Integrating Remote Sensing and Meteorological Technologies to Improve Fire Weather Research

Dave Peterson

University of Nebraska (Lincoln)

Acknowledgements

Dr. Jun Wang, University of Nebraska (Lincoln)
Dr. Charles Ichoku, NASA Goddard Space Flight Center
Dr. Lorraine Remer, NASA Goddard Space Flight Center

ECSA Junior Faculty Forum: 7/14/2010

About Me...

Meteorological Focus

Data Integration

North American Regional Reanalysis (NARR)

- 32 km version of the NCEP 1993 operational ETA model and ETA data assimilation system (EDAS)
- Monthly and 3-hourly data

Lightning Strike Data:

- Environment Canada: Canada Lightning Detection Network (CLDN)
- Bureau of Land Management: Alaska Lightning Detection Network (ALDN)

Satellite Fire Data (MODIS):

• Day overpass fire counts and fire radiative power (FRP) as used in Ichoku et al. (2008)

Years of data: 2000 – 2006

Impact of CAPE and Lightning on Fire Activity

Fine-Scale Observations: 2000 – 2006

Under what conditions do dry and wet lightning occur?

Under what conditions do dry strikes ignite fires?

Joint Probability ("hits and misses" analysis)

Remote Sensing Focus

4 and 11 µm (IR) channels $L_4(T) = P L_4(T_f) + (1-P) L_4(T_b)$ $L_{11}(T) = PL_{11}(T_f) + (1-P) L_{11}(T_b)$ L: IR Planck function P: fire area fraction

Dozier, 1981 (early study)

Varying the fire (target) temp...

Background temp = 285 K

Background and Motivation

Post Dozier Era

- Giglio and Kendall (2000) tested the method for various fire area fractions
- Sensitivity analysis
- The smallest detectable fire area fraction for MODIS is > ~0.003

Motivation

- Improved fire radiative power (FRP) data...
- Currently, MODIS FRP is normalized by the pixel area, not fire area
 - Statistically, how accurate is the method (at the sub-pixel level)?
 - Validation using AMS data

UAV (AMS) Flight Path: 8/16/2007

3.75 μm

10.19 μm

8-16-2007 2133Z AMS (hot spots) and MODIS fire pixels

LOOKUP TABLE SBDART Radiative Transfer Model •Account for atmospheric effects •Vary the potential geometries •Vary the surface temp. (bottom of atmosphere)

MODIS INPUTS

- Geolocation data
- Level 1B radiances
- Fire product background temps.

Performing the Retrieval

Applications for the algorithm output

Estimates of fire (hot spot) sizeImproved emissions estimates

Meteorological...

- •Impacts on fire radiative power (FRP)
- Tool for fire weather forecasting
- Fire index?

4 and 11 µm (IR) channels

 $\begin{array}{l} \mathsf{L}_{4}(\mathsf{T}) \ = \ \mathsf{P} \ \mathsf{L}_{4}(\mathsf{T}_{\mathsf{f}}) \ + \ (1\text{-}\mathsf{P}) \ \ \mathsf{L}_{4}(\mathsf{T}_{\mathsf{b}}) \\ \mathsf{L}_{11}(\mathsf{T}) \ = \ \mathsf{P} \mathsf{L}_{11}(\mathsf{T}_{\mathsf{f}}) \ + \ (1\text{-}\mathsf{P}) \ \mathsf{L}_{11}(\mathsf{T}_{\mathsf{b}}) \end{array}$

L: IR Planck function P: fire area fraction

Validation Via AMS

AMS fire (hot spot) threshold: Brightness temperature at 3.75 μm (band 11) > 500 K

AMS background temperature: Automated process for each MODIS footprint...

THANK YOU!

david.peterson@huskers.unl.edu

Special Thanks

NASA Earth and Space Science Fellowship NASA Earth Science New Investigator Program (Jun Wang) NASA Graduate Student Summer Program Environment Canada Bureau of Land Management (Alaska)

Holdover Fires (Lag Effect)

- Fire may smolder for several days before it's observed...
- When was the fire actually started?

Lightning Efficiency

fires/# lightning strikes

- Dry strike efficiency > wet efficiency
 - There is a wet strike influence...

The scenarios for each fire event can be infinite. An averaging period of 2-3 days appears to be statistically optimal.

Under what conditions do dry and wet lightning occur?

East and West Contrast

Correlation: lightning data and fire counts

Western Domain

Interannual data: Fire counts: 10-34000

- Max dry strikes: 23000
- Positive relationship with lightning (all temporal windows)
- Limited large-scale variability

Eastern Domain

Interannual data:

Fire counts: 5-5100

Max dry strikes: 100000

- Negative relationship with lightning (after 10-15 days)
- Transient environment

Synoptic Pattern (500 hPa)

- Positive height anomalies linked to enhanced fire activity... (Skinner et al., 1999; 2002)
- Persistence of 10 days...
 (Fauria and Johnson, 2006)

