sort the services by name.

15. Verify that that result set contains the following coverage services. Note that JMBL is capable of
acting as both a feature and a coverage access service, so it appears in both coverage and feature
access service requests.

• DOD_JMBLService-01
• MIT_WebCoverageService-01
• MIT_WebCoverageService-02
• NCAR_WebCoverageService-01

 43

Figure 3.19: Service Discovery - Local Search Filtered By Service Type
matches Coverage Access Service

3.4.4 Service Discovery - Federated Search Filtered By Service Type

This test performs the discovery within all registries in NNEW Fedetaion1 of registered services filtered
by service type using the ISO 19119 Geographic services taxonomy.

1. Launch the Registry Admin UI version 4.5-SNAPSHOT as described in section 3.1.5.

2. Click on the “Search” tab in upper left corner of UI to access the Search Tool panel.

Figure 6.3.18:Snapshot of the Registry Admin UI showing services filtered by
coverage access services.

 44

3. Make sure that the “Federated Query Options” combo box shows “NNEW Federation 1” as
selection

4. Select “Find Service” in the Select Query combo box.

5. Select “Feature Access Service” in the “Service Type” choice box.

6. Click the “Search” button. A filtered set of all registered services with service type of “Feature
Access Service” are returned.

7. Verify that the list of services returned includes all Feature Access services from both the MIT-LL
and NWS registries as indicated by the last column labeled “Registry” in search result.

Figure 3.20: Service Discovery - Federated Search Filtered By Service Type

matches Feature Access Services in entire Federation

8. Repeat Step 5 selecting “Coverage Access Services” in the “Service Type” choice box.

9. Click the “Search” button.

 45

10. Click on the “Name” to sort the services by name.

11. Verify that the list of services returned includes all Coverage Access services from both the
MIT-LL and NWS registries as indicated by the last column labeled “Registry” in search result.

Figure 3.22: Service Discovery - Federated Search Filtered By Service Type Matches Coverage Access
Service

3.4.5 Service Endpoint Retrieval

This test retrieves the service endpoint for a selected service.

1. Query for services using the test “Service Discovery - Unfiltered Local Search” from Section
3.4.1.

2. Left-click on the MIT_WebCoverageService-01 service endpoint in the result set pane to select
it. Right-click and select “Open” to open a more detailed service end-point sub-pane.

Figure 6.3.21:Snapshot of the Registry Admin UI showing services filtered by
coverage access services.

 46

3. View the detailed information presented in the top right information pane.

4. Left-click on the service endpoint to select it. Right-click to open a more detailed service end-
point sub-pane to display the service endpoint URL (shown at the bottom of the
ServiceEndpointType window).

5. Verify that for the MIT_WebCoverageService-01, the URL is:

http://ngen-wcsri.wx.ll.mit.edu/nnew/fy09/wcs/soap

Figure 3.23: Service Endpoint Retrieval

http://ngen-wcsri.wx.ll.mit.edu/nnew/fy09/wcs/soap�

 47

3.4.6 Viewing Datasets Related to a Service

This test verifies that a user can view datasets related to a service. It also illustrates how to view any
object that is related to an object using an Association (relationship) as defined by ebRIM in ebXML
RegRep.

1. Query for services using the test “Service Discovery - Unfiltered Local Search”.

2. Left-click on the MIT_WebCoverageService-01 service endpoint in the result set pane to select
it. Right-click and select Open to open a more detailed service end-point sub-pane.

3. View the information presented in the top right information pane.

4. Click on the “Detail” button to show additional details about the service

5. Verify that the Associations table shows to associations of type “OperatesOn” with Target
Object’s EchoTops and VIL datasets. Note that the 4.5 release displays the values in a more
human friendly manner than current 4.4 release.

 48

6. Press the Control key (for selecting multiple rows) and the left click the EchoTops and VIL
associations in the table so they show selected visual. Now right-click to display context menu.
Now select the “Open Related Objects” menu.

7. Verify that the EchoTops and VIL datasets are displayed in new tabs within the editor panel.

Figure 3.24: Viewing Datasets Related to a Service

 49

Figure 3.25: Opening Datasets Related to Service

3.5 Creation of an Experimental Weather Cube Taxonomy

The research community is continually refining weather products and generating new weather products.
For testing and evaluation purposes, it is often convenient to have available a test version of the weather
cube that provides information about the experimental data sets. The registry is capable of storing
information about an arbitrary number of weather domains, as they are simply stored within the registry
as taxonomies.

An experimental taxonomy is provided with the test data package to test out the loading of custom
weather domains. As constructed, it essentially mimics the official weather cube domain, but different
unique identifiers are used for all the taxonomy nodes. This is for test purposes - custom weather domains
are not necessarily limited to the same structure as the official weather domain taxonomy.

 50

This test demonstrates the loading of a new taxonomy and verifies that the loaded taxonomy is similar to
the weather cube domain taxonomy

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Login to the registry using a valid User ID and Password.

3. Select “Tools  Wizards  Import Files” to open the file import window.

4. Browse to the $TEST_DATA_DIR/wxcube-metadata/taxonomies directory provided with the test
package.

5. Select the experimental version of the data cube domain taxonomy:

 ebrim-classificationScheme-TriAgencyDataCubeExp.xml

6. Click on “Finish” to perform the load. After a short pause, an indication of load success is
returned.

7. Close the file import window.

Figure 3.26: Snapshot of the Registry Admin UI displaying the interface for loading a taxonomy.

 51

8. The taxonomy now resides in the registry. However, the Registry Admin UI session isn’t
automatically aware of it (if the UI is restarted, it will be loaded). In order to refresh the Registry
Admin UI without restarting the application, use View  Reload. This operation takes
approximately 30 seconds, so please be patient.

9. Click the “Taxonomies” tab. Navigate to “NOAA/NCAR/LL Experimental Data Cube
Taxonomy. ”

10. Browse the taxonomy tree and verify that it matches up with the official weather cube taxonomy.

• DataCube
o Restricted

 Restricted-Government
 Restricted-Commercial

o Unrestricted
 Regulatory

• Regulatory-Government
• Regulatory-Commercial

 SAS
• Backup
• PendingPrimary
• Primary

 52

3.6 Publication of an Experimental Data Set and Accompanying
Experimental Data Access Service

This test demonstrates the publication of an experimental data set and an accompanying data access
service. In order to demonstrate publication of datasets and related services, metadata for an
additional (not pre-loaded) experimental dataset and service is included in the test package.

Note that although this test exercises dataset and service publication in an experimental context, the
overall actions and results are the same for non-experimental datasets.

3.6.1 Publish Dataset

This test demonstrates the publication of an experimental data set.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Login in using a valid User ID and Password using the login controls in upper right of the
screen.

3. Open the “Register Datasets” wizard using “Tools”  “Wizards”  “Register Datasets” in
the menu bar.

 53

Figure 3.28: Dataset Publish - Select Parent Folder

4. Click on the Next button to skip the optional step 1 (“Select Parent Folder”) and go to Wizard
step 2 (“Select ISO 19139 Metadata”) as shown in steps window at left side of Wizard.

5. Browse to $TEST_DATA_DIR/wxcube-metadata/datasets/mit-ll, and select the file:
iso-metadata-dataset-EchoTops-Exp-01.xml

 54

Figure 3.29: Dataset Publish - Select ISO 19139 Metadata File

6. Click on the “Finish” button to publish the dataset specified in the ISO 19139 metadata file. An
indication of success is returned in the Summary page.

7. Verify that the dataset was successfully published by searching for all datasets in the registry.
Added to the former list of datasets should be one with the name Echo Tops (Experimental).

 55

Figure 3.30: Dataset Publish - Finish Screen

3.6.2 Publish Service Instance

This test published a service instance to the registry. Publication of services currently requires that two
items be specified, a WSDL file and an accompanying ISO 19139 metadata file. In the Publish Service
Instance wizard, the WSDL file is specified first, followed by the ISO 19139 file.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4. By default it will
connect with the MIT-LL registry.

2. Login in using a valid User ID and Password using the login controls in upper right of the
screen.

 56

3. Open the “Register Service Instance” wizard using “Tools”  “Wizards”  “Register Service
Instance” in menu bar.

Figure 3.31: Service Publish - Select Parent Folder

4. Click on the Next button to skip the optional step 1 (“Select Parent Folder”) and go to step 2
(“Select Service Instance WSDL file”).

 57

Figure 3.32: Publish Service Instance - Select WSDL File

5. Specify the WSDL file for the service instance. Browse to $TEST_DATA_DIR/wxcube-
metadata/services/mit-ll, and select the appropriate WSDL file: MIT-WCS-03.wsdl.

6. Select Next to go to “Select ISO 19139 Metadata” step

 58

7. Specify the ISO metadata file. Browse to $TEST_DATA_DIR/wxcube-metadata/services/mit-ll,
(this should still be there by default from the previous step) and select the appropriate ISO 19139
file: iso-metadata-service-MIT-WCS-03.xml

Figure 3.33: Publish Service Instance - Select ISO 19139 Metadata File

 59

 60

 61

 62

 63

8. Click on the “Finish” button to publish the service instance specified by the WSDL and the ISO
19139 metadata file. An indication of success is returned in the Summary page.

9. Verify that the service was successfully published by searching for all services in the registry.
Added to the former services should be one with the name MIT_WebCoverageService-03, with a
description that includes an indication that it is the new experimental service.

3.7 Fault Tolerance Support in Registry Client API

This section verifies the fault tolerance capabilities of the registry client API available from the WxForge
regrep4-client project support fault tolerant registry access. This test assumes that the regrep4-client
project’s trunk tree has been checked out of WxForge svn repository with its root directory at
$REGREP4_CLIENT.

The tests in this section use a command line Java program called RegistryTestClient which performs a set
of queries against its target registry. The RegistryTestClient program uses the regrep4-client Java client
library developed by MIT Lincoln Labs. A specific benefit of using the regrep4-client library is that it
provides the ability for a registry client to specify an infinite chain of backup registries in addition to a
target registry. The regrep4-client Java client library first attempts to send the request to the target registry
which is first in the back chain. If the target registry is unavailable or if the connections times out after a
configurable time period then the library must re-route the request to the next registry in the backup chain.
This process is repeated until a registry in the backup chain is able to respond to the request in the
configured timeout period.

A client program specifies the backup registries and timeout period using a configuration file. For the
RegistryTestClient this configuration file is specified via the “-c” option. For the following test we use a
configuration file that specifies:

• A backup chain consisting of the following sequence of registries:

1. MIT/LL-Primary – A registry representing the primary MIT-LL registry. It is configured
with an incorrect URL with a nonexistent host to simulate the scenario that the registry
is unavailable.

2. MIT/LL-Backup1 - A registry representing the secondary or backup MIT-LL registry. It
is configured with an incorrect URL with a non-existent port to simulate the scenario that
the registry is unavailable.

3. FAA/Backup1 – A registry representing the FAA registry that contains a union of data in
MIT-LL and NWS registries and serves as backup for both of them

• 20 seconds as timeout period for all registries in the back up chain

1. In a shell window change directory to: $REGREP4_CLIENT/client

http://nosuchhost.wx.ll.mit.edu:8080/omar-server-test�
http://ngenwww2.wx.ll.mit.edu:8084/omar-server-test�

 64

2. Type the following command to run the RegistryTestClient test with the specified configuration
file:

./RegistryTestClient -c src/test/resources/registry-config-
faultTolerant.xml | tee /tmp/test.log

Note that the configuration file specifies that client requests are to be sent to the MIT-LL registry
and if it is not available are to be rerouted to a backup registry which is the FAA registry. The
URL for the MIT-LL registry is deliberately incorrect to simulate the MIT-LL registry to be
unavailable.

The output of the command is logged in file /tmp/test.log

3. Read file /tmp/test.log and verify that the following registries are blacklisted as they are
unreachable:

Blacklisting registry 'MIT/LL-Primary'
… text omitted for brevity …
Blacklisting registry 'MIT/LL-Backup1'

4. Jump to the end of the /tmp/test.log and verify that no errors are reported and the final output
looks like:

/DataCube/Unrestricted/Regulatory/Commercial
Registry not writeable - done

 65

4. Implementation Verification –
Web Coverage Service Reference Implementation (WCSRI)

The Web Coverage Service Reference Implementation (WCSRI) is used to provide gridded data (i.e.,
coverages) access and services for the NNEW 4-D Weather Data Cube. This capability was included in
previous fiscal year NNEW demonstrations, however, the WCSRI has been completely rewritten for FY
’09. The WCSRI work this year has focused on requirements analysis, design and implementation of this
primary NNEW 4D Weather Data Cube component.

The WCSRI is intended to provide an “out-of-the-box” solution for gridded data access services. The
WCSRI is completely written in Java and therefore has no explicit platform or hardware requirements. It
provides a simple configuration mechanism to allow Service Providers to specify the coverages they wish
to serve, coverage data directory paths, coverage identifiers, coverage metadata and other coverage
specific information. In addition, the WCSRI provides coverage subsetting capabilities by field, time and
geographical constraints.

The test cases in this chapter will demonstrate the following capabilities:

• WCSRI Administration

1. Adding and configuring a coverage

2. FUSE Servicemix Integration

• WCSRI Core Services

1. GetCapabilities, DescribeCoverage and GetCoverage Operations

2. Netcdf 4 Responses

A number of different client applications will be used to perform the verification, as follows:

• Maven and SoapUI plugin (black box test suite)

• SoapUI GUI

• ToolsUI

• NNEW FY09 Integrated Java Application

 66

4.1 Test Environment and Setup

4.1.1 Dependency Installations

The tests contained in this chapter have a number of dependencies on various packages that must be
installed prior to running these tests successfully. These specific prerequisite dependencies are listed
below and are described in Section 2, Test Requirements. Additional details are included below where
necessary.

• Memory

The test computer should have a minimum of 1048M of RAM

• Internet Connection

• Java Web Start

• Apache Maven

Version 2.1.0 minimum. Verify that your Maven settings.xml file contains the following:

 <profile>
 <id>mitProfile</id>
 <repositories>
 <repository>
 <id>mitRepo</id>
 <name>MIT Wxforge Repository </name>
 <url>http://wxforge.wx.ll.mit.edu:8080/archiva/repository/local</url>
 </repository>
 </repositories>
 </profile>

 <activeProfiles>
 <activeProfile>mitProfile</activeProfile>
 </activeProfiles>

• Fuse ESB 4.1.0.2 (ServiceMix)

Verify that the $FUSE_ESB_HOME/etc/org.apache.servicemix.features.cfg file contains the
following entries in the featuresBoot property:

featuresBoot=activemq,camel,jbi-cluster,web,servicemix-cxf-bc,servicemix-file,servicemix-
ftp,servicemix-http,servicemix-jms,servicemix-mail,servicemix-bean,servicemix-
camel,servicemix-cxf-se,servicemix-drools,servicemix-eip,servicemix-osworkflow,servicemix-
quartz,servicemix-scripting,servicemix-validation,servicemix-saxon,servicemix-wsn2005

• HDF5

Verify that the hdf5 libraries are accessible in any of the directories listed in the
$LD_LIBRARY_PATH variable.

 67

• Netcdf 4 C Libraries

Verify that the netcdf 4 libraries are accessible in any of the directories listed in the
$LD_LIBRARY_PATH variable.

• MIT Lincoln Labs Netcdf JNI Libraries

Verify that the libllnetcdf.so library file is available in any of the directories listed in the
$LD_LIBRARY_PATH variable.

• SoapUI

At a minimum, SoapUI version 3.0.x must be installed on the system, in a directory henceforth
referred to as $SOAPUI_HOME. To run SoapUI, first verify that the
$SOAPUI_HOME/bin/soapui.sh is executable, and then type the following command (replacing
the $SOAPUI_HOME variable as appropriate):

 $SOAPUI_HOME/bin/soapui.sh

There is a known issue with SoapUI, in that it may immediately crash on startup when run in a
Linux environment. To date, the fix for this issue is to edit the soapui.sh file in
$SOAPUI_HOME/bin. Verify or edit the line containing the first reference (i.e., the declaration
of) to the “JAVA_OPTS” property, such that it contains the “-Dsoapui.jxbrowser.disable=true”
entry as below. In addition, verify that the –Xmx memory option is at least 384m:

JAVA_OPTS="-Xms128m -Xmx384m -Dsoapui.properties=soapui.properties -
Dsoapui.home=$SOAPUI_HOME -Dsoapui.jxbrowser.disable=true"

SoapUI also requires a number of jar files to be placed in the $SOAPUI_HOME/bin/ext directory
in order to successfully execute the tests within the WCSRI SoapUI project. From the steps as
described in the WCSRI Installation section below, copy the following bundle jar files into the
$SOAPUI_HOME/bin/ext directory:

$WCSRI_HOME/bundles/gds-pojo-service-[version].jar

$WCSRI_HOME/bundles/wcs-service-[version].jar

In addition, copy the gds-pojo-service-[version].jar to a temporary directory, and extract the file
“netcdf-api-4.0.48.jar” from the gds-pojo-service-[version].jar by typing:

jar xvf gds-pojo-service-[version].jar

Copy the extracted “netcdf-api-4.0.48.jar” into the $SOAPUI_HOME/bin/ext directory.

• Ncdump

The netcdf 4 version of ncdump is required.

• ToolsUI

ToolsUI is a Java Web Start application that will be used to validate the Netcdf 4 data returned
from the WCSRI.

 68

• WCSRI Installation

The tests in this chapter verify the correct configuration and functioning of the WCSRI, but do not
include the installation as part of the test plan. Rather, the installation of the WCSRI is a
prerequisite.

Installing the WCSRI requires you to download the following two files from
https://wiki.ucar.edu/display/NNEWD/Releases:

• wcsri-[version]-release.zip [or tar.gz]

• wcsri-[version]-validation.zip [or tar.gz]

Extract the files into a directory, referred to as $WCSRI_HOME in this document. Follow the
directions as specified in $WCSRI_HOME/INSTALLATION.txt. You may skip the steps
involving starting ServiceMix as well as the validation steps, as these will be performed as part of
the test plan. However, verify the following prior to moving on to the tests:

• Verify that the $WCSRI_HOME/conf/wcsri.cfg has been copied to
$FUSE_ESB_HOME/etc.

• Verify that the $FUSE_ESB_HOME/etc/wcsri.cfg file has the [wcs.rootDataDir]
property set to the root data directory for your WCSRI instance. Verify that the root data
directory exists and has appropriate read and write privileges. In the remainder of this
document, this directory will be referred to as $WCSRI_ROOT_DATA_DIR.

• Verify that the $WCSRI_HOME/conf/servicesMeta.xml file has been copied to
$WCSRI_ROOT_DATA_DIR.

• Verify that the $FUSE_ESB_HOME/etc/wcsri.cfg file has the [wcs.endpoint] property
set to the exposed endpoint for your WCSRI instance. This endpoint will be referred to as
$WCSRI_ENDPOINT in the remainder of this document.

4.2 WCSRI Administration

There are several steps one should take to verify the installation of the WCSRI. Though some of the
following information is duplicated from Section 4.1.1, these test steps illustrate the configurability of the
server.

First, edit the $FUSE_ESB_HOME/etc/wcsri.cfg file, and verify the following configurable property
settings:

• [wcs.rootDataDir] property is set to the root data directory for your WCSRI instance. This will be
referred to as $WCSRI_ROOT_DATA_DIR.

• [wcs.tempDir] property is set to a valid temporary directory. The WCSRI will use this to write
temporary data files.

• [wcs.servicesMetaFile] property is set to the name of a valid services metadata file. Also, verify
that the named file exists in the $WCSRI_ROOT_DATA_DIR.

https://wiki.ucar.edu/display/NNEWD/Releases�

 69

• [wcs.endpoint] property is set to the exposed endpoint for your WCSRI instance. This will be
referred to as $WCSRI_ENDPOINT.

• [wcs.mtomEnabled] property is set to true. Further test steps require MTOM to be enabled.

4.2.1 Services Metadata

The WCSRI’s GetCapabilities operation provides a high level description of the capabilities of the server.
The description consists of metadata about the server, including detailed information regarding the
Service Provider, a description of the exposed endpoints and a summary of the coverages served by the
particular WCSRI instance. In this section, we will configure some sample metadata for an instance of the
WCSRI.

Edit the [wcs.servicesMetaFile] found in the $WCSRI_ROOT_DATA_DIR. If you originally copied the
file from the $WCSRI_HOME/conf distribution directory, then it should initially look similar to Error!
Reference source not found.. Modify the content of the “ServiceIdentification” and “ServiceProvider”
elements to specify the details of your organization. For example, set the “ProviderName,”
“IndividualName,” and “ContactInfo” appropriately. In addition, (optionally) search and replace the
“http://mymachine:9090/wcs” entries with your $WCSRI_ENDPOINT.

Figure 4.1: Sample servicesMeta.xml File

 70

4.2.2 Configuring a New Coverage

In order to validate the WCSRI, we will download, install and configure a sample data set. These
instructions are in $WCSRI_HOME/INSTALLATION.txt, and are summarized here.

Extract the wcsri-[version]-validation.zip [or tar.gz] into a temporary directory. From the extracted
content, copy the wcsriValidation/testData/ruc-mdvConvert-nc4 subdirectory into your configured
$WCSRI_ROOT_DATA_DIR. This new directory, named “$WCSRI_ROOT_DATA_DIR/ruc-
mdvConvert-nc4” and referred to as $WCSRI_TEST_COVERAGE_DIR, contains XML configuration
files for a test dataset (i.e., coverage) as well as a number of weather data files within several
subdirectories. The content of the $WCSRI_TEST_COVERAGE_DIR should look similar to Figure 4.2:
Listing of WCSRI_TEST_COVERAGE_DIR.

Look at the content of the coveragesConfig.xml file, which is located in the root directory for this
particular coverage (i.e., $WCSRI_TEST_COVERAGE_DIR). This file
contains configuration information regarding the test coverage dataset, whose weather data files exist
below the $WCSRI_TEST_COVERAGE_DIR with a specific directory and file naming
convention. Since the black box tests executed in subsequent test steps depend on this specific
coverage, do not edit this file. However, notice that the content of that file is similar to Figure 4.3.
Review the following entries (for informational purposes only):

• fileExtension – the file extension for the weather data files considered as part of this coverage

• Id - the unique identifier for this coverage

• Field - the fields of data available from this coverage

Figure 4.2: Listing of WCSRI_TEST_COVERAGE_DIR

 71

• CoverageMetadataFile – the name of the coverage metadata file, that must exist in this
$WCSRI_TEST_COVERAGE_DIR. Verify that the name is “coverageMeta1.xml”.

Edit the coverageMeta1.xml file located in the $WCSRI_TEST_COVERAGE_DIR. This file, shown in
Figure 4.4: coverageMeta1.xml contains metadata regarding the test coverage dataset, and allows the
Service Provider to enter metadata specific to their coverage. Much of this file is dynamically generated
metadata (e.g., Identifier, Field, TemporalDomain), though other parts of the XML document may be
edited or configured by the Service Provider. Change the contents of the “Title” and “Abstract”
elements, and add an additional “Keyword” element.

As a result of this data set installation step, you have already configured a new coverage to be served by
your WCSRI instance. Placing the weather data files (using the naming convention) in a subdirectory
under the $WCSRI_ROOT_DATA_DIR, and configuring the coveragesConfig.xml and
coverageMeta1.xml files, will allow the WCSRI to automatically notice the offered coverage on startup.

Figure 4.3: coveragesConfig.xml

 72

4.2.3 Starting Fuse/ServiceMix

Open a console and change directory to $FUSE_ESB_HOME. Verify that the $LD_LIBRARY_PATH
variable contains the location of the various needed libraries (e.g., libllnetcdf.so, the Netcdf4 libraries, and
the HDF5 libraries). Verify that the gds-pojo-service-[version].jar and wcs-service-[version].jar has been

Figure 4.4: coverageMeta1.xml

 73

copied into the $FUSE_ESB_HOME/deploy directory (from $WCSRI_HOME/bundles). Start
ServiceMix by typing:

./bin/servicemix

Verify that there are no exceptions thrown on startup. If there are, you may have to “exit” (or Ctrl-C)
ServiceMix, and restart. ServiceMix uses new OSGI technology, and on occasion, has race-conditions on
startup. This means that depending on the speed of loading certain bundles, ServiceMix may encounter an
unresolved dependency. If that’s the case, simply restart ServiceMix and the problem usually disappears.
In the ServiceMix console, type the following (in boldface):

smx@root:/> osgi

The ServiceMix console should now appear similar to Figure 4.5.

In the ServiceMix console, type the following (in boldface):

smx@root:osgi> list | grep GDS

smx@root:osgi> list | grep WCS

Verify that the “GDS POJO Service” and “WCSRI Web Service” bundles have been installed and
started successfully. The console should look similar to Figure 4.6, and “Started” should appear for each
bundle. It takes several moments for ServiceMix to start the bundles, therefore, repeat the command until
“Started” appears.

 Figure 4.6: Successfully started bundles.

Figure 4.5: ServiceMix Console

 74

Switch to the “log” subshell by typing log from with the ServiceMix console:

 smx@root:osgi /> log

Please note that depending on your log buffer settings for ServiceMix, you may or may not see the log
test result described below. However, type the following command into the ServiceMix console:

smx@root:log /> d | grep DataSourceConfigurator

This should (depending on ServiceMix’s log settings) display the $WCSRI_ROOT_DATA_DIR that was
found from the WCSRI configuration, as well as a summary of each coverage configuration found by the
WCSRI. The logging information should look similar to Figure 4.7. Verify that the WCSRI is using the
correct $WCSRI_ROOT_DATA_DIR, that the test data coverage was found with an identifier of
“urn:fdc:ncar.ucar.edu:Dataset:PoxDixonNetcdf4RUC20_Air_Temperature”, and that “TMP” is an
offered field.

You should now have a successfully running WCSRI instance. The next set of tests will verify the
exposed endpoint and the WCSRI functionality, and each requires that ServiceMix remains running.

4.3 WSDL Verification

If the WCSRI is running successfully, it’s a good idea to verify the validity of the exposed endpoint. Start
a Firefox browser, and enter the URL of the $WCSRI_ENDPOINT followed by “?wsdl” into the
location bar. Figure 4.8 shows an example URL in the location bar, as well as a sample of what the
response should look like. Note that this test case demonstrates the WSDL capabilities of the WCSRI
instance, and that different browsers may render the XML content differently than what you see in Figure
4.8.

Figure 4.7: Log output

 75

4.4 Verification using Maven and Black Box Testing

The WCSRI distribution contains a suite of black box tests that verify that the server is working correctly
with the test dataset/coverage (as installed in Section 4.2.2). Though a description of the validation steps
are outlined in the $WCSRI_HOME/INSTALLATION.txt file, a summary is provided below since
running the tests is a good indication that the server is working as intended. In addition, the black box
tests will verify the GetCapabilities, DescribeCoverage and GetCoverage (for volumes and corridors)
operations of the server, against the test data set as installed in Section 4.2.2.

Open a console (not ServiceMix!), and change directories to the
$WCS_VALIDATION_HOME/wcsriValidation/soapUI/wcsri-web-service/ directory. Carefully edit the
pom.xml file in that directory. Search for the string "Service Providers", and change the “argument”
element’s URL to match the endpoint of your $WCS_ENDPOINT, as configured in the wcsri.cfg file. For
example:

Figure 4.8: WSDL Output

 76

<!-- Service Providers: Change the following URL to point to your $WCS_ENDPOINT -->
<argument>-e http://granite:8888/nnew/fy09/wcs/soap</argument>

Run the following Maven command from the console:

mvn org.codehaus.mojo:exec-maven-plugin:1.1.1:java >
myTestResults.txt

This will run a series of black box tests against the exposed endpoint of the WCSRI. The engine for the
black box tests is a 3rd party application called SoapUI, and when run through Maven, the SoapUI-Plugin
is being used to perform the tests. Each test case issues an XML request, over SOAP, to the WCSRI
endpoint and then verifies that the response is correct. Some of the test cases expect valid SOAP
responses, and others expect valid SOAP fault responses. By running the above command, the test output
should be redirected into the file called “myTestResults.txt” in the same directory from which it was run.

Verify that the output indicates that each of the tests were successful. Do so by opening the file
“myTestResults.txt” in a text editor, and search for status text similar to:

“Finished running soapUI testcase [GetVolume 1], time taken: 1653ms, status: FINISHED”

None of the tests should have status of “status: FAILED”.

4.5 Verification using SoapUI GUI and ToolsUI

In this test step we will run the SoapUI user-interface to look at and execute a few black box tests, instead
of using the Maven plugin.

4.5.1 Starting SoapUI and Configuring the WCSRI Endpoint

The first step is to start SoapUI. Open a console and move to the following directory:

 $WCSRI_VALIDATION_HOME/wcsriValidation/soapUI/wcsri-web-service

From that directory, start SoapUI by issuing the following command (replacing with the
$SOAPUI_HOME variable as appropriate):

 $SOAPUI_HOME/bin/soapui.sh

On startup, SoapUI should look similar to Figure 4.9. Select the “File” → “Import Project,” and then
import the project file, called WCSRI-112-soapui-project.xml, from the following directory:

 $WCSRI_VALIDATION_HOME/wcsriValidation/soapUI/soapui/wcs112/robsSoapUI

 77

Once the project is imported, SoapUI should look similar to Figure 4.10. Double click on the green
hourglass entry labeled “wcs” (i.e.,) and a new frame will appear. From within the new frame,

Figure 4.9: SoapUI GUI

Figure 4.10: SoapUI Project

 78

click on the tab labeled “Service Endpoints.” SoapUI shold now look similar to Figure 4.11. Click on the
“plus” button (i.e.,) to add a new endpoint for SoapUI, and set the URL for this new endpoint to be the
value of your $WCSRI_ENDPOINT. Select your new endpoint from the list (in the Service Endpoints
tab), and click on the “Assign” button. Select “- All Requests and TestRequests –,” as in Figure 4.12.
The test cases in the SoapUI project are now configured with the endpoint of your WCSRI instance.

Figure 4.11: SoapUI Service Endpoints

Figure 4.12: SoapUI - Assigning the endpoint.

 79

4.5.2 Executing the Black Box Test Suite

Double click the “TestSuite for RUC (ruc-mdvConvert-nc4)” as listed on the left hand side of SoapUI.
This will display a tree of test cases intended to validate the test dataset/coverage as configured in Section
4.2.2, and will open a new frame on the right hand side. Maximize the new frame. From the new frame,
click on the green “play” button (i.e.,). All of the tests should be successful, and the test suite frame
should now appear as in Figure 4.13.

4.5.3 Executing GetCapabilities

Double click on the “GetCapabilities 1” node, listed in the left-hand tree under the “TestSuite for RUC
(ruc-mdvConvert-nc4)”, and maximize the new frame. Within the new frame, double click on the “Test
Request” (i.e.,) and maximize the new frame. Within that new frame, execute the test by
pressing the “play” button (i.e.,). The test should execute successfully, and SoapUI should now look
similar to Figure 4.14. The “Test Request” frame should be divided in half (or have two tabs), where the
left hand side contains the XML for a GetCapabilities request, and the right hand side contains the XML
response (note that the SOAP headers have been hidden by SoapUI). Verify that the XML response
contains the metadata modifications that were made to the servicesMeta.xml file, as configured in Section
4.2.1. This test illustrated a successful GetCapabilities request.

Figure 4.13: Successful Test Suite

 80

Figure 4.14: GetCapabilities 1 Request/Response

 81

4.5.4 Executing DescribeCoverage

Double click on the “DescribeCoverage 1” node, listed in the left-hand tree under the “TestSuite for
RUC (ruc-mdvConvert-nc4)”, and maximize the new frame. Within the new frame, double click on the
“Test Request” (i.e.,) and maximize the new frame. Within that new frame, execute the test
by pressing the “play” button (i.e.,). The test should execute successfully, and SoapUI should now
look similar to Figure 4.15. The “Test Request” frame should be divided in half (or have two tabs),
where the left hand side contains the XML for a DescribeCoverage request, and the right hand side
contains the XML response (note that the SOAP headers have been hidden by SoapUI). Note that the
XML request contains the identifier of the test coverage/dataset, as configured in Section 4.2.2. Verify
that the response contains the coverage metadata modifications that were made to the coverageMeta1.xml
file, as configured in Section 4.2.2. Also note that “TimePeriod” contains the “BeginPosition” and
“EndPosition” signifying the valid times (time period) of the coverage’s data availability. In addition,
“TMP” is an available Field for the coverage. This test illustrated a successful DescribeCoverage request.

4.5.5 Executing GetCoverage for a Volume

Double click on the “GetVolume 1” node, listed in the left-hand tree under the “TestSuite for RUC
(ruc-mdvConvert-nc4)”, and maximize the new frame. Within the new frame, double click on the “Test
Request” (i.e.,) and maximize the new frame. Within that new frame, execute the test by

Figure 4.15: DescribeCoverage 1 Request/Response

 82

pressing the “play” button (i.e.,). The test should execute successfully, and SoapUI should now look
similar to the figure below. The “Test Request” frame should be divided in half (or have two tabs),
where the left hand side contains the XML for a GetCoverage request, and the right hand side contains the
XML response (note that the SOAP headers have been hidden by SoapUI). The figure below depicts the
GetCoverage request for a volume of data. Note the following features of the request:

• The “Identifier” matches that of the test coverage dataset.

• The “BoundingBox” extends from a lower left of (-120.0, 38.6, 3.893606) to an upper right of (-
106.6, 42.5, 3.893606) where the units are (longitude, latitude, altitude in km).

• The “TemporalSubset” for the request is “2009-06-19T03:00:00.000Z,” for which there is data
available (according to the results of DescribeCoverage).

• The “Identifier” for the requested “FieldSubset” is “TMP”.

Verify that the response contains the Identifier as listed in the request, and that the response frame looks
similar to Figure 4.16. Click on the “Attachments” tab near the bottom of the response frame, and you
should see one attachment as shown in Figure 4.16. This illustrates the successful application of MTOM
technology, which is similar to SOAP with Attachments. Select the single attachment, and just above it,
click on the “Save Attachment” button (i.e.,). Save the file to “volume1.nc”. This test illustrated a
successful GetCoverage request for a regular (single altitude) volume. [Keep SoapUI running].

 83

4.5.6 Visualizing GetCoverage Volume Results

In this step, we will use a 3rd party Java Web Start application called ToolsUI to visualization the volume
obtained in the last test step. The application is available from Unidata’s website, therefore, start Firefox
and enter the following into the location bar:

 http://www.unidata.ucar.edu/software/netcdf-java

The web page should appear as in Figure 4.17. Start ToolsUI version 4.0 by clicking on the first
appearance of the words “launch from webstart” as shown in the bottom of Figure 4.17. After it
downloads, ToolsUI should appear similar to Figure 4.18. Click on the “FeatureTypes” tab, then the
“Grids” tab, and open the “volume1.nc” file (from the previous section) by clicking on the “Open Folder”
button (i.e.,) to the right of the “dataset” text field. After the dataset is opened, select the
”Temperature” or “TMP” grid as shown below. Click on the “Red Alien” button (i.e.,) to open
another window, called the “Grid Viewer” similar to Figure 4.19 (though when it first appears, it will be
black-ish). In the Grid Viewer, click on the “Red Alien” button (i.e.,) to visualize the volume. Zoom
out as necessary. This test case illustrated visualization of Netcdf 4 volume data returned as a result of
issuing a GetCoverage request.

Figure 4.16: GetVolume 1 Response

http://www.unidata.ucar.edu/software/netcdf-java�

 84

Figure 4.17: Unidata's Web Site

 85

Figure 4.19: Grid Viewer

Figure 4.18: ToolsUI

 86

4.5.7 Executing GetCoverage for a Corridor

Returning to SoapUI, double click on the “GetCorridor 3” node, listed in the left-hand tree under the
“TestSuite for RUC (ruc-mdvConvert-nc4)”, and maximize the new frame. Within the new frame,
double click on the “Test Request” (i.e.,) and maximize the new frame. Within that new
frame, execute the test by pressing the “play” button (i.e.,). The test should execute successfully, and
SoapUI should now look similar to Figure 4.20. The “Test Request” frame should be divided in half (or
have two tabs), where the left hand side contains the XML for a GetCoverage request, and the right hand
side contains the XML response (note that the SOAP headers have been hidden by SoapUI). Figure 4.20
depicts the GetCoverage request for a corridor of data. Note the following features of the request:

• The “Identifier” matches that of the test coverage dataset.

• The “TemporalSubset” for the request contains two valid times “2009-06-19T03:00:00.000Z”
and “2009-06-19T06:00:00.000Z,” for which there is data available (according to the results of
DescribeCoverage).

• The “Identifier” for the requested “FieldSubset” is “TMP”.

• Note the “GridBaseCRS” entry. It specifies the following:

1. 500 sample points for the corridor

2. The next several numbers specify waypoints for the corridor’s trajectory, in units of
latitude, longitude, altitude in kilometers and time (seconds since 1970) respectively.

Waypoint 1: 39.863, -104.648, 1.609, 1245380400000 (i.e., 2009-06-19T03:00:00.000Z)

Waypoint 2: 40.795, -111.98, 1.288, 1245385800000 (i.e., 2009-06-19T04:30:00.000Z)

Waypoint 3: 47.451, -122.316, 0.132, 1245391200000 (i.e., 2009-06-19T06:00:00.000Z)

• Note the “BoundingBox” entry. This specifies the left/right and vertical dimensions for the
corridor. The following significant values are specified:

1. +/- 5.0 km extents in the lat/lon plane perpendicular to the trajectory.

2. +/- 0.5 km extents in the vertical direction.

• Note the “GridOffsets” entry. This specifies the resolution in the left/right and vertical
dimensions for the corridor. The following significant values are specified:

1. 0.1 km resolution in the lat/lon plane perpendicular to the trajectory.

2. 0.05 km resolution in the vertical direction.

Verify that the response contains the Identifier as listed in the request, and that the response frame looks
similar to Figure 4.21. Click on the “Attachments” tab near the bottom of the response frame, and you
should see one attachment as shown in Figure 4.21. This illustrates the successful application of MTOM

 87

technology, which is similar to SOAP with Attachments. Select the single attachment, and just above it,
click on the “Save Attachment” button (i.e.,). Save the file to “corridor3.nc”. This test illustrated a
successful GetCoverage request for a temporal trajectory, or a corridor.

Figure 4.20: GetCorridor 3 Request

 88

Figure 4.21: GetCorridor 3 Response

 89

4.5.8 Visualizing GetCoverage Corridor Results

In this step, we will use a 3rd party application called ncdump to “visualize” the corridor obtained in the
last test step. Since the corridor is 3-dimensional, it is difficult to visualize, and therefore we will just
verify the structure of the corridor data file.

Use ncdump (version 4) to dump out the structure of the corridor obtained from the previous step, by
typing the following from a command line:

 ncdump corridor3.nc | more

The result should be similar to Figure 4.22. Glancing at the picture of a corridor displayed in Figure 4.23
may help in interpreting the results. In the ncdump output, notice that the resulting corridor has a z, y and
x dimension. The x dimension has a value of 500, which is the number of sample points taken along the
corridor’s trajectory. The y dimension is perpendicular to the corridor’s trajectory in the lat/lon plane, and
contains ((5.0 km extent + 5.0 km extent) / 0.1 km resolution) + 1 = 101 grid cells. The z dimension is
altitude (km MSL) in the vertical, and contains ((0.5 km extent + 0.5 km extent) / 0.05 km resolution) +
1 = 21 grid cells. Also note that the “time” variable is a function of x, the longitude and latitude variables
are functions of y and x, and the altitude variable is a function of z and x. Lastly, note that TMP (i.e.,
Temperature) is a function of z, y and x. This test case illustrated the structure of Netcdf 4 corridor data
returned as a result of issuing a GetCoverage request.

If you haven’t already, you may now close the SoapUI and ToolsUI applications.

 90

Figure 4.22: ncdump of corridor3.nc

 91

4.6 Verification with NNEW FY09 Integrated Java Application

The section will illustrate integration of coverages served by different WCSRI instances into a single
integrated Java application. Launch the application by pointing a web browser to the following URL:

 http://weather.aero/nnew/fy09/demo/NNEWFY09Demo.jnlp

or alternatively, visit:

http://weather.aero/nnew/fy09/demo

and click on the link labeled “Launch the NNEW FY09 Demo.”

The first time the application is started, it will take several moments for the application itself to download.
Thereafter, the application will be cached on the client machine, and any updates to the application will
be checked for and automatically downloaded each time the application is started.

Select and load the “Default” configuration in the “Configuration Manager” window, as shown in
Figure 4.24.

After a few moments, the main application window, titled “NNEW IT Demonstration Client,” will
open. It should appear similar to Figure 4.25. At this point, the user will see a map of the continental
United States, with an overlaid colored grid of temperature valid for a recent time at 16,000 ft.

Figure 4.24: Configuration Manager

Figure 4.23: Sample Corridor

http://weather.aero/nnew/fy09/demo/NNEWFY09Demo.jnlp�

 92

Select each gridded dataset in turn, by selecting it from the “Weather” heading in the menu bar. The gridded
datasets are listed in Table 4.2 Gridded Data SetsError! Reference source not found., below. The datasets
are served from different data server instances: RAL’s WCSRI 1.0 server, Lincoln Lab’s WCSRI 1.0 server,
NOAA GSD’s WCSRI 1.0 server and NOAA NWS’s WCSRI 1.0 server. In addition, some of the datasets
contain a forecast component and are 3-dimensional, whereas others are observational data with only 2
dimensions.

As appropriate for each dataset, use the time controller and the altitude controller to test the various datasets.
Change the selected time by adjusting the orange slider (as in Figure 4.26) which will likely cause a data
reload, depending on the server-side availability of data. Time loops can be done by using the animation
controls on the bottom right-hand side of the screen. Animation is done by loading data, rendering images and
caching the imagery on the first loop, and thereafter using the cached images for the animation – hence, the
first loop in an animation is slower than subsequent loops. To test the 3-dimensionality of data, click on
various altitudes within the altitude controller (as in Figure 4.27) which will also cause a data reload and re-
rendering of the appropriate data “slice.” Notice that the bottom right-hand corner of the map will display a
status message for all datasets that are visible. This includes the dataset’s valid time and altitude.

Figure 4.25: NNEW IT Demonstration Client

Figure 4.26: Time Controller

Figure 4.27: Altitude Controller

 93

A visual catalog of each of the gridded products is shown below as a series of images. The order of the
images is the same as the order of the datasets under the “Weather” menu. In general, the imagery
displayed by the application for each dataset should be similar to the appropriate imagery shown in the
visual catalog below. Clearly, the images displayed in the application will be different from those in the
visual catalog due to differences between the selected time, altitude and zoom level. In addition, one
might compare rendered data with plots from another source.

 94

Zooming and panning should also be tested in the application, thereby testing re-retrieval of data based on
geographic location. Zooming is done by double left-clicking at the desired location on the map to zoom
in, and single right-clicking at the desired location to zoom out. Panning is accomplished by dragging the
map with the left mouse button depressed. Each zoom or pan results in a new request for data by sending
new latitude/longitude bounding box, altitude and time constraints to the server(s). For ease of use, a
default geographic location can be selected from the “View” menu.

Table 4.1 Gridded Data Sets Visual Catalog

 95

3-dimensional datasets as listed in Error! Reference source not found. should also be tested for cross-
section (i.e., corridor) capabilities (with the exception of Rapid Refresh Wind Speed). From the “Tools”
menu, select “Flightpath” → “Click Way Points” to enter the waypoints for a cross-section. For each
waypoint, left click on the map. After you have created all of the waypoints, right click and select “Show
Cross-section” to display the vertical cross-section window. Alternatively, submitting the last waypoint
can be done with a double left click, also opening the cross-section window. Note that cross-sections are
implemented essentially as GetCoverage requests for corridors of 0-length width, for a constant time and
altitude.

Table 4.2 Gridded Data Sets

Dataset Name Description Host Service Protocol Forecast 3D

Temperature Rapid Update Cycle
(RUC) model 20km

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Relative Humidity Rapid Update Cycle
(RUC) model 20km

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Wind Speed

(i.e., Wind Barbs)

Rapid Update Cycle
(RUC) model 20km

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Flight Category Ceiling and Visibility
(C&V)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Ceiling Ceiling and Visibility
(C&V)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Visibility Ceiling and Visibility
(C&V)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Turbulence Graphical Turbulence
Guidance (GTG)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Icing Current/Forecast Icing
Potential (CIP/FIP)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Icing Severity Current/Forecast Icing
Potential (CIP/FIP)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

Icing Super
Cooled Liquid
Droplets

Current/Forecast Icing
Potential (CIP/FIP)

Exp ADDS RAL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

X X

LAMP
Convective

LAMP NOAA/NWS NOAA/NWS
WCSRI 1.0

WCS 1.1.2 over
SOAP

X N/A

 96

Forecast Server

NDFD Wind
Speed

NDFD NOAA/NWS NOAA/NWS
WCSRI 1.0

Server

WCS 1.1.2 over
SOAP

N/A N/A

Rapid Refresh
Temperature

WRF Rapid Refresh,
North America 13km
model

NOAA/GSD NOAA/GSD
WCSRI 1.0

Server

WCS 1.1.2 over
SOAP

X X

Rapid Refresh
Wind Speed

WRF Rapid Refresh,
North America 13km
model

NOAA/GSD NOAA/GSD
WCSRI 1.0

Server

WCS 1.1.2 over
SOAP

X X

CIWS VIL CIWS Vertically
Integrated Liquid

MIT/LL MIT/LL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

N/A N/A

CIWS Echo Tops CIWS Cloud Tops MIT/LL MIT/LL WCSRI
1.0 Server

WCS 1.1.2 over
SOAP

N/A N/A

 97

5. Implementation Verification –
Web Feature Service Reference Implementation (WFSRI)

Non gridded data includes, but is not limited to, airport, reporting station, and navaid information, surface
and aloft observations, aircraft trajectories, and airspace volume boundaries. Standards for encoding and
dissemination of these data are not as mature as those for gridded data. Ongoing work with Eurocontrol
on the development of the Weather Exchange Model (WXXM, Version 1.1), together with standard
interfaces for Web Feature Service (WFS, Version 1.1) by Open Geospatial Consortium (OGC) have laid
the foundation for encoding and disseminating these data.

For the NNEW FY ‘09 IT Demonstration, the team has developed a Web Feature Service server that
conforms to OGC WFS Specification 1.1 and provides features for publishing and retrieving WXXM
Version 1.1 compliant feature data. The WFSRI supports both “pull” retrieval of data via a
request/response OGC WFS compliant mechanism, as well as “push” retrieval of data via a subscription
mechanism that extends the OGC WFS specification. Additionally, the WFSRI supports geospatial and
temporal subsetting as well as filtered access to the data.

Figure 5.1 gives an architectural overview of the WFSRI. The WFSRI server Version 1.0 requires the
following software be installed prior to the installation of the WFSRI itself:

• Oracle Database 11.1.0.6 with PatchSet 11.1.0.7. The Oracle installation must include:
o Oracle Spatial
o Oracle XDB
o Oracle Advanced Queues

• Service Mix
• Apache Tomcat, version 6.X with JDK 1.6
• Java JDK 1.6

To configure Oracle 11g for the WFSRI perform the following steps:

Oracle Configuration

1. Download the WFSRI Oracle package from wxforge.

svn co
http://wxforge.wx.ll.mit.edu/svn/wfsri/tags/wfsri-1.0.0/src/sql
oracle-sql

2. The oracle-sql directory should contain the following sub-directories
• install
• main
• test
• logs
• samples

3. Install the WFSRI Package. Change directory to oracle-sql/install and type the following

command on the command line:

http://wxforge.wx.ll.mit.edu/svn/wfsri/tags/wfsri-1.0.0/src/sql�

 98

sqlplus "sys/syspass as sysdba" @wfs_install <NNEW_WFS_USR>
<password> <Tablespace-for-WFS> <Temp-Tablespace-for WFS>

Replace:

<syspass> Password for your Oracle DBA
<NNEW_WFS_USR> Name of the nnew_wfs_user
<password> Password for the nnew_wfs_user. This password is

also used as the default for the NNEW system user
(NNEW_WFS).

<Tablespace-for WFS> Name for the NNEW tablespace. This is the
tablespace that holds the WFSRI metadata. While
this can be set to use an existing tablespace,
SYSAUX for example, we recommend using a
distinct tablespace for the WFSRI metadata. The
tablespace will be created by the installation script.

<Temp-Tablespace for WFS> Name of tablespace to be used by the WFSRI for
writing temporary files and logs.

This script creates a NNEW_WFS user, and installs all required WFSRI metadata tables and libraries into
the NNEW_WFS user space. To test the installation of the NNEW_WFS user, log into Oracle as the
NNEW_WFS user, and type the following command:

sqlplus NNEW_WFS/<password>
sqlplus> select table_name from user_tables;

You should see the following tables:

WFS_PRODUCER
WFS_PROD_FEATURETYPE
WFS_FEATURETYPE_QUEUE
WFS_ADMINFEATURE
ERRLOG
LOGGER

To install the WFSRI, download the WFSRI Version 1.0 (wfsri_version1.0-beta2.war) war file from

WFSRI Software Installation

https://wiki.ucar.edu/display/NNEWD/Releases and perform the following steps:

1. Drop the downloaded war file to the Apache Tomcat webapps directory.

2. Re-start Tomcat to build the war (soap-1.0.0) directory under the webapps directory, hereby

referenced as $WFSRI_HOME.

https://wiki.ucar.edu/display/NNEWD/Releases�

 99

3. Download and modify the properties files to reflect the configuration for the WFSRI. Checkout
the conf directory from the FUSE-WFSRI project:

svn checkout
http://wxforge.wx.ll.mit.edu/svn/fuse-wfsri/tags/soap-1.0.0/conf conf

Edit the wfsri.properties file to set the properties of the WFSRI.

• brokerURLActivemq – The URL to the ActiveMQ broker.
• oracle.dataSource.url – The URL to the Oracle data source.
• oracle.dataSource.username – The username of the Oracle data source. This

should be set to nnew_wfs.
• oracle.dataSource.password – The password for the NNEW_WFS user.
• wfs.url – The URL for the service.

Set the environment variable CONFIG_DIR to the location of the conf.

setenv CONFIG_DIR ../conf/

4. Security Configuration. Version 1.0 of the WFSRI is not currently integrated with an LDAP service
for authenticating the username/password combinations. In lieu of the LDAP service, to add a
username/password pair for the service edit the CamelContext.xml file in
$WFSRI_HOME/WEB-INF. Edit the property userMap in the memoryUserDetailsService
bean in CamelContext.xml to list the username/password pairs. The format for this is:

username=password,ROLE_USER

For example, a user tom with a password of riddle would be listed as:

<bean id="memoryUserDetailsService"
 class="org.springframework.security.userdetails.memory.InMemoryDaoImpl">
 <property name="userMap">
 <value>tom=riddle,ROLE_USER</value>
 </property>
</bean>

5. Re-start Tomcat to capture the latest changes in the properties files.

The remainder of this test plan assumes that the WFSRI installed at MIT Lincoln Laboratory with the
endpoint: http://ngen-wfsri.wx.ll.mit.edu/soap/wfs will be utilized.

The following series of tests demonstrate the functionality of the Web Feature Service Reference
Implementation (WFSRI) using a set of clients. The sequence of the tests below follows the lifecycle of
the WFSRI from set up to publishing feature data to feature retrieval. Figure 5.1 highlights the primary
flow of tasks that are undertaken by a feature producer and a feature consumer. Lightning and MDCR
data will be used throughout this demonstration. The Lightning data will be displayed using the Google
Earth Subscription Client. Client side adaptation of the CIWS display will be demonstrated as well.

http://wxforge.wx.ll.mit.edu/svn/fuse-wfsri/tags/soap-1.0.0/conf�

 100

Figure 5.2 highlights the CIWS and WFSRI interaction. Screenshots are provided with which to verify the
validity of the output.

Section 5.1 describes the setup of the test environment, that is, the test clients used throughout this
demonstration. The remainder of the sections demonstrates the functionality highlighted in Figure 5.1.

Figure 5.1 WFSRI Flow

 101

Figure 5.2: CIWS and WFSRI Interaction

5.1 Test Environment and Setup

5.1.1 Administration Client

The WFSRI Administrator provides administrative access, from registering a publisher/producer, to
registering feature types, to monitoring the WFSRI state. The WFS Administration client is bundled with
the WFSRI and can be accessed at:

http://ngen-atomwfs-data.wx.ll.mit.edu:61618/WFSAdmin

5.1.2 Publish Clients

The Publish Clients allow data providers to publish their feature data to the WFSRI server. The WFSRI
Version 1.0 provides two sample publish clients: a general purpose Publish client and a continuous
Lightning Publisher that integrates with and publishes the CIWS Lightning ATOM feed data to the
WFSRI server hosted at MIT Lincoln Laboratory. Figure 5.2: CIWS and WFSRI Interaction, shows a
schematic of the interaction between the CIWS ATOM feed, the ATOM-WFS-Bridge and the WFSRI.

Generic Client

Requirements:

 102

• Maven 2.0.9
• JDK 1.6

Installation:

To install the generic client follow the steps outlined below.

1. Download the client from http://wxforge.wx.ll.mit.edu
svn co
http://wxforge.wx.ll.mit.edu/svn/fuse-wfsri/trunk/client/soapclient
genericClient

2. Change directory to genericClient, and compile the client.
mvn compile; mvn appassembler:assemble

3. The above command creates an executable genericClient/target/bin/SoapClient.

Ensure that the SoapClient is executable.
chmod u+x target/bin/SoapClient

4. Set the REPO environment variable to point to your maven repository.

REPO=~/.m2/repository

export REPO

Secure Publish Client

Requirements:

• Maven 2.0.9
• JDK 1.6

Installation:

1. Build the Client Library: To build the client library: Checkout the ogc-bindings project
from http://wxforge.wx.ll.mit.edu

svn checkout
http://wxforge.wx.ll.mit.edu/svn/ogc-bindings/tags/ogc-bindings-1.0
ogc-bindings

2. Navigate to the ogc-bindings/xmlbeans/nawx/1.1.0_gml311 directory, then run the

command
mvn install

3. Check out the client library from wxforge.wx.ll.mit.edu

http://wxforge.wx.ll.mit.edu/�
http://wxforge.wx.ll.mit.edu/svn/fuse-wfsri/trunk/client/soapclient�
http://wxforge.wx.ll.mit.edu/svn/ogc-bindings/tags/ogc-bindings-1.0�

 103

svn checkout
http://wxforge.wx.ll.mit.edu/svn/nnew/ri-client/tags/wfsri-client-1.1
ri-client

4. Navigate to the ri-client/trunk/wfsri directory in the ri-client project, run the command

mvn install

mvn appassembler:assemble

5. This will generate the SamplePublisherClientApp in target/bin. Add execution

privileges to the SamplePublisherClientApp.
chmod 755 target/bin/*

5.1.3 Retrieval Clients

The Retrieval Clients allow data consumers to access filtered feature data from the WFSRI
server. The WFSRI Version 1.0 provides two sample retrieval clients: a command line
Request/Response api through the generic client used for publishing data and an integrated
Google Earth subscription client.

Google Earth Subscription Client

Requirements:

The Google Earth Subscription client requires that Google Earth be installed prior to its installation. To
install Google Earth:

1. Download Google Earth from:

 http://earth.google.com/download-earth.html

2. Make the downloaded Google Earth file executable
chmod u+x GoogleEarthLinux.bin

3. Install Google Earth by executing this file by typing ./GoogleEarthLinux.bin in the
directory where the file was downloaded. The install process will attempt to create a directory
$HOME/google-earth. It is best if this directory is mounted on a local disk. If this is not a local
disk, have the install write to a local disk. Go to the directory where Google Earth was installed and
run it by typing:

./googleearth

Installation:

To install the Integrated Subscription Client:

http://wxforge.wx.ll.mit.edu/svn/nnew/ri-client/tags/wfsri-client-1.1�
http://earth.google.com/download-earth.html�

 104

1. Checkout the wfs-transformer project from http://wxforge.wx.ll.mit.edu
svn co
http://wxforge.wx.ll.mit.edu/svn/nnew/ri-client/trunk/wfs-transformer

2. Change directory to wfs-transformer. Compile the wfs-transformer code.
cd wfs-transformer
mvn compile ; mvn appassembler:assemble

This will create the directory target/bin and in there a shell script called GMLToKmlTest.
Make this script executable by typing:

chmod +x target/bin/GMLToKmlTest

3. Now set the REPO environment variable to your maven repository.
setenv REPO $HOME/.m2/repository

For csh style shells, or for bash shells type:
REPO=$HOME/.m2/repository ; export REPO

4. Next create a directory for the kml output to go, and populate it with some default files.
mkdir $HOME/kml
cp wfs-transformer/src/main/resources/lightning* $HOME/kml

Change directory to $HOME/kml and edit the file LightningFile.kml. Replace the ll/wlp/km
with the path $HOME/kml, with the environment variable expanded. Take care to maintain the double
slash after 'file:'

For example, with an FAA user's home directory:
<href>file://home/faauser/kml/lightning.kml</href>

5.1.4 CIWS Display

Requirements:

• JDK 1.6

Installation:

1. Insert the CIWS NNEW Display software disk into a CD or DVD ROM drive.

2. Make a directory on a disk with write privileges and at least a gigabyte of space.

3. Open two terminals and change both to the newly created directory.

4. In the first terminal, run the following command:

http://wxforge.wx.ll.mit.edu/�

 105

 tar –xvf PATH_TO_CDROM/ciws_nnew_display.tar

5. In the first terminal edit the “run” and the “run_LightningProcessor” scripts so that you can specify
your http proxy settings. There is a section for the proxy settings near the top of the file.

For no proxy use:
PROXYHOST=""
PROXYPORT=""

If you do have a proxyhost (substitute somehost… for your proxy host):
PROXYHOST="-Dhttp.proxyHost=somehost.somedomain.org"
PROXYPORT="-Dhttp.proxyPort=8080"

6. In the first terminal execute the script by typing:
./run

7. In the second terminal run the “run_LightningProcessor” script
./run_LightningProcessor

8. To exit the display, invoke the “System” → “Exit” menu item. Type Ctrl-c from the second terminal
to terminate the lightning processor.

Notes:

Currently the program downloads and keeps product history. If disk space is an issue, stop the display
and delete the contents of the “data” and “tmp” directories (leave the “data” and “tmp” directories).

5.2 Register New Producer Using the WFSRI Administrator

Launch the WFSRI Administrator by pointing a web browser to the following URL:

http://ngen-atomwfs-data.wx.ll.mit.edu:61618/WFSAdmin

Click on the “Register a new Producer” link at the bottom of the login screen. Fill in a name and
password and click “Register Producer.”

http://localhost:8080/WFSAdmin�

 106

You should see a screen that indicates that the producer has been successfully created.

5.3 Create Feature Table

MIT/LL staff will use a VPN connection to a MIT/LL machine to complete step 5.3

 107

Prior to registering a feature type that will be served up using the WFSRI, the producer must create the
table (Feature Type Table) that will store the feature instance data. A default “empty” schema is created
during the registration of the producer. To create the feature table for MDCR data:

1. Change to the AIREP directory (cd AIREP)

2. Login to the Oracle database using sqlplus and the producer credentials created above.

sqlplus AIREP/AIREP

3. You should see a sqlplus prompt. Type the sql command shown below:

sql> select table_name from user_tables;

4. This statement should return “No Rows Found”. To create the AIREP feature table, execute the
following from the sql prompt:

sql> @createAIREPTable.sql

5. You should see the following output:

SQL> @createAIREPTable.sql

Table created.

Sequence created.

Trigger created.

Trigger altered.

1 row created

Index created.

Grant succeeded.

5.4 Register Feature Type Using the WFSRI Administrator

Check out the AIREP table script from wxforge.wx.ll.mit.edu
svn co http://wxforge.wx.ll.mit.edu/svn/wfsri/trunk/examples/AIREP

AIREP

To register a feature type login with the credentials of the producer registered in Section 5.2. Click on the
“Register Feature Type” tab.

Fill in the fields on the form as shown below. Then, use the “Browse” buttons to find the “Feature Type
Description” and “Describe Feature Type” files.

http://wxforge.wx.ll.mit.edu/svn/wfsri/trunk/examples/AIREP�

 108

Use the drop-down and the “Select Schema” button to choose the Feature Table. Select one or more
columns in the “Column Info” and “Mandatory Column Info” sections.

Make sure ID is checked for column and mandatory column.

Use the text box and “Search List” button to retrieve supported Spatial Reference System namespaces.

Click the “Register Feature” button to register the Feature Type.

 109

The “Manage Feature Types” tab should be presented to the Producer showing that the Feature has been
registered successfully. (Leave this window available)

5.5 Transaction Insert

5.5.1 Using the Generic Client

The WFS-T specification provides interfaces to insert, update and delete feature data from the specified
WFS server. The WFSRI supports only transaction insert. To insert MDCR feature data into the MIT LL
WFS server:

 110

1. Download the MDCR data from wxforge.wx.ll.mit.edu. If you have already downloaded the AIREP
directory in Section 5.3, then skip this step. Else,

svn co http://wxforge.wx.ll.mit.edu/svn/wfsri/trunk/examples sample-requests

The AIREP directory contains several MDCR data files, labeled MDCR1….n.xml. Each file represents a

MDCR feature wrapped in an OGC WFS transaction element.

Type

 cat ~/wxforge/sample-requests/AIREPTestData/mdcr.xml

<?xml version="1.0" encoding="UTF-8"?>
<wfs:Transaction service="WFS" version="1.1.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.1.0/WFS-transaction.xsd">
 <wfs:Insert>

<avwx:AircraftReport
 xmlns:avwx="http://www.eurocontrol.int/wxxs/1.1"
 xmlns:wx="http://www.eurocontrol.int/wx/1.1"
 xmlns:wxont="http://wmo.int/ontologies/wx.owl#"
 xmlns:om="http://www.opengis.net/om/1.0/gml32"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 gml:id="id0"
 xsi:schemaLocation="http://www.eurocontrol.int/wxxs/1.1 ./int/eurocontrol/wxxs/1.1.0/wxxs.xsd">
<!--<Example of a MDCR based upon exmaple ADMAR-->
<avwx:aircraftReportType>AIREP</avwx:aircraftReportType>
<avwx:aircraftId codeSpace="urn:icao:Aircraft:type">IUAX02</avwx:aircraftId>
<avwx:airspaceWxObservation>
<wx:Observation gml:id="id6">
<om:samplingTime>
<gml:TimeInstant gml:id="id8">

<gml:timePosition>2009-08-28T03:19:00Z</gml:timePosition>
</gml:TimeInstant>
</om:samplingTime>
<om:procedure xlink:href="urn:fdc:icao:procedure:AircraftReport"></om:procedure>
<om:observedProperty
xlink:href="http://www.eurocontrol.int/ont/avwx/1.1/wx.owl#AirspaceWx"></om:observedProperty>
<om:featureOfInterest>
<avwx:Airspace gml:id="id4">
<gml:location>
<gml:Point gml:id="id5" srsName="urn:ogc:def:crs:EPSG::4326">
<gml:pos>39.49 -78.25 6084.0 </gml:pos>
</gml:Point>
</gml:location>
</avwx:Airspace>
</om:featureOfInterest>
<om:result>
<avwx:AirspaceWx gml:id="id10">

 111

<avwx:windSpeed uom="kt">8</avwx:windSpeed>
<avwx:windDirection uom="deg">229</avwx:windDirection>
<avwx:airTemperature uom="C">262</avwx:airTemperature>
<avwx:turbulence>
<avwx:Turbulence gml:id="tb1"></avwx:Turbulence>
</avwx:turbulence>
</avwx:AirspaceWx>
</om:result>
</wx:Observation>
</avwx:airspaceWxObservation>
</avwx:AircraftReport>
</wfs:Insert>
</wfs:Transaction>

2. Change directory to where you downloaded the generic client (see Step 5.1).

cd genericClient

3. Execute the generic client as follows:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/AIREPTestData/mdcr.xml AIREP AIREP

4. Verify that the following message is returned from the client:
Sep 11, 2009 5:45:50 PM org.springframework.ws.soap.saaj.SaajSoapMessageFactory afterPropertiesSet
INFO: Creating SAAJ 1.3 MessageFactory with SOAP 1.1 Protocol
<?xml version="1.0" encoding="UTF-8"?><xml-fragment><wfs:TransactionSummary
xmlns:wfs="http://www.opengis.net/wfs"><wfs:totalInserted>1</wfs:totalInserted></wfs:TransactionSummary><
wfs:InsertResults xmlns:wfs="http://www.opengis.net/wfs"><wfs:Feature handle=""><ogc:FeatureId
xmlns:ogc="http://www.opengis.net/ogc" fid="1"/></wfs:Feature></wfs:InsertResults></xml-fragment>

5. Refresh the WFSRI Admin GUI and verify features has incremented to 1

5.5.2 Using the ATOM-WFS Bridge

The ATOM-WFS bridge can be used to publish data to a WFS server. To publish data to the WFS server
using the ATOM-WFS bridge, change to the directory where ATOM-WFS-Bridge was downloaded and
installed. Start the ATOM-WFS-Bridge using the following command:

mvn jetty:run

This connects to the CIWS ATOM feed and publishes data to the WFS Server.

Verify that data is being published to the MIT LL WFS Server by logging into the WFS Admin using the
username LTNPRODUCER and the password LTN. Verify that you see a number greater than 0 for the
features under the “LightningFlash” feature type.

http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�

 112

5.6 GetCapabilities Using the Generic Client

To retrieve the capabilities offered by the WFS server, you can pass in a GetCapabilities request to the
generic client used in Section 5.4 for publishing data. The WFSRI comes bundled with a set of examples
including a sample GetCapabilities request. To download the examples, checkout the samples directory
from wxforge using :

svn co

http://wxforge.wx.ll.mit.edu/svn/wfsri/trunk/examples sample-requests

Change directory to where the generic client was downloaded and installed. Run the following command:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/getCapabilities.xml CONSUMER1 CONS

Verify that the output returned is similar to the text below (only a snapshot shown).

<ogc:Filter_Capabilities>
 <ogc:Spatial_Capabilities>
 <ogc:GeometryOperands>
 <ogc:GeometryOperand>gml:Envelope</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Point</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:LineString</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Polygon</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:ArcByCenterPoint</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:CircleByCenterPoint</ogc:GeometryOperand>

http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�

 113

 <ogc:GeometryOperand>gml:Arc</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Circle</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:ArcByBulge</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Bezier</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Clothoid</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:CubicSpline</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Geodesic</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:OffsetCurve</ogc:GeometryOperand>
 <ogc:GeometryOperand>gml:Triangle</ogc:GeometryOperand>
</ogc:Filter_Capabilities>
</wfs:WFS_Capabilities>

5.7 DescribeFeatureType Using the Generic Client

The DescribeFeatureType request returns the XML Schema descriptions of the one or more specified
Feature types. To execute a DescribeFeatureType request, run the following command:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/describeFeatureType.xml CONSUMER1 CONS

Verify that this command returns the wxLightning.xsd.

INFO: Creating SAAJ 1.3 MessageFactory with SOAP 1.1 Protocol
<?xml version="1.0" encoding="UTF-8"?><wfs:DescribeFeatureTypeResponse xmlns:wfs="http://www.opengis.net/wfs-
util"><schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:gml="http://www.opengis.net/gml"
xmlns:nawx="http://www.faa.gov/nawx/1.1" xmlns:wx="http://www.eurocontrol.int/wx/1.1"
attributeFormDefault="unqualified" elementFormDefault="qualified" targetNamespace="http://www.faa.gov/nawx/1.1"
version="1.0">
 <annotation>
 <documentation>
 Wx schema file for encoding lightning flash data
 </documentation>
 </annotation>
 <import namespace="http://www.opengis.net/gml" schemaLocation="../../../../net/opengis/gml/3.1.1/base/gml.xsd"/>
 <import namespace="http://www.eurocontrol.int/wx/1.1"
schemaLocation="../../../../int/eurocontrol/wx/1.1.0_gml311/wx.xsd"/>

 <element name="LightningFlash" substitutionGroup="gml:_Feature" type="nawx:LightningFlashType"/>
 <complexType name="LightningFlashType">
 <annotation>
 <documentation>
 The LightningFlashType is an extension of wx:AbstractWxFeatureType to allow
 encoding of lightning flash data.
 </documentation>
 </annotation>
 <complexContent>
 <extension base="wx:AbstractWxFeatureType">

http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�

 114

 <sequence>
 <element minOccurs="0" name="associatedFeatureID" type="ID">
 <annotation>
 <documentation>
 Optional associated feature ID for this lightning flash. For
 example, this could be the gml:id of a StormCell that the
 lightning flash is associated with.
 </documentation>
 </annotation>
 </element>
 <element name="strength" type="gml:MeasureType">
 <annotation>
 <documentation>
 Strength and polarity, typically expressed as a signed value
 in kiloamps.
 </documentation>
 </annotation>
 </element>
 <element name="numStrokes" type="integer">
 <annotation>
 <documentation>
 Number of strokes in the flash
 </documentation>
 </annotation>
 </element>
 <element name="geometry" type="gml:PointPropertyType">
 <annotation>
 <documentation>
 The location of this lightning flash
 </documentation>
 </annotation>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</schema></wfs:DescribeFeatureTypeResponse>

5.8 GetFeature Request/Response

The GetFeature Request/Response interface allows users to retrieve feature data from the WFS server for
a specified feature type. The generic Client can be used for retrieving unfiltered as well as filtered data
from the WFS server.

Prior to executing the following test cases load the data files in sample-requests/AIREPData into the WFS
server using the following as a sample command:

 115

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/AIREPTestData/20090911092014_001335.xml AIREP
AIREP

Use similar methods to insert 7 additional files in
~/wxforge/sample-requests/AIREPTestData

5.8.1 Unfiltered Access

The file sample-requests/AIREPQueries/mdcrUnfiltered.xml (shown below) shows a
simple OGC filter that when executed retrieves all MDCR data that is available at the server. To run the
filter use the following command:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/AIREPQueries/mdcrUnfiltered.xml CONSUMER1 CONS

Verify that this returns results of the type:

<gml:featureMember xmlns:gml="http://www.opengis.net/gml">

<avwx:AircraftReport xmlns:avwx="http://www.eurocontrol.int/wxxs/1.1" xmlns:om="http://www.opengis.net/om/1.0/gml32"
xmlns:wx="http://www.eurocontrol.int/wx/1.1" xmlns:wxont="http://wmo.int/ontologies/wx.owl#"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" gml:id="id0"
xsi:schemaLocation="http://www.eurocontrol.int/wxxs/1.1 ./int/eurocontrol/wxxs/1.1.0/wxxs.xsd">

<avwx:aircraftReportType>AIREP</avwx:aircraftReportType>
<avwx:aircraftId codeSpace="urn:icao:Aircraft:type">IUAX02</avwx:aircraftId>
<avwx:airspaceWxObservation>
 <wx:Observation gml:id="id6">
 <om:samplingTime>
 <gml:TimeInstant gml:id="id8">
 <gml:timePosition>2009-08-28T03:19:00Z</gml:timePosition>
 </gml:TimeInstant>
 </om:samplingTime>
 <om:procedure xlink:href="urn:fdc:icao:procedure:AircraftReport"/>
 <om:observedProperty xlink:href="http://www.eurocontrol.int/ont/avwx/1.1/wx.owl#AirspaceWx"/>
 <om:featureOfInterest>
 <avwx:Airspace gml:id="id4">
 <gml:location>
 <gml:Point gml:id="id5" srsName="urn:ogc:def:crs:EPSG::4326">
 <gml:pos>39.49 -78.25 6084.0 </gml:pos>
 </gml:Point>
 </gml:location>
 </avwx:Airspace>
 </om:featureOfInterest>
 <om:result>
 <avwx:AirspaceWx gml:id="id10">
 <avwx:windSpeed uom="kt">8</avwx:windSpeed>
 <avwx:windDirection uom="deg">229</avwx:windDirection>
 <avwx:airTemperature uom="C">262</avwx:airTemperature>
 <avwx:turbulence>
 <avwx:Turbulence gml:id="tb1"/>
 </avwx:turbulence>

http://ngen-wfsri.wx.ll.mit.edu/soap/wfs%20../sample-requests/AIREPTestData/20090911092014_001335.xml�
http://ngen-wfsri.wx.ll.mit.edu/soap/wfs%20../sample-requests/AIREPTestData/20090911092014_001335.xml�
http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�

 116

 </avwx:AirspaceWx>
 </om:result>
 </wx:Observation>
</avwx:airspaceWxObservation>
</avwx:AircraftReport></gml:featureMember>

5.8.2 Spatial Subsetting

The file sample-requests/AIREPQueries/airepBBOX.xml (shown below) shows a simple OGC filter that
when executed retrieves all Lightning data that is available for the specified bounding box. To run the
filter use the following command:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/AIREPQueries/airepBBOX.xml CONSUMER1 CONS

Filter Query:

<wfs:GetFeature service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1"
 xmlns:nnew="http://wx.ll.mit.edu/nnew" xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs ../../../../../../ogc-bindings/schemas/net/opengis/wfs/1.1.0-LL/wfs.xsd">
 <wfs:Query typeName="AircraftReport">
 <ogc:Filter>
 <ogc:BBOX>
 <gml:Envelope>
 <gml:coordinates> 35.0,-88.0 40.0,-120.0 </gml:coordinates>
 </gml:Envelope>
 </ogc:BBOX>
 </ogc:Filter>
 </wfs:Query>
</wfs:GetFeature>

Verify that all results fall in the bounding box specified (35.0,-88.0 40.0,-120.0).

5.8.3 Temporal Subsetting

The file sample-requests/AIREPQueries/airepIssueTime_2 .xml (shown below) shows a simple OGC
filter that when executed retrieves all AircraftReports that falls within the specified temporal bounding
box. To run the filter use the following command:

target/bin/SoapClient http://ngen-wfsri.wx.ll.mit.edu/soap/wfs
../sample-requests/AIREPQueries/airepIssueTime_2.xml CONSUMER1
CONS

Filter Query:

http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�
http://ngen-wfsri.wx.ll.mit.edu/soap/wfs�

 117

<wfs:GetFeature service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1"
 xmlns:nnew="http://wx.ll.mit.edu/nnew" xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs ../../../../../../ogc-bindings/schemas/net/opengis/wfs/1.1.0-LL/wfs.xsd">
 <wfs:Query typeName="AircraftReport">
 <ogc:Filter>
 <ogc:And>
 <ogc:PropertyIsGreaterThan>
 <ogc:PropertyName>wx:issueTime</ogc:PropertyName>
 <ogc:Literal>2009-09-10T12:51:34Z</ogc:Literal>
 </ogc:PropertyIsGreaterThan>
 <ogc:PropertyIsLessThanOrEqualTo>
 <ogc:PropertyName>wx:issueTime</ogc:PropertyName>
 <ogc:Literal>2009-09-17T12:51:34Z</ogc:Literal>
 </ogc:PropertyIsLessThanOrEqualTo>
 </ogc:And>
 </ogc:Filter>
 </wfs:Query>
</wfs:GetFeature>

Verify that results returned fall between the specified temporal bounding box.

5.9 GetFeature Subscription Using Google Earth Subscription Client

The Integrated Google Earth subscription client demonstrates the subscription capabilities of the WFSRI.
The Google Earth Subscription Client establishes a subscription to the desired feature data at the WFS
server, in this case Lightning data, and displays the lightning flashes.

5.9.1 Unfiltered Subscription

Go the directory where you installed Google Earth. Run Google Earth using the following command:
./googleearth

In Google Earth, load the kml file that will monitor the output of GMLToKmlTest. To do this click on
“File” in Google Earth, then “Open.” Use the window that came up to browse $HOME/kml. Click on
lightningFile.kml then click the “Open” button.

 118

In the window where GmlToKmlTest is, type

target/bin/GMLToKmlTest -e http://ngen-wfsri.wx.ll.mit.edu/soap/wfs -u
CONSUMER1 -p CONS

Lightning bolts should be visible in Google Earth soon. A sample screenshot is shown below.

 119

5.9.2 Spatial Filtering Subscription

To demonstrate geometric subsetting, run GMLToKmlTest with the –r flag. This will tell the program to
look at different regions. Currently the choices are CONUS, GULF, TX, and FL.

In the window where GmlToKmlTest is, type

target/bin/GMLToKmlTest -e http://ngen-wfsri.wx.ll.mit.edu/soap/wfs -u
CONSUMER1 -p CONS –r FL

Lightning bolts over Florida should be visible. A sample screenshot is shown below.

5.10 Security

5.10.1 Verification of Unauthorized Access

Change directory to where you installed the SamplePublisherClientApp

(/home/nwec/wxforge/nnew/ri-client/trunk/wfsri).

Use the SamplePublisherClientApp script to publish to the WFS using an incorrect password.

target/bin/SamplePublisherClientApp -e http://ngen-
wfsri.wx.ll.mit.edu/soap/wfs -u LTNPRODUCER -p LTO

 120

Here the location of the WFS is specified with the –e option, the producer name is specified with the –u
option and the producer’s password is specified with the –p option. The password for this producer should
be LTN, not LTO. Verify that the server returns a “Bad Credentials” message.

5.10.2 Verification of Authorized Access

Use the SamplePublisherClientApp script with the correct password.

target/bin/SamplePublisherClientApp -e http://ngen-
wfsri.wx.ll.mit.edu/soap/wfs -u LTNPRODUCER -p LTN

Running this script should now show a response from the service with its own valid security measures.

Verify that the request was sent, a response was received, and that the response was sent for the correct
actor with a valid timestamp.

5.11 Client-Side Service Adaptor – CIWS Display

In the first terminal execute the script by typing:

./run

In the second terminal run the “run_LightningProcessor” script

./run_LightningProcessor

 121

5.11.1 Precip Product

• Click on the “Precip” button. Click on “Time 0” in the Loop Controls.

• Zoom out to national view, open product dialog (right click) and uncheck show coverage
limitations. Verify that the coverage limitations are shown when checked and masked out when
unchecked.

• Zoom into some weather with all levels in it. Filter each level and verify that the level has been
filtered.

• Close the product dialog with the close button. Verify that it has been closed.

5.12 Winter Precip Product

• Click on the “Wntr Precip” button. Click on “Time 0” in the Loop Controls.

• Zoom out to national view, open product dialog (right click) and uncheck show coverage
limitations. Verify that the coverage limitations are shown when checked and masked out when
unchecked.

• Zoom into some weather with all levels in it. Filter each level and verify that the level has been
filtered.

• Close the product dialog with the close button. Verify that it has been closed.

 122

5.13 Echo Tops Product

• Click the "Echo Tops" product button. Click on “Time 0” in the Loop Controls.

• Zoom into some weather with all levels in it. Filter each level and verify that the level has been
filtered.

• Close the product dialog with the close button. Verify that it has been closed.

 123

5.14 Lightning Product

• Click the "Lightning" product button. You may want to leave the display and lightning
processor up for 30 minutes or so (to test past wx). Click on “Time 0” in the Loop Controls.

• Animate the loop by clicking on the "play" button in the Loop Controls. Verify that Lightning is
visible in all of the past frames and time 0.

• In the product dialog check "Time 0 only“. Verify that Lightning only appears in the time 0
frame.

• Close the product dialog with the close button. Verify that it has been closed.

 124

5.15 AIXM Overlays

• Click on “Time 0” in the Loop Controls.

• Add all of the ARTCCs by clicking on the “View” → “Load AIXM Overlay…”

• In the “Open” dialog click on CZE.xml hold down shift and click on ZTL.xml to select all of the
xml files. Click on Open.

• Verify that the ARTCCs load. The red ARTCCs will be covered by orange AIXM equivalents.

• Use the “View” → “Clear AIXM Overlays” to clear the AIXM overlays. Verify that they are
cleared (ARTCCs will turn back to red)

 125

 126

6. NWS Data discovery and access

6.1 Introduction

As the foundation of the NWS Digital Services Program, the National Digital Forecast Database (NDFD)
consists of gridded forecasts of sensible weather elements (e.g., cloud cover, maximum temperature).
NDFD contains a seamless mosaic of digital forecasts from NWS field offices working in collaboration
with the National Centers for Environmental Prediction (NCEP). For the purposes of this demonstration,
NDFD might be considered a reasonable surrogate for the Single Authoritative Source (SAS). That said,
to date NDFD weather elements have not been focused on meeting the requirements of NextGen.

The National Digital Guidance Database (NDGD), a companion to the NDFD, contains gridded weather
forecasts produced by various automated techniques. Gridded forecasts of thunderstorm probability
produced by the NWS' Localized Aviation MOS Program (LAMP) are one component of the NDGD.

In 2006 the NWS declared operational a web service that uses Simple Object Access Protocol (SOAP) to
deliver NDFD and NDGD data to customers and partners. This web service does not follow OGC
standards. It predates many of the standards that are emerging for NextGen. It is largely focused on
delivering data for a single point, not a grid or a flight path. That said, the NDFD SOAP service is
operational, and the forecasts and guidance it delivers are official. The NWS web farm routinely services
millions of hits per day for the NDFD SOAP service. This service can be registered in the WellGEO
registry/repository software.

6.2 Test Environment and Setup

Setup for this test is described in Section 2.2, Demonstration Applications.

6.3 Discovery of NDFD/NDGD SOAP Service

This test uses WellGEO to find the operational NWS NDFD SOAP service. Then, it uses soapUI to show
the capabilities of the NDFD SOAP service.

1. Launch the Registry Admin UI version 4.4 as described in section 3.1.4, above.

2. Click on the “Search” tab in upper left corner of the UI to access the Search Tool panel.

3. Select “All Federations” in the “Federated Query Options” dropdown menu.

4. Select “Find Service” in the “Select Query” combo box.

5. Click the “Search” button at the top of the Search Tool panel. An unfiltered list of all the
registered services will appear. Click on the “Name” column heading to sort the datasets by
name / Name (alphabetical order).

6. Verify that the list of services returned includes “ndfdXML.”

 127

7. Right click the entry for “ndfdXML” and select “Download.”
 Note: This may not work due to missing file. See next instruction:

8. Find the endpoint in the Regrep and paste the endpoint into the browser. Click on the “WSDL”
link. Copy the wsdl URL and save it to paste it into the soapUI.

9. Launch soapUI, and select “File” → “New soapUI Project.” Copy the wsdl URL into the Initial
WSDL box.

10. Verify that the list of operations includes “NDFDgen” and “NDFDgenByDay.” This list shows
the 12 SOAP operations that customers and partners can request from the service. NDFDgen and
NDFDgenByDay are the two primary operations for the NWS' operational NDFD SOAP service.
NDFDgen will be used later to query data.

11. Expand the operation named “NDFDgen”. Double click “Request 1”. Verify the list of
weatherParameters includes “wspd” and “wdir.” SoapUI allows one to see the calling parameters
needed for a query (lat/lon, time range, weather element). It also shows the list of various NDFD and
NDGD weather elements that are available.

 128

6.4 SOAP Query of NDFD/NDGD Data

To support this demo, the NWS has set up a simple browser interface. It can query NDFD data for the
closest gridpoint from the operational NWS servers. Output is displayed in either XML or tabular form.

1. Open the following URL in a web browser:

http://www.weather.gov/forecasts/xml/SOAP_server/NextGenDemo.htm.

2. Select “Digital Weather Markup Language (DWML)”

3. Enter the latitude and longitude for one of the following “windy” Operational Evolution
Partnership (OEP) airports. Coordinates listed here are coarse, but sufficient to capture the
correct gridpoint.

Identifier Latitude Longitude

KSFO 37.62 -122.37

KBOS 42.36 -71.02

http://www.weather.gov/forecasts/xml/SOAP_server/NextGenDemo.htm�

 129

KLGA 40.78 -73.88

KDFW 32.90 -97.02

4. If desired, change “Start Time” and “End Time.” The preset values will query all forecast
periods available in NDFD.

5. Select “Wind Speed” and “Wind Direction.”

 130

6. Click the “Submit” button at the bottom of the page. XML data will be returned. Valid periods, a
time series of forecast wind speeds, and a time series of forecast wind directions will be
recognizable.

 131

7. User the browser's “Back” button to return to the menu page.

8. Select “Text Table”

9. Enter the latitude and longitude for one of the following “thunderstorm-prone” OEP airports.

Identifier Latitude Longitude

KFLL 26.07 -80.15

KATL 33.63 -84.45

KORD 41.98 -87.93

<dwml version="1.0" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.nws.noaa.gov/forecasts/xml/DWMLgen/schema/DWML.xsd"
>
 <head>
 <product srsName="WGS 1984" concise-name="time-series" operational-mode="official">
 <title>NOAA's National Weather Service Forecast Data</title>
 <field>meteorological</field>
 <category>forecast</category>
 <creation-date refresh-frequency="PT1H">2009-09-09T17:51:05Z</creation-date>
 </product>
 <source>
 <more-information>http://www.nws.noaa.gov/forecasts/xml/</more-information>
 <production-center>Meteorological Development Laboratory<sub-center>Product Generation
Branch</sub-center></production-center>
 <disclaimer>http://www.nws.noaa.gov/disclaimer.html</disclaimer>
 <credit>http://www.weather.gov/</credit>
 <credit-logo>http://www.weather.gov/images/xml_logo.gif</credit-logo>
 <feedback>http://www.weather.gov/feedback.php</feedback>
 </source>
 </head>
 <data>
 <location>
 <location-key>point1</location-key>
 <point latitude="42.36" longitude="-71.02"/>
 </location>
 <moreWeatherInformation applicable-
location="point1">http://forecast.weather.gov/MapClick.php?textField1=42.36&textField2=-
71.02</moreWeatherInformation>
 <time-layout time-coordinate="local" summarization="none">
 <layout-key>k-p3h-n5-1</layout-key>
 <start-valid-time>2009-09-09T14:00:00-04:00</start-valid-time>
 <start-valid-time>2009-09-09T17:00:00-04:00</start-valid-time>
 <start-valid-time>2009-09-09T20:00:00-04:00</start-valid-time>
 <start-valid-time>2009-09-09T23:00:00-04:00</start-valid-time>
 <start-valid-time>2009-09-10T02:00:00-04:00</start-valid-time>
 </time-layout>
 <parameters applicable-location="point1">
 <wind-speed type="sustained" units="knots" time-layout="k-p3h-n5-1">
 <name>Wind Speed</name>
 <Value>15</value>
 <Value>14</value>
 <value>10</value>
 <value>8</value>
 <value>11</value>
 </wind-speed>
 <direction type="wind" units="degrees true" time-layout="k-p3h-n5-1">
 <name>Wind Direction</name>
 <value>50</value>
 <value>60</value>
 <value>60</value>
 <value>60</value>
 <value>50</value>
 </direction>
 </parameters>
 </data>
</dwml>

 132

KDFW 32.90 -97.02

10. Select “LAMP Thunderstorm Probabilities.” only

11. Click the “Submit” button at the bottom of the page. A table of valid times and thunderstorm
probabilities will be returned.

 133

6.5 Web Coverage Service Query of NDFD/NDGD Data

To support this demo, the NWS has set up a Web Coverage Service (WCS) based on the reference
implementation generated at NCAR. Our exposed endpoint is http://140.90.90.88/wcs. The NWS has
created four test Coverages (Convective Probability, Wind Direction, Wind Speed and Wind Gust) for the
purposes of this demonstration. The following guidelines have been created to access and use our WCS.
These guidelines assume the use of soapUI.

1. Launch soapUI, and select “File” → “New soapUI Project.” A “New soapUI Project” GUI will
appear.

2. Next to “Project Name,” type:
NWS WCS

3. Next to “Initial WSDL/WADL,” type:
http://140.90.90.88/wcs?wsdl

Check to make sure that only the "Create Requests" box has a check next to it. If not, please make
sure this is the only box with a check in it. Then hit the "OK" button. This will create a project
called "NWS WSC".

4. Three features will be offered as apart of the WCS. These include describeCoverage, getCapabilities
and getCoverage.

5. Click on the “+” symbol for each of these features, and you will reveal a “SOAP Request 1”. These
soap requests serve as the interface between the user, and our WCS (where the data resides).

6. Double click on the “SOAP Request 1” associated with getCapabilitiesOperation. This will open a
2-panel GUI interface. The left-hand side of the interface contains the soap request being sent to our
WCS. The right-hand side of the interface contains the soap response from our WCS server. There
are no fields that need to be populated with this request. This is a simple request to find out what data
is available and more background information about our WCS. Before hitting the green submit
arrow, please take a look at the URL setting in the top center part of the 2-pane GUI. If this is not set
to “http://140.900.90.88/wcs,” please edit the URL and set it to “http://140.90.90.88/wcs.”
Then click on the green arrow (Submit request to a specified endpoint URL). After execution, a
getCapabilities soap response will appear in the right-hand pane indicating some background
information about who's offering the service, and what data is available via our WCS. The most

latitude = 26.07 longitude = -80.15

element, unit, refTime, validTime, (26.070000,-80.150000)
TSTM02, [%], 200909091700, 200909092000, 49.000
TSTM02, [%], 200909091700, 200909092100, 48.000
TSTM02, [%], 200909091700, 200909092200, 43.000
TSTM02, [%], 200909091700, 200909092300, 32.000
TSTM02, [%], 200909091700, 200909100000, 22.000
TSTM02, [%], 200909091700, 200909100200, 12.000
TSTM02, [%], 200909091700, 200909100400, 7.000
TSTM02, [%], 200909091700, 200909100600, 5.000
TSTM02, [%], 200909091700, 200909100800, 5.000
TSTM02, [%], 200909091700, 200909101000, 7.000
TSTM02, [%], 200909091700, 200909101200, 9.000
TSTM02, [%], 200909091700, 200909101400, 13.000
TSTM02, [%], 200909091700, 200909101600, 20.000
TSTM02, [%], 200909091700, 200909101800, 32.000

http://140.90.90.88/wcs�
http://140.90.90.88/wcs?wsdl�

 134

important information that is contained in this soap response is the "ns2:parameter
name="Identifier" parameter. This will provide ns2:Values parameter indicating what type of data is
available. The “urn” value form this soap response is an important input to the second request.

7. Double click on the "SOAP Request 1" associated with the describeCoverageOption. This will
open a 2-panel GUI interface. The left-hand side of the interface contains the describeCoverage soap
request being sent to our WCS. The right-hand side of the interface contains the soap response from
our WCS server. There is one input field (“ns:Identifier”) that needs to be entered before the soap
request can be submitted.

a. To see the “Convective Probability” Coverage:

• Replace the "?" by the “ns:Identifier” tag with
“urn:fdc:weather.gov:Dataset:ConvectiveProbability-LAMP”.
Once this is in place, click on the green arrow (Submit request to a specified endpoint
URL).

b. To see the “Wind Direction” Coverage:

• Replace the "?" by the “ns:Identifier” tag with
“urn:fdc:weather.gov:Dataset:WindDirection-NDFD-CONUS-1”.
Once this is in place, click on the green arrow (Submit request to a specified endpoint
URL).

c. To see the “Wind Speed” Coverage:

• Replace the "?" by the “ns:Identifier” tag with
“urn:fdc:weather.gov:Dataset:WindSpeed-NDFD-CONUS-1”. Once
this is in place, click on the green arrow (Submit request to a specified endpoint
URL).

d. To see the “Wind Gust” Coverage:

• Replace the "?" by the “ns:Identifier” tag with
“urn:fdc:weather.gov:Dataset:WindGust-NDFD-CONUS-1”. Once
this is in place, click on the green arrow (Submit request to a specified endpoint
URL).

After execution, a describeCoverage soap response will appear in the right-hand pane showing
information about the title of the data, some applicable keywords, the identifier of the data, the
spatial domain (lat/lon boundaries) for the data, what time(s) are available for the data, and what
supported output format is available. The following fields would normally need to be filled in
before a getCoverage soap request can be made (See list below). However, for the purposes of
this demonstration, the actual soap requests will be provided for each Coverage (See 8 below).

1. ns1:Identifier
2. crs

(Please use urn:ogc:def:crs:OGC:2:84)
3. dimensions

 135

(Please use 2)
4. ns1:LowerCorner for Lat/Long

(See available lat/long range specified in describeCoverage soap response
5. ns1:UpperCorner for Lat/Long
6. gml:timeposition

(Please comment this line out. For example: <!--gml:timePosition
frame="#ISO-8601" calendarEraName="?"
indeterminatePosition="?">?</gml:timePosition-->)

7. ns:BeginPosition for start time
(See available options from the describeCoverage soap response)

8. ns:EndPosition for the end time
(See available options from the describeCoverage soap response)

9. FieldSubset ns1:Identifier
(See available option from the describeCoverage soap response)

10. ns:Output for the output format
(Please use application/netcdf4).

1. Double click on the "SOAP Request 1" associated with the getCoverageOption. This will

open a 2-panel GUI interface. The left-hand side of the interface contains the getCoverage
soap request being sent to our WCS. The right-hand side of the interface contains the soap
response from our WCS server. The fields highlighted in bold from above must be populated
in the soap request (left-side pane) and change the time stamps for the request to be a date
copy/pasted from the results of “describeCoverage” before submitting the getCoverage soap
request. For the purposes of this demonstration, re-populated soap requests have been
generated for each Coverage type. Copy and paste this information into the getCoverage
soap request (left-side window pane). Then click the on the green arrow (Submit request to a
specified endpoint URL). An attachment should show up in the soap response (right-side
pane).

2. To export the attachment, click once on the word “Attachments” at the bottom of the soap
response window pane. A panel with “Name”, “Content type”, etc will appear. Below that
line is the netCDF4 file. Click once anywhere on this line. A green tab will appear that allows
for the export of the selected attachment to a file. Click that tab once, and an “Export
Attachment” GUI will appear. Save the file to a desired location. A number of programs can
be used to view the netCDF4 file, including ncview and ncdump.

a. To see the “Convective Probability” Coverage:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns="http://www.opengis.net/wcs/1.1"
xmlns:ns1="http://www.opengis.net/ows/1.1"
xmlns:gml="http://www.opengis.net/gml">
 <soap:Header/>
 <soap:Body>
 <ns:GetCoverage service="WCS" version="1.1.2">

<ns1:Identifier>urn:fdc:weather.gov:Dataset:ConvectiveProbability-
LAMP</ns1:Identifier>
 <ns:DomainSubset>
 <ns1:BoundingBox crs="urn:ogc:def:crs:OGC:2:84"
dimensions="2">
 <ns1:LowerCorner>-125.0 20.6</ns1:LowerCorner>
 <ns1:UpperCorner>-60.0 49.0</ns1:UpperCorner>
 </ns1:BoundingBox>

 136

 <!--Optional:-->
 <ns:TemporalSubset>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--gml:timePosition frame="#ISO-8601" calendarEraName="?"
indeterminatePosition="?">?</gml:timePosition-->
 <ns:TimePeriod>
 <ns:BeginPosition>2009-09-
03T17:00:00.000Z</ns:BeginPosition>
 <ns:EndPosition>2009-09-
03T17:00:00.000Z</ns:EndPosition>
 <!--Optional:-->
 <!--<ns:TimeResolution>?</ns:TimeResolution-->
 </ns:TimePeriod>
 </ns:TemporalSubset>
 </ns:DomainSubset>
 <!--Optional:-->
 <ns:RangeSubset>
 <!--1 or more repetitions:-->
 <ns:FieldSubset>
 <ns1:Identifier>Thunderstorm_probability</ns1:Identifier>
 <!--Optional:-->
 <ns:InterpolationType>?</ns:InterpolationType>
 <!--Zero or more repetitions:-->
 <ns:AxisSubset>
 <ns:Identifier>?</ns:Identifier>
 <!--1 or more repetitions:-->
 <ns:Key>?</ns:Key>
 </ns:AxisSubset>
 </ns:FieldSubset>
 </ns:RangeSubset>
 <ns:Output format="application/netcdf4" store="false">
 <!--Optional:-->
 <ns:GridCRS gml:id="?">
 <!--Optional:-->
 <gml:srsName codeSpace="?">?</gml:srsName>
 <ns:GridBaseCRS>?</ns:GridBaseCRS>
 <!--Optional:-->

<ns:GridType>urn:ogc:def:method:WCS:1.1:2dSimpleGrid</ns:GridType>
 <!--Optional:-->
 <ns:GridOrigin>0 0</ns:GridOrigin>
 <ns:GridOffsets>?</ns:GridOffsets>
 <!--Optional:-->

<ns:GridCS>urn:ogc:def:cs:OGC:0.0:Grid2dSquareCS</ns:GridCS>
 </ns:GridCRS>
 </ns:Output>
 </ns:GetCoverage>
 </soap:Body>
</soap:Envelope>

b. To see the “Wind Direction” Coverage:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns="http://www.opengis.net/wcs/1.1"
xmlns:ns1="http://www.opengis.net/ows/1.1"
xmlns:gml="http://www.opengis.net/gml">
 <soap:Header/>
 <soap:Body>
 <ns:GetCoverage service="WCS" version="1.1.2">
 <ns1:Identifier>urn:fdc:weather.gov:Dataset:WindDirection-NDFD-
CONUS-1</ns1:Identifier>
 <ns:DomainSubset>
 <ns1:BoundingBox crs="urn:ogc:def:crs:OGC:2:84"
dimensions="2">
 <ns1:LowerCorner>-125.0 20.6</ns1:LowerCorner>
 <ns1:UpperCorner>-60.0 49.0</ns1:UpperCorner>
 </ns1:BoundingBox>
 <!--Optional:-->
 <ns:TemporalSubset>
 <!--You have a CHOICE of the next 2 items at this level-->

 137

 <!--gml:timePosition frame="#ISO-8601" calendarEraName="?"
indeterminatePosition="?">?</gml:timePosition-->
 <ns:TimePeriod>
 <ns:BeginPosition>2009-08-
22T21:00:00.000Z</ns:BeginPosition>
 <ns:EndPosition>2009-08-
22T21:00:00.000Z</ns:EndPosition>
 <!--Optional:-->
 <!--<ns:TimeResolution>?</ns:TimeResolution-->
 </ns:TimePeriod>
 </ns:TemporalSubset>
 </ns:DomainSubset>
 <!--Optional:-->
 <ns:RangeSubset>
 <!--1 or more repetitions:-->
 <ns:FieldSubset>

<ns1:Identifier>Wind_direction_from_which_blowing</ns1:Identifier>
 <!--Optional:-->
 <ns:InterpolationType>?</ns:InterpolationType>
 <!--Zero or more repetitions:-->
 <ns:AxisSubset>
 <ns:Identifier>?</ns:Identifier>
 <!--1 or more repetitions:-->
 <ns:Key>?</ns:Key>
 </ns:AxisSubset>
 </ns:FieldSubset>
 </ns:RangeSubset>
 <ns:Output format="application/netcdf4" store="false">
 <!--Optional:-->
 <ns:GridCRS gml:id="?">
 <!--Optional:-->
 <gml:srsName codeSpace="?">?</gml:srsName>
 <ns:GridBaseCRS>?</ns:GridBaseCRS>
 <!--Optional:-->

<ns:GridType>urn:ogc:def:method:WCS:1.1:2dSimpleGrid</ns:GridType>
 <!--Optional:-->
 <ns:GridOrigin>0 0</ns:GridOrigin>
 <ns:GridOffsets>?</ns:GridOffsets>
 <!--Optional:-->

<ns:GridCS>urn:ogc:def:cs:OGC:0.0:Grid2dSquareCS</ns:GridCS>
 </ns:GridCRS>
 </ns:Output>
 </ns:GetCoverage>
 </soap:Body>
</soap:Envelope>

c. To see the “Wind Speed” Coverage:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns="http://www.opengis.net/wcs/1.1"
xmlns:ns1="http://www.opengis.net/ows/1.1"
xmlns:gml="http://www.opengis.net/gml">
 <soap:Header/>
 <soap:Body>
 <ns:GetCoverage service="WCS" version="1.1.2">
 <ns1:Identifier>urn:fdc:weather.gov:Dataset:WindSpeed-NDFD-
CONUS-1</ns1:Identifier>
 <ns:DomainSubset>
 <ns1:BoundingBox crs="urn:ogc:def:crs:OGC:2:84"
dimensions="2">
 <ns1:LowerCorner>-125.0 20.6</ns1:LowerCorner>
 <ns1:UpperCorner>-60.0 49.0</ns1:UpperCorner>
 </ns1:BoundingBox>
 <!--Optional:-->
 <ns:TemporalSubset>
 <!--You have a CHOICE of the next 2 items at this level-->

 138

 <!--gml:timePosition frame="#ISO-8601" calendarEraName="?"
indeterminatePosition="?">?</gml:timePosition-->
 <ns:TimePeriod>
 <ns:BeginPosition>2009-08-
22T21:00:00.000Z</ns:BeginPosition>
 <ns:EndPosition>2009-08-
22T21:00:00.000Z</ns:EndPosition>
 <!--Optional:-->
 <!--<ns:TimeResolution>?</ns:TimeResolution-->
 </ns:TimePeriod>
 </ns:TemporalSubset>
 </ns:DomainSubset>
 <!--Optional:-->
 <ns:RangeSubset>
 <!--1 or more repetitions:-->
 <ns:FieldSubset>
 <ns1:Identifier>Wind_speed</ns1:Identifier>
 <!--Optional:-->
 <ns:InterpolationType>?</ns:InterpolationType>
 <!--Zero or more repetitions:-->
 <ns:AxisSubset>
 <ns:Identifier>?</ns:Identifier>
 <!--1 or more repetitions:-->
 <ns:Key>?</ns:Key>
 </ns:AxisSubset>
 </ns:FieldSubset>
 </ns:RangeSubset>
 <ns:Output format="application/netcdf4" store="false">
 <!--Optional:-->
 <ns:GridCRS gml:id="?">
 <!--Optional:-->
 <gml:srsName codeSpace="?">?</gml:srsName>
 <ns:GridBaseCRS>?</ns:GridBaseCRS>
 <!--Optional:-->

<ns:GridType>urn:ogc:def:method:WCS:1.1:2dSimpleGrid</ns:GridType>
 <!--Optional:-->
 <ns:GridOrigin>0 0</ns:GridOrigin>
 <ns:GridOffsets>?</ns:GridOffsets>
 <!--Optional:-->

<ns:GridCS>urn:ogc:def:cs:OGC:0.0:Grid2dSquareCS</ns:GridCS>
 </ns:GridCRS>
 </ns:Output>
 </ns:GetCoverage>
 </soap:Body>
</soap:Envelope>

d. To see the “Wind Gust” Coverage:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:ns="http://www.opengis.net/wcs/1.1"
xmlns:ns1="http://www.opengis.net/ows/1.1"
xmlns:gml="http://www.opengis.net/gml">
 <soap:Header/>
 <soap:Body>
 <ns:GetCoverage service="WCS" version="1.1.2">
 <ns1:Identifier>urn:fdc:weather.gov:Dataset:WindGust-NDFD-CONUS-
1</ns1:Identifier>
 <ns:DomainSubset>
 <ns1:BoundingBox crs="urn:ogc:def:crs:OGC:2:84"
dimensions="2">
 <ns1:LowerCorner>-125.0 20.6</ns1:LowerCorner>
 <ns1:UpperCorner>-60.0 49.0</ns1:UpperCorner>
 </ns1:BoundingBox>
 <!--Optional:-->
 <ns:TemporalSubset>
 <!--You have a CHOICE of the next 2 items at this level-->
 <!--gml:timePosition frame="#ISO-8601" calendarEraName="?"
indeterminatePosition="?">?</gml:timePosition-->

 139

 <ns:TimePeriod>
 <ns:BeginPosition>2009-09-
03T18:00:00.000Z</ns:BeginPosition>
 <ns:EndPosition>2009-09-
03T18:00:00.000Z</ns:EndPosition>
 <!--Optional:-->
 <!--<ns:TimeResolution>?</ns:TimeResolution-->
 </ns:TimePeriod>
 </ns:TemporalSubset>
 </ns:DomainSubset>
 <!--Optional:-->
 <ns:RangeSubset>
 <!--1 or more repetitions:-->
 <ns:FieldSubset>
 <ns1:Identifier>Wind_speed_gust</ns1:Identifier>
 <!--Optional:-->
 <ns:InterpolationType>?</ns:InterpolationType>
 <!--Zero or more repetitions:-->
 <ns:AxisSubset>
 <ns:Identifier>?</ns:Identifier>
 <!--1 or more repetitions:-->
 <ns:Key>?</ns:Key>
 </ns:AxisSubset>
 </ns:FieldSubset>
 </ns:RangeSubset>
 <ns:Output format="application/netcdf4" store="false">
 <!--Optional:-->
 <ns:GridCRS gml:id="?">
 <!--Optional:-->
 <gml:srsName codeSpace="?">?</gml:srsName>
 <ns:GridBaseCRS>?</ns:GridBaseCRS>
 <!--Optional:-->

<ns:GridType>urn:ogc:def:method:WCS:1.1:2dSimpleGrid</ns:GridType>
 <!--Optional:-->
 <ns:GridOrigin>0 0</ns:GridOrigin>
 <ns:GridOffsets>?</ns:GridOffsets>
 <!--Optional:-->

<ns:GridCS>urn:ogc:def:cs:OGC:0.0:Grid2dSquareCS</ns:GridCS>
 </ns:GridCRS>
 </ns:Output>
 </ns:GetCoverage>
 </soap:Body>
</soap:Envelope>

3. Please cut and paste this information into the soap request by referring to the information
returned in the describeCoverage soap response. Once all the fields described above have
been entered (as well as valid datetimes), then click on the green arrow (Submit request to a
specified endpoint URL). After execution, a getCoverage soap response will appear in the
right-hand pane showing whether or not there was a successful request. If successful, there
should be an attachment containing a netCDF4 file. Look for the word "Attachments"
towards to lower left-hand corner of the getCoverage soap response (right-side pane). Click
once on the word "Attachments". A panel with "Name", "Content type", etc will appear.
Below that line is the netCDF4 file. Click once anywhere on this line. A green tab will
appear that allows for the export of the selected attachment to a file. Click that tab once, and
an "Export Attachment" GUI will appear. Save the file to a desired location. A number of
programs can be used to view the netCDF4 file, including ncview and ncdump. (toolUI was
used during the dry runs)

 140

7. Implementation Verification – Flight Hazard Service and High Level
Service Capability

A web service composed by the orchestration of several atomic web services has been developed to
demonstrate the retrieval of vertical and horizontal views of hazards along a trajectory. This test
demonstrates 4D trajectory/corridor capabilities and a higher-level service capability for coverage/gridded
2D/3D data. The addition of non-gridded/feature data is planned for future releases. The main goals of
this development are:

1. Demonstrate trajectory-based retrieval

• Validation of corridor specification

• Retrieval of multiple variables of interest

• Baseline quantification of system performance

2. Demonstrate the composition of fine-grained services

• Filter data within the cube

• Allow re-use by other clients

 • Support further composition

 • Serve as an initial model for DSS services

The test cases in this chapter cover these run-time usage scenarios.

7.1 Test Environment and Setup

7.1.1 Client Software

The tests defined in this document use the following client software:

• A Web Browser UI

The Flight Hazard Tool UI is intended to demonstrate how a trajectory-based planning tool might
get its data from the 4D Wx Data Cube. The tool runs in a web browser. Rather than retrieve
entire raw datasets to display, it retrieves information about hazards along a proposed flight
trajectory. The output information is a dynamically generated depiction of hazard boundaries in
space and time by a server-side process, which rely on the data provided by a higher-level Flight
Hazard Service.

 141

• SoapUI 2.5.1

The high-level Flight Hazard web service and the services part of the orchestration/composition
are exposed and can be accessed by any client using the SOAP interface. We will run several
soap requests to test service accessibility and atomicity.

• ToolsUI 4.0

We will use the Netcdf tool to inspect some of the derived data previously created from running
the tests on the SoapUI.

7.1.2 Composite Services Setup

The FY ’09 Test Plan defines the following Flight Hazards service composition setup:

1. Uses MIT “NNEW Federation 1“ Registry.

2. Targets NCAR Datasets: CEIL, CIP-20, CIPSEV-20, FLTCAT, GTG2, VIS, NCWD served by
NCAR WCS.

3. Threshold Decision Service. Identifies threshold values for each hazard variable by running
aircraft and pilot characteristics through a rules engine. Deployed at NCAR.

4. Data Thresholding Service. Reduces continuously variable values of hazards into discrete bins
according to the thresholds provided. Results in a dataset with a small number of separate values.
Deployed at NCAR.

5. Corridor Image Generator Service. A service to portray vertical and horizontal views.

 142

7.2 Verification of 4D Trajectory Capabilities and Flight Hazard Service Composition
with Flight Hazard Tool Web UI

These tests demonstrate the trajectory capabilities of WCS, the validation of the trajectory specification
and the atomic services composition into a higher level of Decision Support System. We are going to run
two tests, an historic use case that targets archived data so we are able to reproduce exactly the expected
results for this test plan and one case that will be driven by the tester’s choices to test the tool targeting
forecast data.

7.2.1 Weather Hazards Along a Flight Trajectory - Archived Use Case

This test demonstrates the derivation of weather hazards from several data coverage datasets given a
flight plan containing a trajectory created with the user provided inputs targeting archived data.

1. In a web browser, launch the Flight Wx Hazard Tool:

http://weather.aero/nnew/fy09/fwht

Use “nnew” and “TBO4all” for the login credentials.

Figure 7.1 Flight Wx Hazard Tool User Interface

2. Click on “Flight Settings” label to verify flight settings:

http://weather.aero/nnew/fy09/fwht�

 143

Figure 7.2 Flight Settings Form

3. Set “Aircraft type” to “Turboprop”.

4. Set “Departure date” to “09/09/2009 17:00”.

5. Click again on “Flight Settings” label to collapse the form and click on the “Route” label to
define a route.

6. Type the following waypoints into the text field:

Baltimore - click enter to add first displayed option “KBWI”
Hinch Mountain - click enter to add first displayed option “HCH”
OKW - click enter to add first displayed option “OKW”
Southeast Texas Rgnl - click enter to add first displayed option “KBPT”

 144

Figure 7.3 Route Form

7. Click the “Identify Hazards” button at the bottom. The tool submits a request to the Flight
Hazard Services and returns a response in about 8 to 10 seconds. The response time is higher for
archived cases than for forecast cases due to the higher amount of available data.

Figure 7.4 Hazards View

 145

The tool displays a summary of the user Flight Plan on the left and displays the derived weather
hazards along the trajectory in the map and in a profile view of the trajectory at the bottom. Also
a legend with the colors used to identify different types the hazards is generated on the right.

8. Double click twice on the map over the middle of the flight trajectory to zoon in to identify
hazards on the corridor. Click also on the arrow on top of the summary to expand the map over
the left.

Figure 7.5 Weather Hazards Map and Profile View

We can identify Icing Severity, Super Large Drop Icing and Convection hazards along the corridor
close to HCH and OKW waypoints.

9. Click on map and pan to the right until the landing KBPT airport (red icon) shows in the map.
Double click twice to zoom in to identify hazards.

 146

Figure 7.6 Weather Hazards Map and Profile View

We can identify Icing Severity, Icing Probability and Super Large Drop Icing and hazards along the
corridor close to KBPT landing airport.

10. Enable/disable hazard layers clicking on the check boxes on the layers/legends panel to identify
single types of hazards.

 Figure 7.7 Icing Severity and Probability Hazards Figure 7.8 Icing SLD Hazards

 147

Figure 7.9 Convection Hazards

11. Turn on all the hazard layers. Click on the “offsets” button under the map navigation controls.
Offsets refer to deviations from the centerline of the flight corridor. Adjusting these values allows
you to look around within the corridor. Type “1500” feet on the Z-Offset input box and click
somewhere on the interface so the change takes place. This triggers a request to display a
horizontal cross section of the corridor 1500 feet over the centerline of the trajectory. We can
observe that at this altitude for the same trajectory there is no icing probability hazard displayed.

 148

Figure 7.10 Z Offset

12. Spin down on the Y-Offset (profile) to “-15” miles. This triggers a request to display a vertical
cross section of the corridor -15 miles over the centerline of the trajectory. We can observe on the
profile view there are new Icing severity and probability hazards displayed on the right side
where the plane starts it’s descending.

Figure 7.11 Y Offset

13. Click the arrow at the top-left of the tool to get back to the summary view. Click “Make
Adjustments” to redefine some of the flight plan parameters.

 149

14. Click on “Flight Settings”. Select “Piston” and check that Flight Type is set to “VFR” instead

15. Click the “Identify Hazards” button

16. Using map navigation controls zoom out

Figure 7.12 Modified Hazards

We can observe that a total different set of hazards is displayed for this flight plan that contains
the same trajectory but different aircraft and flight characteristics. We can observe several MVFR
and IFR flight conditions along the trajectory.

7.2.2 Weather Hazards Along a Flight Trajectory – “Near Future” Use Case

This test demonstrates the derivation of weather hazards from several data coverage datasets given a
flight plan containing a trajectory created with the user provided inputs. This test will target mostly
forecast data so the results cannot be predictable in advance.

1. Click on “Flight Settings.”

2. Select an “Aircraft type.” Feel free to change any other parameter also.

3. Set “Departure date” to a date in the future no further than 4 hours from now. Most of the
datasets does not go more than 12 hours in the future.

 150

4. Click again on the “Flight Settings” label to collapse the form and click on the “Route” label to
define a Route.

5. Define a route typing the desired waypoints on the input text.

6. Click the “Identify Hazards” button at the bottom.

7. Identify hazards visually on the map and profile view. Zoom in on map if it’s necessary.

7.3 Verification of Flight Hazard Composition Service and Composite Services with
SoapUI

SoapUI is an application that provides viewing and invocation of SOAP XML requests towards web
services, as well as viewing of SOAP XML web services responses. Using these capabilities and some
additional ones that allow the transfer and creation of properties between different services responses and
requests we created test suits and test cases for the Flight Hazards Service and the services part of the
composition.

The Flight Hazard web service itself is an orchestrator service which main function is to orchestrate
several atomic services building service requests and adapting service responses and combine them into
new service requests for other services. The Flight Hazard Service orchestrates the MIT’s ebXML
Registry, WCS, a Thresholds Decision Service and a Data Thresholding Service. We exposed all this
service through a WSDL interface including the Flight Hazards Service.

In the test cases created using SoapUI we want to test and demonstrate each individual service, the
composition/orchestration of this services and the Flight Hazards Service as a black box.

1. Launch SoapUI 2.5.1 on a Linux machine.

Note: we will be using version 2.5.1 of the tool since some features required for some of the tests
are broken in version 3.0 and 3.0.1 of the tool.

2. Click “File” → “Import Remote Project” and type:

http://weather.aero/nnew/fy09/fwht/FlightHazardsService_Composite-soapui-
project.xml

Click “OK” and then type “nnew” and “TBO4all” for the credentials.

Note: If, for some reason, this does not work, save the file locally and import the project from
the file system a pop up window will appear, warning about a missing attachment. This is an
expected message. Click “OK” and “Yes” to the “There are unresolved paths, continue?”
dialog.

7.3.1 Atomic Services Test Steps

We will test first each service part of the orchestration individually submitting a soap request and doing
some assertions on the response. We setup the services requests with values to simulate the same historic
use case we saw from the Flight Hazard Tool.

http://weather.aero/nnew/fy09/fwht/FlightHazardsService_Composite-soapui-project.xml�
http://weather.aero/nnew/fy09/fwht/FlightHazardsService_Composite-soapui-project.xml�

 151

1. Expand “FlightHazardsService_Composite” project on the “Navigator” panel if it is not
expanded already.

2. Expand “FlightHazard Composition Services TestSuite” node and double click on
“Composition TestCase”.

Figure 7.13 Flight Hazard Service Test Suite

3. Expand the new opened window “Composition TestCase” until all the “Tests Steps” are visible.
NOTE: ALL OF THE STEPS IN THE TEST SUITE MUST BE RUN INDIVIDUALLY.
There is a bug in SoapUI which will cause it to hang if you attempt to run the entire suite at once.

4. Double click on “HTTP Flight Hazards JSON Request to XML Request”.

This test step is a JSON request equivalent to the one the Flight Hazard Tool UI generates. It
sends the JSON request to a proxy service that transforms it into a valid XML request for the
Flight Hazard Service

 152

5. Click the “submit request” icon on the left-top corner. If all assertions on the received response
are passed a green icon is displayed on the top-left corner of the window.

Figure 7.14 Successful Test

6. “Close” the window prior to running the next test.

7. Double click on “Thresholds Decision Request.”

This test sends the thresholds request for a hazard of interest in this case for Icing Severity and for
aircraft type Turboprop and VFR flight rule and gets back a response that contains a set of
thresholds.

8. Click the “submit request” icon on the left-top corner. If all assertions on the received response
are passed a green icon is displayed on the top-left corner of the window. Click on the
“Assertions” button/label to display the passed assertions.

 153

Figure 7.15 Passed Assertions

9. “Close” the window prior to running the next test.

10. Double click on “Registry ExecuteQuery Request.”

This test sends a registry query request to the MIT registry to get an endpoint to get the data for
the hazard of interest.

11. Click the “submit request” icon on the left-top corner. If all assertions on the received response
are passed a green icon is displayed on the top-left corner of the window. Click on the
“Assertions” button/label to display the passed assertions.

 154

Figure 7.16 Assertions

12. “Close” the window prior to running the next test.

13. Double click on “GetCoverageOperation WCS Request.”

 This test sends a predefined WCS corridor request to endpoint returned by the registry. In the real
implementation, the request is created from the Flight Hazards request provided data, concretely
from the ERAM flight plan and trajectory waypoints to create a WCS corridor request.

14. Click the “submit request” icon on the left-top corner. If all assertions on the received response
are passed a green icon is displayed on the top-left corner of the window. Click on the
“Assertions” button/label to display the passed assertions.

 155

Figure 7.17 GetCoverage Test

15. “Close” the window prior to running the next test.

16. Double click on “Corridor Thresholding Request.”

 This test sends a predefined Data Thresholding Service request with no corridor data attached
initially. In the FHS implementation the thresholds values are set from the previous Thresholds
Decision Service response.

17. Click the “submit request” icon on the left-top corner. The test step request fails as it is
expected. Click on “Raw” tab on the request pane. Notice that the request provided does not have
netcdf corridor data attached. The file provided for attachment does not exist on the local file
system yet, so the service returns an invalid response in terms of schema (since it is missing the
location of the thresholded corridor data).

 156

Figure 7.18 Failed Test

18. To run the test successfully, double click on the “Groovy Script - Save attachment/ Upload
attachment” test step above the “Corridor Thresholding Request.”

 This test script step saves the attachment containing the corridor data from the previous WCS
response and attaches it to the Thresholding Service request.

19. Click the “Run script” icon on the left-top corner. Check the logs after running the script in green
at the bottom of the window.

 157

Figure 7.19 Groovy Script

20. Click the “submit request” icon on the left-top corner of the “Corridor Thresholding Request”
window again. This time we can see the netcdf corridor data attached on the “Raw” tab of the
request panel. The response now contains the location for the corridor thresholded data and the
thresholds applied to it. If all assertions on the received response are passed a green icon is
displayed on the top-left corner of the window. Click on the “Assertions” button/label to display
the passed assertions.

Figure 7.20 Successful Test

 158

21. “Close” the window prior to running the next test.

22. Double click on the “Property Transfer - Step10/Step11” test step. Click on green icon “Run
selected property transfer”.

This step sets the URL location of the thresholded corridor data returned by the Thresholding
Service response into the DATA_URL parameter for the Image Generator Service.

23. Double click on “HTTP Image Generator Request.”

 This test sends a request to the corridor hazards image generator with the URL where the
thresholded data is stored as a query parameter. It simulates the request sent by the FHT user
interface send after receiving the response from FHS to the image generator service. The image
generator returns a PNG image that depicts the weather hazards. Soap UI just displays the binary
content of the PNG image.

http://weather.aero/nnew/fy09/fht/imageGen/gen?DATA_URL=http://weather.aero/nnew/fy09/fht
/hazards/data/thresholded_CIPSEV_7fea9239-483d-45ac-a3b1-
0db9862ba7d5.nc&DATA_VARIABLE=CIPSEV_MSK&FORMAT=image/png&YOFFSET=0&
ZOFFSET=0&CRS=EPSG:4326&THRESHOLD0COLOR=transparent&THRESHOLD1COLO
R=996699&THRESHOLD2COLOR=330033&OPACITY=0.5&LAYERS=1&SERVICE=WMS
&VERSION=1.1.1&REQUEST=GetMap&STYLES=&EXCEPTIONS=application/vnd.ogc.se_i
nimage&SRS=EPSG:4326&BBOX=-83.823011148289,33.513190540344,-
73.514802944663,42.720171597872&WIDTH=571&HEIGHT=510

 159

24. Click the “submit request” icon on the left-top corner. If all assertions on the received response
are passed a green icon is displayed on the top-left corner of the window. Click on the
“Assertions” button/label to display the passed assertions. Click on the “Raw” tab on the
response panel to see detailed info about the response.

25. “Close” the window prior to running the next test.

7.3.2 Flight Hazard Service Composition Test Case

This test demonstrates the composition of the atomic services to achieve a higher-level service through
composition and orchestration. The test case tries to simulate the FHS implementation for one single
hazard of interest, Icing Severity.

1. On the “Composition TestCase” window click on the icon on the top-left corner to run the test
case. The test case runs the requests tested previously in sequence order but uses the transfer steps
(XPATH/XQUERY and Groovy scripts) in between to set properties on the request from previous
responses. The final result on the last request of the orchestration test case is a PNG image
representing some of the icing hazards along the flight trajectory given a JSON representation of
a flight plan and the hazard of interest.

 160

Note that you should save this file path for use in 7.4 step 3

Compare the Icing Severity Hazards displayed from the image generator service with the same
case requested from the Flight Hazard Tool User Interface.

Figure 7.22 Image Generation Service Output

Figure 7.21 Save Data

 161

Figure 7.23 Flight Hazard Tool Output

The test case also pops up a dialog box after the Thresholding Service request has ended. Save the
Thresholded data from the URL embedded in the xml response to the local file system. It will be
used in the next verification ToolsUI test to verify the thresholded corridor data contents.

The “Composition TestCase” window should look like the image below after running the test
case.

 162

Figure 7.24 Composition Test Case

 “Close” the window prior to running the next test.

 163

7.3.3 Flight Hazards Service – Black Box Test Case

This test case runs black box Flight Hazard Requests. The test case is composed by two tests. The first
test runs a JSON Flight Hazard Request for multiple hazard of interest and the second one runs an XML
Flight Hazard Request for multiple hazards of interest.

1. Double click on “Flight Hazards Service - Black Box TestCase” under “FlightHazard
Composition Services TestSuite” on the “Navigator” panel.

2. Click on the icon on the top-left corner to run the test case.

Figure 7.25 Black Box Test Case

3. Double click on the “Step 1” and “Step 2” links at the bottom of the window to check the
Request Message and Response message for each test.

 164

7.4 Verification Derived Data with ToolsUI

1. Launch ToolsUI from

 http://www.unidata.ucar.edu/software/netcdf-java/v4.0/webstart/netCDFtools.jnlp

2. Select the “NCDump” tab.

3. In the “command” input box type the path of the previous downloaded corridor thresholded file
and press Enter.

Reminder: This file should be located in the /tmp directory if it was not changed.

http://www.unidata.ucar.edu/software/netcdf-java/v4.0/webstart/netCDFtools.jnlp�

 165

Figure 7.26 ToolsUI Verification

The thresholded corridor dataset contains the original corridor data (CIPSEV) and the thresholded
data (CIPSEV_MSK) . For this dataset the dimensions are 93 sample points along the flight
trajectory on the X dimension, 25 on the Y dimension of the corridor (width) and 13 on the Z
dimension of the corridor (height)

4. Add “-v CIPSEV” to the command after the dataset filename and press Enter to dump the
CIPSEV variable containing the original corridor data.

 166

Figure 7.27 Original Data

5. Add “-v CIPSEV_MSK” to the command after the dataset filename and press Enter to dump
CIPSEV_MSK variable containing the thresholded corridor data.

 167

Figure 7.28 Thresholded Data

 168

8. Ontology Alignment Tool

This section demonstrates the Ontology Alignment Tool.

8.1 Test Environment and Setup

8.1.1 Ontology Alignment UI

The Ontology Alignment UI can be downloaded from wxforge using SVN. The command to download
the tool is:

svn checkout
http://wxforge.wx.ll.mit.edu/svn/ontologies/alignment_tools/trunk
alignment_tools

The remainder of this section will describe the installation as explained in the Ontology Alignment UI’s
installation.txt file.

Once the dependencies have been installed and the source downloaded, the UI can be installed. The
“install” shell script in the UI’s home directory uses maven to install dependencies in the local repository
and compile the source. If not installed, type the following command from the $UI_HOME directory (the
directory to which the tool was downloaded):

./install

Then, to run the UI, type the following command also from the $UI_HOME directory:

./ontology_gui

The installation can be tested with the NNEW weather ontology and the Climate and Forecast (CF)
ontology by loading these two ontologies—found in the $UI_HOME/src/main/resources directory—as
described in section 7.1.2.

8.2 Loading Ontology

To begin using the UI, first load a source and target ontology. Begin by clicking on the "Ontologies"
menu item in the upper left-hand corner of the UI. Select "Load Ontology..." and navigate to either the
sample ontologies in the $UI_HOME/src/main/resources directory, the ontologies downloaded from
wxforge, or any other valid .owl file. Select the .owl file that you would like to load and click the "Open"
button. Then, back on the main UI window, click the "Open As Source" button. Repeat the same process,
this time selecting another ontology and clicking "Open as Target." (Note: You can open the same
ontology as both the source and the target if desired.)

http://wxforge.wx.ll.mit.edu/svn/ontologies/alignment_tools/trunk�

 169

Figure 8.1 Ontology Alignment UI: Load ontology

At this point, two ontologies will be loaded side-by-side into the panes, the source on the left and the
target on the right. You can expand the hierarchies in the tree to see more about the tuples each class has;
the child node in the hierarchy shows the subclass restriction on the class.

 170

Figure 8.2 Ontology Alignment UI - Expand tuple hierarchies

From here, you can either use a semi-automatic alignment algorithm to detect matches between the
ontologies or align them manually, which will be described in the following sections.

8.3 Manual Alignment of Ontologies

First click the “Edit Mapping” button to enter editing mode. (Note: In this mode, you will not longer be
able to expand or contract the hierarchies in the tree.) To create a match, click and release on a term in
either the source or the target ontology and click and release on its match in the other ontology. This will
draw a line between the two. To change the weight—the measure of semantic relatedness between the
two terms—right click on the line and selected “Change weight…” Enter a new weight between 1.0 and
0.0 in the dialogue box that appears. The line will then change color to reflect the updated weight.

 171

Figure 8.3 Ontology Alignment UI - Create matches and edit weights

Lines can be deleted by right-clicking on the line and selecting “Remove Line.”

After you have finished creating matches, you can save the alignment by clicking the “Save As” button
under the “Mappings” section of the UI. Choose a name for the alignment file and click “Save.”

8.4 Semi-Automated Alignment of Ontologies

To run an algorithm on the two ontologies for semi-automatic alignment, navigate to the "Algorithms"
menu. Select the algorithm from the menu that you would like to use. You can edit the configuration of
the algorithm by clicking the “Configure” button. When you have finished the configuration, click
"Run.”

 172

Figure 8.4 Ontology Alignment UI - Select alignment algorithm

Figure 8.5 Ontology Alignment UI - Configure algorithm

After the algorithm finishes running, the results from the alignment algorithm will appear on the screen as
matches—lines of varied weight between semantically similar concepts. These matches can be edited as
described above using the manual edit mode. These alignments will be automatically saved to the
filename you ascribe them the “Alignment file path” box in the configuration screen and will show up in
the “Mappings” box on the main screen of the UI.

 173

Figure 8.6 Ontology Alignment UI - Run alignment algorithm

8.5 Loading an Existing Alignment

Pre-existing or previously saved alignments can be loaded into the UI for viewing or editing. First, load
the two ontologies to which the alignment pertains. Then, under the “Ontologies” menu, click “Load
Mapping…” Navigate to the alignment file between the two ontologies, select it, and click “Open.”
Then, click on the “Open” button under the “Mappings” section of the main UI screen. The matches will
appear as lines between the two ontologies.

 174

Figure 8.7 Ontology Alignment UI: Load mapping (Step 1)

Figure 8.8 Ontology Alignment UI: Load mapping (Step 2)

 175

Figure 8.9 Ontology Alignment UI: Load mapping (Step 3)

 176

9. References

JPDO Weather Functional Requirements Team. “Four Dimensional Weather Functional Requirements for
NextGen Air Traffic Management” Joint Planning and Development Office. Jan 18, 2008
http://www.jpdo.gov/newsArticle.asp?id=97

NNEW Development Team. “NextGen Network-Enabled Weather Use Cases” May 20, 2008

http://wiki.ucar.edu/download/attachments/17760853/NNEW-UseCases-v3.doc?version=3

http://www.jpdo.gov/newsArticle.asp?id=97�

	1. Overview
	2. Test Requirements
	2.1 System Dependencies
	2.2 Demonstration Applications

	3. Implementation Verification - Registry / Repository
	3.1 Test Environment and Setup
	3.1.1 Client Software
	3.1.2 Registry and Federation Setup
	3.1.3 Initial Data Setup
	3.1.4 Launching the Registry Administration UI version 4.4
	3.1.5 Launching the Registry Administration UI version 4.5-SNAPSHOT

	3.2 Discovery of Dataset by Weather Phenomenon Type
	3.2.1 Dataset Discovery - Unfiltered Local Search
	3.2.2 Dataset Discovery - Unfiltered Federated Search
	3.2.3 Dataset Discovery - Local Search Filtered By Dataset Field
	3.2.4 Dataset Discovery - Federated Search Filtered By Dataset Field
	3.2.5 Dataset Discovery - Semantic Filtered Search
	3.2.6 Dataset Discovery – REST Search Filtered By Dataset Field

	3.3 Discovery of Datasets by Weather Cube Domain Classification
	3.3.1 Viewing an Existing Taxonomy
	3.3.2 Dataset Discovery - Local Search Filtered By Any Weather Cube Domain
	3.3.3 Dataset Discovery - Local Search Filtered By “Unrestricted” Weather Cube Domain

	3.4 Discovery of Services Instances
	3.4.1 Service Discovery - Unfiltered Local Search
	3.4.2 Service Discovery - Unfiltered Federated Search
	3.4.3 Service Discovery - Local Search Filtered By Service Type
	3.4.4 Service Discovery - Federated Search Filtered By Service Type
	3.4.5 Service Endpoint Retrieval
	3.4.6 Viewing Datasets Related to a Service

	3.5 Creation of an Experimental Weather Cube Taxonomy
	3.6 Publication of an Experimental Data Set and Accompanying Experimental Data Access Service
	3.6.1 Publish Dataset
	3.6.2 Publish Service Instance

	3.7 Fault Tolerance Support in Registry Client API

	4. Implementation Verification – Web Coverage Service Reference Implementation (WCSRI)
	4.1 Test Environment and Setup
	4.1.1 Dependency Installations

	4.2 WCSRI Administration
	4.2.1 Services Metadata
	4.2.2 Configuring a New Coverage
	4.2.3 Starting Fuse/ServiceMix

	4.3 WSDL Verification
	4.4 Verification using Maven and Black Box Testing
	4.5 Verification using SoapUI GUI and ToolsUI
	4.5.1 Starting SoapUI and Configuring the WCSRI Endpoint
	4.5.2 Executing the Black Box Test Suite
	4.5.3 Executing GetCapabilities
	4.5.4 Executing DescribeCoverage
	4.5.5 Executing GetCoverage for a Volume
	4.5.6 Visualizing GetCoverage Volume Results
	4.5.7 Executing GetCoverage for a Corridor
	4.5.8 Visualizing GetCoverage Corridor Results

	4.6 Verification with NNEW FY09 Integrated Java Application

	5. Implementation Verification – Web Feature Service Reference Implementation (WFSRI)
	5.1 Test Environment and Setup
	5.1.1 Administration Client
	5.1.2 Publish Clients
	Generic Client
	Secure Publish Client

	5.1.3 Retrieval Clients
	Google Earth Subscription Client

	5.1.4 CIWS Display

	5.2 Register New Producer Using the WFSRI Administrator
	5.3 Create Feature Table
	5.4 Register Feature Type Using the WFSRI Administrator
	5.5 Transaction Insert
	5.5.1 Using the Generic Client
	5.5.2 Using the ATOM-WFS Bridge

	5.6 GetCapabilities Using the Generic Client
	5.7 DescribeFeatureType Using the Generic Client
	5.8 GetFeature Request/Response
	5.8.1 Unfiltered Access
	5.8.2 Spatial Subsetting
	5.8.3 Temporal Subsetting

	5.9 GetFeature Subscription Using Google Earth Subscription Client
	5.9.1 Unfiltered Subscription
	5.9.2 Spatial Filtering Subscription

	5.10 Security
	5.10.1 Verification of Unauthorized Access
	5.10.2 Verification of Authorized Access

	5.11 Client-Side Service Adaptor – CIWS Display
	5.11.1 Precip Product

	5.12 Winter Precip Product
	5.13 Echo Tops Product
	5.14 Lightning Product
	5.15 AIXM Overlays

	6. NWS Data discovery and access
	6.1 Introduction
	6.2 Test Environment and Setup
	6.3 Discovery of NDFD/NDGD SOAP Service
	SOAP Query of NDFD/NDGD Data
	6.5 Web Coverage Service Query of NDFD/NDGD Data

	7. Implementation Verification – Flight Hazard Service and High Level Service Capability
	7.1 Test Environment and Setup
	7.1.1 Client Software
	7.1.2 Composite Services Setup

	7.2 Verification of 4D Trajectory Capabilities and Flight Hazard Service Composition with Flight Hazard Tool Web UI
	7.2.1 Weather Hazards Along a Flight Trajectory - Archived Use Case
	7.2.2 Weather Hazards Along a Flight Trajectory – “Near Future” Use Case

	7.3 Verification of Flight Hazard Composition Service and Composite Services with SoapUI
	7.3.1 Atomic Services Test Steps
	7.3.2 Flight Hazard Service Composition Test Case
	7.3.3 Flight Hazards Service – Black Box Test Case

	7.4 Verification Derived Data with ToolsUI

	8. Ontology Alignment Tool
	8.1 Test Environment and Setup
	8.1.1 Ontology Alignment UI

	8.2 Loading Ontology
	8.3 Manual Alignment of Ontologies
	8.4 Semi-Automated Alignment of Ontologies
	8.5 Loading an Existing Alignment

	9. References

