From Emission Inventory To Atmospheric Process Studies: A Case Analysis Of Central American Biomass Burning Aerosols

Jun Wang
University of Nebraska - Lincoln

NCAR Junior Faculty Forum
15 July 2010

Aerosol direct radiative effect

Affects atmospheric lapse rate, atmospheric stability, surface energy budget, photosynthesis, photochemistry, ...

Aerosol Indirect Effect: Interactions with Clouds \& Precipitation

Aerosol

Cloud condensation nuclei (CCN) \downarrow

Cloud droplets

Precipitation

Cloud life time cloud cover

Aitken (Nature, 1880) :
"... the vapor must have some solid or liquid body on which to condense..., if there were no dust, there would be no fogs, no clouds, no mists, and probably no rain"

How do anthropogenic aerosols affect clouds \& precipitation?

Climatology of Central American Smoke Transport

White arrows: 700 mb wind

Central American biomass burning in April - May, 2003

Key question:
How does smoke from Central American fires affect the air quality and weather in southern United States?

GOES visible image, May 9, 2003

Hourly $\mathrm{PM}_{2.5}\left(\mathrm{\mu gm}^{-3}\right)$, Brownsville, TX

(using EPA 1997 standard)

Smoke transport in May 9 - May 12, 2003

12:00 CDT, 10 May $2003 \quad$ Wang et al., 2006, JGR MODIS Observation RAMS-AROMA Smoke

The model uses hourly smoke emission inventory based upon NRL FLAMBE.

A movie of smoke transport

Warm Conveyor Belt (WCB)

A movie of smoke transport

Modeled Smoke, 00:00 CDT, 8 May 2003

Top-down assessment of smoke emission

Comparison with AOT measured at ARM site in Oklahoma

Smoke effect on the surface energy budget and temperature

smoke aerosol optical thickness

Change of downward solar irradiance (DSWI)

Summary of smoke direct radiative effect and feedback (averages over 30 days)

AOT	Δ DSWI $\left(\mathbf{W m}^{-2}\right)$	Δ LTH $\left(\mathbf{W m}^{-2}\right)$	Δ SEN $\left(\mathbf{W m}^{-2}\right)$	Δ PBLH (m)	$\Delta 2 \mathrm{mT}$ $\left({ }^{\circ} \mathrm{C}\right)$	Δ Min2mT $\left({ }^{\circ} \mathrm{C}\right)$	Δ Max2mT $\left({ }^{(} \mathrm{C}\right)$	Δ DRT $\left({ }^{\circ} \mathrm{C}\right)$
0.18	-22.5	-6.2	-6.2	-41.0	-0.28	-0.15	-0.46	-0.31
0.10	-15.8	-7.9	-4.7	-17.2	-0.20	-0.05	-0.31	-0.26

Yucatan

The impact of smoke vertical profile on atmospheric lapse rate

Change of air temperature Δ AirT caused by smoke radiative effect
(averages over 30 days in smoke source region)

The smoke mass vertical profile and the resultant radiative warming/cooling on the atmospheric lapse rate depends on
(a) diurnal variation of boundary layer process
(b) diurnal variation of smoke emission
(max. in afternoon, smaller in morning, and zero in night)

Impact of smoke particles on severe weather in U.S.

1998: lighting flashes in smoky days are enhanced by 50%.
(Lyons et al., Science, 1998)

2003: ‘May 2003 ... 546 tornadoes, the most reported in any month for the US, exceeding the previous ... by 145 ...Two outbreaks ...
on 3-5 May and on 9-11 May, led to 25 F3-F5
tornadoes for the month'. (Levinson \& Waple, 2004)

Climatology of tornado \# in May

Wang et al., Env. Res. Lett., 2009.

Tornado \# anomaly during smoke events in May 2003

Average surface smoke mass during smoke events in May 2003

Proposed conceptual model

(Wang et al., 2009, Environ. Res. Lett.)

Precipitation process is delayed by the large number of small size rain droplets, which catalyzes the ice cloud formation in favorable dynamical conditions. (Rosenfeld 1999, Andreae et al 2004 found this in tropical biomass burning regions)

Observational support in May 3-5

Surface smoke + 700 mb geopotential height

od Moderate
Moderate $\begin{gathered}\text { Unhealthy } \\ \text { Sens. Group }\end{gathered}$

-
Hazardous

Very
Unhealthy

Tornado

Observational support: Smoke \& Cloud interaction on May 9, 2003

LES Modeling Support

Smoky/Clean (\%)
Contour of Ice Mixing Ratio Between Smoky and Clean Conditions (same meteorology)
Simulation with RAMS LES (S. van den Heever @ CSU)

To Atmospheric Process Studies

1) Analyze the smoke emission inventory uncertainty specific to the transport model
2) Make sense the model outputs -- Use as much observation data (in particular, satellite data) as possible to support the model result and hypothesis
3) For cloud-aerosol interaction studies, model outputs and satellite data have to combine together to give a better picture.
4) The smoke impact on weather and climate depends on the meteorology; so far, the models are the only tool (but not necessarily reliable) tool to do the control experiment.
5) Needs inter-disciplinary collaboration
