sonic tilts

The following plots were made with our Splus function, plot.tilt, that does a linear least squares fit to find the plane of mean flow, and plots the wind vector elevation angle vs azimuth. The planar fit becomes a sine curve on the tilt plot.

See EOL sonic tilt documentation.
From a long term plot of the sonic "diag" value, I chose two periods where the the values were consistently very small. plot.tilt discards 5 minute wind averages when "diag" is above 0.01 , or more than 1% of the data has a non-zero CSAT3 diagnostic value.

For the upper sonics at 16,30 and 43 meters, the minimum wind speed used for the fit was $1.0 \mathrm{~m} / \mathrm{s}$. For the lower sonics at 2 and 7 meters, the minimum wind speed was set to $0.5 \mathrm{~m} / \mathrm{s}$. This didn't have much effect on the fit, however.

Feb 21 to April 4, 2011
2 meters

16 meters
30 meters
43 meters
Aug 5 to Aug 17, 2011

They generally agree on an approximate 5 degree tilt of the sonics relative to the mean flow, except the 9.9 degree tilt for the 7 m sonic in Aug 2011 .
There appears to be some local "disturbance in the force", causing a pinched effect at 2 meters, and to a lesser extent at 7 meters, so that winds straight into the sonic have an additional downward inclination.

There seems to be good agreement at 16 meters and above between the two fits. I suggest using the average of the two values for those levels. Perhaps we need to look at more data for 2 and 7 meters.

```
dpar(start="2011 2 21 00:25",end="2011 4 4 07:26",coords="instrument")
dpar(hts=2)
plot.tilt(flag="diag",ellim=10,spdmin=0.5)
```


