
Profiling

Contents

MPE
TAU
gprof
mpi_trace - MPI timing wrappers for BGL
IBM's High Performance Computing Toolkit (HPCT)

MPE, HPM, mp_profiler, Peekperf, and Xprofiler are part of the IBM High Performance Computing Toolkit (HPCT) which is described briefly here.

MPE

The latest version of MPE (the) is located in .MPI profiling library from ANL /contrib/bgl/mpe2

To compile your program with MPE, use the following flags:

include
flags

-I /contrib/bgl/mpe2/include

link flags -L /contrib/bgl/mpe2/lib -llmpe -lmpe

MPE Compile Example

mpixlc -g -I /contrib/bgl/mpe2/include -c -o test_mpe.o test_mpe.c
mpixlc -o test_mpe test_mpe.o -g -L /contrib/bgl/mpe2/lib -llmpe -lmpe

TAU

TAU () is a portable profiling and tracing toolkit. Full documentation is .Tuning and Analysis Utilities available here

The TAU compilation scripts and analysis tools are available at . The TAU makefiles which control the instrumentation /contrib/bgl/tau/bin
configuration are available under ./contrib/bgl/tau/lib

The most common method of instrumentation is to use TAU's compiler wrappers to automatically insert calls into the source code. To set this up, the
appropriate Makefile and options must be specified, either in environment variables or as command-line options to the compiler wrappers.

TAU configuration

export = /contrib/bgl/tau/lib/Makefile.tau-bgltimers-mpi-pdtTAU_MAKEFILE
export = '-optVerbose -optNoRevert'TAU_OPTIONS

– or –

tau_f90.sh -tau_makefile=[] tau_options=[] example.F90path and makefile options

Specifying a Makefile controls what is profiled and how.

Available Makefiles

Makefile.tau-bgltimers-mpi-
pdt

MPI profiling, light-weight BG/L timers () recommended

Makefile.tau-mpi-pdt MPI profiling, default timer

Makefile.tau-mpi-pdt-
mpitrace

MPI tracing

Makefile.tau-papi-mpi-pdt MPI profiling with PAPI counters

gprof

Use the flags when compiling linking your code. This produces gprof style files (), which can be used with -p -g and gmon.out.<proc num>
GNU gprof to get a call graph profile and see how long each subroutine is taking in the code Build:

http://www-unix.mcs.anl.gov/perfvis/download/index.htm
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/docs.php

/contrib/bgl/bin/mpxlc -p -g -c ring-hello.c
/contrib/bgl/bin/mpxlc -p -g -o ring-hello ring-hello.o

After running:

voran@fr0101ge:~> ls gmon.out.*
gmon.out.0 gmon.out.1 gmon.out.2 gmon.out.3 gmon.out.4

Run gprof:

gprof ring-hello gmon.out.0

mpi_trace - MPI timing wrappers for BGL

Installed in /contrib/bgl/mpi_trace
Instructions for usage are in /contrib/bgl/mpi_trace/README.mpi_trace

Counter Limitations

The reason the mpi_trace output in mentions that the "MFlops/GFlops values are suspect due to counter limitations", is that bgl_counter_stats.txt
the ppc440 processors in the compute nodes cannot count a full set of FPU events. There are 4 sets of FPU operations that are counted, and only one

: add_subtract, mult_div, trinary (fma), and oedipus (SIMD ops). The FPU events are distributed cyclically set can be counted at a time per processor
among the MPI tasks, like this:

MPI
task

event

0 add_subtract

1 mult_div

2 trinary (fmadd)

3 oedipus
(fpmadd)

4 add_subtract

5 mult_div

6 trinary

...

Each event is averaged among the processors that counted that event, and then the total number of flops is calculated as (add_sub) + (mult_div)
. If you want to count one event on all processors, set the environment variable HPM_GROUP to 0, 1, 2, or 3.+ 2*trinary + 4*oedipus

IBM's High Performance Computing Toolkit (HPCT)

HPM

Located in , brief instructions are at , and the event sets are listed in /contrib/bgl/hpm /contrib/bgl/hpm/doc/README /contrib/bgl/hpm/doc
/event_sets.txt
There are examples that you can copy to your own directory and try (complete with Makefiles) in :/contrib/bgl/hpm/example

test1 is in C
test2 is in fortran

Building test1:

voran@fr0101ge:~> cp /contrib/bgl/hpm/examples/test1 .
voran@fr0101ge:~> cd test1/
voran@fr0101ge:~> make clean default
rm -rf .o *~ *core
rm -rf *.rts
rm -f .viz perfhpm*
/opt/ibmcmp/vac/7.0/bin/blrts_xlc -O3 -qarch=440 -qtune=440 -qhot \
 -I/bgl/BlueLight/ppcfloor/bglsys/include -I/contrib/bgl/hpm/include/ \
 -c -o sanity.rts.o sanity.c
/opt/ibmcmp/vac/7.0/bin/blrts_xlc -O3 -qarch=440 -qtune=440 -qhot \
 -I/bgl/BlueLight/ppcfloor/bglsys/include -I/contrib/bgl/hpm/include/ \
 -o sanity.rts sanity.rts.o -L/bgl/BlueLight/ppcfloor/bglsys/lib \
 -L/contrib/bgl/hpm/lib/ -lbgl_perfctr.rts -lmpich.rts -lmsglayer.rts \
 -ldevices.rts -lrts.rts -ldevices.rts -lrts.rts -lhpm.rts -lm

Running test1, counting event set 6:

cqsub -n 2 -t 10 -e HPM_EVENT_SET=6 sanity.rts

After it runs you will have these files in your directory:

hpm0001_sanity program_00000.viz perfhpm00001.0
hpm0001_sanity program_00001.viz perfhpm00001.1

The perfhpm* files are text files for each process that show the values of the counters for the event set specified by HPM_EVENT_SET, and the .viz files
are for use with Peekperf.

mp_profiler

An MPI profiler and trace tool, installed in . Instructions for usage are at /contrib/bgl/mp_profiler /contrib/bgl/mp_profiler/doc
/README
There are examples in , complete with Makefiles./contrib/bgl/mp_profiler/examples

Peekperf

Installed in /contrib/fe_tools/peekperf

Xprofiler

Installed in /contrib/fe_tools/xprofiler

	Profiling

