
DebuggingCode

Contents

Using core files
Monitoring stack and heap usage (memmon)

Using core files

When code crashes on BGL, usually you'll get files, which are plain-text stack traces. You can figure out where your code crashed core.<process id>
by using . You get the addresses from the "function call chain:" section at the end of the core file.addr2line -e <exe> <address>

function call chain:
0x001521f4
0x00152148
0x00170604
0x00100a24
0x00100158
0xfffffffc

Jim Edwards wrote a perl script to automatically spit out a full stack trace for a given binary; it is located at . /contrib/bgl/bin/decode.pl You need
.to compile and link with the '-g' flag to get the proper routine names

Example:

decode.pl test.exe core.0

Monitoring stack and heap usage (memmon)

The memmon library is at , with a README at ./contrib/bgl/lib/libmemmon.rts.a /contrib/bgl/memmon/README

Memmon allows you to trace and view stack and heap usage in your code. These functions are provided:

C Fortran

void memmon_trace_on(int *rank_p)

 void memmon_trace_off(int *rank_p)

void memmon_print_usage()

Compile your code with these flags, depending on the compiler you are using:

xlc/xlf: -qdebug=function_trace
gcc: -finstrument-functions

Link with -L/contrib/bgl/lib -lmemmon.rts

If you just link with memmon and do not add any of the memmon_ function calls, memmon will watch your memory usage and exit if the stack overwrites
the heap.

If you add calls to and in your code, memmon will print memory usage at the entry and exit of each funtion memmon_trace_on memmon_trace_off
surrounded by the and functions.memmon_trace_on off

entering somefunc, min free mem: 508.58MB, stack min: 0x1ffaa728 (somefunc;entry), heap max: 0x00316000
(somefunc;entry)
exiting somefunc, min free mem: 508.58MB, stack min: 0x1ffaa728 (somefunc;entry), heap max: 0x00316000
(somefunc;entry)

Calling anywhere in your code prints out a message like this:memon_print_usage()

Min Free Memory: 508.58MB, stack min: 0x1ffaa728 (somefunc;entry), heap max: 0x00316000 (somefunc;entry)

Note that memmon shows the maximum (not the current) stack and heap usage in the program at the point where the routine is called.

	DebuggingCode

