10m wind direction at FAR and FLR

10/8, twh
Compared 2D sonic 10 m wind directions to 3 m sonic in order to orient 2D sonics. Only used winds from $+/-20$ degrees from CSAT u axis and 10 m wind speeds > $3 \mathrm{~m} / \mathrm{s}$ (at FAR);
$2 \mathrm{~m} / \mathrm{s}$ at FLR. Could recalculate this at the end of the project, but likely will not change much. Used function dir.diff in project S directory.
At FAR, selected the median value of Dir. $10 m+230.1$ - dir. $3 m=3.1+/-5.3$ degrees. See attached plot. The 2D sonic is aligned with the boom, so need to add the boom direction, 230.1, minus the offset of 3.1 degrees, or 227 degrees to the 2D wind direction data.
$10 / 30$, I recalculated the offset using data from Sept 30 through 12:00 Oct 30 and set the minimum speed equal to $10 \mathrm{~m} / \mathrm{s}$. The result is Dir. 10 m - dir. 3 m $=0.2+/-0.8$ degree, so need to subtract another 0.2 degrees or add 226.8 degrees to the 2D wind direction data.

$10 / 8$, At FLR, the 2D sonic was pointed nominally north, but must be off by 180 degrees. The median value of Dir. $10 \mathrm{~m}+180-$ dir. $3 \mathrm{~m}=6.6+/-5$ deg. Thus need to add $180-6.6=173.4$ deg to 2D wind direction data.
$10 / 30$, I recalculated the offset using data from Sept 30 through $12: 00$ Oct 30 and set the minimum speed equal to $3 \mathrm{~m} / \mathrm{s}$. The result is Dir. $10 \mathrm{~m}-\mathrm{dir} .3 \mathrm{~m}=$ $-0.6+/-5.4$ degree, so need to add another 0.6 degrees or add 174 degrees to the 2 D wind direction data.

