
1.

a.

b.

i.
1.
2.
3.

CLM Coding Conventions

>>Terms of Use
>>Go to previous page.BACK

This page is intended as a guide for CLM coding standards, practices and conventions. On this page, we focus on five items that we want all developers to
concentrate on. Keep these in the back of your mind as you are programming and refer to them if you have a question. We are more than willing to work
with you throughout the process (contact us at). If code doesn't generally conform to these items then it will delay the tagging CLM-CMT@cgd.ucar.edu
process and we will ask you to modify your code accordingly.

Our past experiences have led us to document a more that we are striving for. You will find constructs that do not follow Comprehensive list of standards
these guidelines and we are updating the legacy CLM code base as time and resources permit.

Comments
Argument Passing
Indentation
Statements and Subroutines
Preprocessor Macros (CPP Tokens)

Comments

Comment often and include explanations for algorithms and processes. Your code should be easily readable and understandable by anyone else
who reads your work.

Logical Branches - include a comment after an or statement. Use something that makes sense for the type of logical branch else endif
you are using. This is particularly important when there are large numbers of nested blocks. Look at the second if statement below for an
even nicer way to accomplish the same thing without comments.

Comments and Logical Branches

if (someLogical) then ! someLogical controls the assignment of x or y
 x = 0.0_r8
else ! else someLogical
 y = 0.0_r8
endif ! if someLogical

! Alternative to comments
fates_if: if (use_fates) then
 lch4_if: if (use_lch4) then
[...]
 end if lch4_if
end if fates_if

Pointer Intent - If you pass information to a subroutine via a pointer in an associate block, include a comment as to the (OUT, IN, intent
INOUT) of that pointer. This is in addition to a description of that pointer as well as the type and array dimensions. Also see Argument

 on this page.Passing

Comments and Pointer Intent

associate(&
 ptrIn => derivedType%readOnlyInRoutine , & ! [character(len=8) (:)] intent = in used
for x
 ptrInOut => derivedType%readAndWriteInRoutine , & ! [real(r8) (:,:,:)] intent = inout used
for y
 ptrOut => derivedType%writeOnlyInRoutine & ! [real(r8) (:)] intent = out used
for z
)
...
end associate

The meaning (semantic) of (out, in, inout)intent
out - a variable is only set within a subroutine
in - a variable is only passed into and used by a subroutine
inout - a variable may be both modified and used within a subroutine

http://www2.ucar.edu/terms-of-use
https://wiki.ucar.edu/display/ccsm/LMWG
mailto:CLM-CMT@cgd.ucar.edu
https://wiki.ucar.edu/display/ccsm/Comprehensive+list+of+standards

1.

2.

a.

i.
1.

2.

3.

4.

Argument Passing

The attribute of subroutine input/output variables is used. Argument lists should use the attribute (try to have data be either intent always intent
IN or OUT and avoid INOUT if possible/reasonable).
There are currently three ways in the current code with which you can pass information to subroutines. By interface (best choice), by pointer
(second best choice) and by using a global data type (a bad option, but sometimes still necessary within the current CLM framework). We are in
the process of refactoring the code so that all data will be passed through the subroutine interface. New code coming in should not pass via
global data unless all other options do not work.

Subroutine Interface - Use the intent keyword and keyword pairs if you have more than a few arguments. Try to consistently pass
either all derived types or all FORTRAN types. Passing derived types can shorten the list of arguments and make it more
understandable. Below are two examples from CLM, (subsection i, below) and RTM, (subsection ii, below), respectively.

CLM example from BandDiagonal::BandDiagonalMod.F90
Subroutine definition

Interfaces::CLM. Example from BandDiagonal, definition

subroutine BandDiagonal(bounds, lbj, ubj, jtop, jbot, numf, filter, nband, b, r, u)
 !
 ! !DESCRIPTION:
 ! Tridiagonal matrix solution
 !
 ! !ARGUMENTS:
 implicit none
 type(bounds_type), intent(in) :: bounds ! bounds
 integer , intent(in) :: lbj, ubj ! lbinning and ubing
level indices
 integer , intent(in) :: jtop(bounds%begc:) ! top level for each
column [col]
 integer , intent(in) :: jbot(bounds%begc:) ! bottom level for
each column [col]
 integer , intent(in) :: numf ! filter dimension
 integer , intent(in) :: nband ! band width
 integer , intent(in) :: filter(:) ! filter
 real(r8), intent(in) :: b(bounds%begc: , 1: , lbj:) ! compact band matrix
[col, nband, j]
 real(r8), intent(in) :: r(bounds%begc: , lbj:) ! "r" rhs of linear
system [col, j]
 real(r8), intent(inout) :: u(bounds%begc: , lbj:) ! solution [col, j]
 !
 ! ! LOCAL VARIABLES:
 integer :: j,ci,fc,info,m,n !indices
 integer :: kl,ku !number of sub/super diagonals
 integer, allocatable :: ipiv(:) !temporary
 real(r8),allocatable :: ab(:,:),temp(:,:) !compact storage array
 real(r8),allocatable :: result(:)

 !---

 ! Enforce expected array sizes
 SHR_ASSERT_ALL((ubound(jtop) == (/bounds%endc/)), errMsg(__FILE__,
__LINE__))
 SHR_ASSERT_ALL((ubound(jbot) == (/bounds%endc/)), errMsg(__FILE__,
__LINE__))
 SHR_ASSERT_ALL((ubound(b) == (/bounds%endc, nband, ubj/)), errMsg(__FILE__,
__LINE__))
 SHR_ASSERT_ALL((ubound(r) == (/bounds%endc, ubj/)), errMsg(__FILE__,
__LINE__))
 SHR_ASSERT_ALL((ubound(u) == (/bounds%endc, ubj/)), errMsg(__FILE__,
__LINE__))

The definition above illustrates a few important points.
Specify the lower bounds of array arguments (this is needed for the subroutine to operate properly in a
threaded region)
Do specify the upper bounds of array arguments (doing so can prevent the compiler from checking for not
array size agreement between the caller and callee, and can carry a performance penalty)
The first set of code in the routine should be assertions for the expected array upper bounds

The above code demonstrates a few stylistic points as well:
Specify the lower bound explicitly, even when it is 1 (see the 'b' argument, above)
Put a space after each ':' for readability
Add comments about expected array sizes, as in [col, nband, j]

2.

a.

i.

4.

ii.

b.

Subroutine call
Follow this example in which BandDiagonal is called from SoilTemperatureMod.F90:

Interfaces::CLM. Example from BandDiagonal, call

call BandDiagonal(bounds, -nlevsno, nlevgrnd, jtop(begc:endc), jbot(begc:endc), &
 num_nolakec, filter_nolakec, nband, bmatrix(begc:endc, :, :), &
 rvector(begc:endc, :), tvector(begc:endc, :))

The important point here is that the lower and upper bounds are explicitly specified for the gridcell / landunit /
col / pft dimension of all array arguments. This is important for threading to work properly.
Even for local variables whose dimensions only go begc:endc, please explicitly specify the dimensions as
above when passing the array to a subroutine. This will ensure that threading continues to work if the
variable's dimensions change (e.g., if it is pulled into clmtype, and thus has dimensions that span the
proc_bounds rather than the clump_bounds).

RTM example from RtmMod.F90

Interfaces::RTM. Example from RtmMod.F90

!
! The call of the routine
!
call RtmFloodInit (frivinp_rtm, begr, endr, nt_rtm, &
 runoff%fthresh(begr:endr), &
 evel(begr:endr , :), &
 runoff%gindex(begr:endr), &
 runoff%lnumr, &
 flood_active, &
 effvel_active)
...
!
! The interface definition
!
subroutine RtmFloodInit(frivinp, begr, endr, nt_rtm, fthresh, evel, &
 gindex , &
 lnumr , &
 is_rtmflood_on, &
 is_effvel_on)
...
 ! Subroutine arguments
 ! in mode arguments
 character(len=*), intent(in) :: frivinp
 integer , intent(in) :: begr, endr, nt_rtm
 logical , intent(in) :: is_rtmflood_on !control flooding
 logical , intent(in) :: is_effvel_on !control eff. velocity
 integer , intent(in) :: gindex(begr:) ! global index [begr:endr]
 integer , intent(in) :: lnumr ! local number of cells
...
! check bounds of arrays
 SHR_ASSERT_ALL((ubound(fthresh) == (/endr/)), errMsg(__FILE__, __LINE__))
 SHR_ASSERT_ALL((ubound(gindex) == (/endr/)), errMsg(__FILE__, __LINE__))
 SHR_ASSERT_ALL((ubound(evel) == (/endr, nt_rtm/)), errMsg(__FILE__, __LINE__))
...

Pointer - We are moving away from using pointers as a way pass information into routines. We still allow this but with the use of an
associate statement.

2.

b.

c.

1.
a.
b.
c.
d.

Comments and Pointer Intent

associate(&
 ptrIn => derivedType%readOnlyInRoutine , & ! [character(len=8) (:)] intent = in used for
x
 ptrInOut => derivedType%readAndWriteInRoutine , & ! [real(r8) (:,:,:)] intent = inout used
for y
 ptrOut => derivedType%writeOnlyInRoutine & ! [real(r8) (:)] intent = out used
for z
)
...
end associate

Global data - We are moving away from using global data as a way pass information into routines. Unless you are extending existing
functionality (e.g. using a namelist variable to control some execution) we will generally not allow any new use of a global variable. The
other exception to this rule is that it is OK to you use global type declarations.

Global Data. Global data in CanopyFluxesMod.F90

use clm_varctl , only: iulog, use_cn, use_lch4, use_c13, use_c14, use_cndv
!
 if (use_c13) then
 c13o2(p) = forc_pc13o2(g)
 endif ! use_c13
!

Global Data. Using a global type declaration

use decompMod , only : bounds_type ! using a global type declaration
...
subroutine CNSoilLittVertTransp(bounds, num_soilc, filter_soilc)
...
type(bounds_type), intent(in) :: bounds ! bounds
...

Indentation

Indent consistently and make sure your auto-tab function in your editor converts tabs to spaces.
Indent of most blocks (do, if, while, etc.): 3 spaces
Indent of "program" blocks (program, module, subroutine, function): 2 spaces
Indent of "associate" blocks: 0 spaces
Indent of continuation lines: 5 (this can vary based on look and feel)

1.

d.

2.
3.

1.

Indentation

! a dash, '-', represents a space
--use thisModule , only : thisRoutine
!
--subroutine foo
----use thatModule , only : thatRoutine
----associate (&
-------ptr1 => someDerivedType%ptr1 , &
-------ptr2 => someDerivedType%ptr2 &
----)
----if (someLogical) then
-------x=x+1
! leave a line before and after statements that stand alone.
-------if (x == 0) then endrun()
! leave a line before and after statements that stand alone.
-------do while (x <= 1000)
----------! do some stuff
----------z = 1.0_r8 / radius
-------end do ! end x<=1000
----endif ! someLogical
!
----end associate
--end subroutine

Do not leave hanging white space at the end of any line of code; git diff shows this in red spaces.
Do not tabularize code by adding extra spaces to any line of code. It may be tempting to do this for better readability, but it also takes time to
manage code that needs realignment when new code comes in.

Statements and Subroutines

Don't repeat yourself. If you are copying and pasting code, then write a subroutine or function to encapsulate functionality.

Example of repeated code - Do

!
! an example of using a subprogram to remove repeated code where
! the max daylength is calculated in a function.
!
! From iniTimeConst:

 ! initialize maximum daylength, based on latitude and maximum declination
 ! maximum declination hardwired for present-day orbital parameters,
 ! ± 23.4667 degrees = ± 0.409571 radians, use negative value for S. Hem
 max_decl = 0.409571
 if (grc%lat(g) .lt. 0._r8) max_decl = -max_decl
 max_dayl(c) = calcMaxDayFunc(grc%lat(g) , max_decl)

! From CanopyFluxesMod:

 ! calculate daylength
 dayl(c) = calcMaxDayFunc(lat(g) , decl(c))

! From CNPhenologyMod (copied & pasted in two places in this module):

 lat = (SHR_CONST_PI/180._r8)*grc%latdeg(pgridcell(p))
 dayl(p) = calcMaxDayFunc(lat , decl(c))

1.

2.

3.

Example of repeated code - Don't do

!
! an example of what not to do in terms of repeating code.
! The max daylength calculation is repeated.
!
! From iniTimeConst:

 ! initialize maximum daylength, based on latitude and maximum declination
 ! maximum declination hardwired for present-day orbital parameters,
 ! ± 23.4667 degrees = ± 0.409571 radians, use negative value for S. Hem
 max_decl = 0.409571
 if (grc%lat(g) .lt. 0._r8) max_decl = -max_decl
 temp = -(sin(grc%lat(g))*sin(max_decl))/(cos(grc%lat(g)) * cos(max_decl))
 temp = min(1._r8,max(-1._r8,temp))
 max_dayl(c) = 2.0_r8 * 13750.9871_r8 * acos(temp)

! From CanopyFluxesMod:

 ! calculate daylength
 temp = -(sin(lat(g))*sin(decl(c)))/(cos(lat(g)) * cos(decl(c)))
 temp = min(1._r8,max(-1._r8,temp))
 dayl = 2.0_r8 * 13750.9871_r8 * acos(temp)

! From CNPhenologyMod (copied & pasted in two places in this module):

 lat = (SHR_CONST_PI/180._r8)*grc%latdeg(pgridcell(p))
 temp = -(sin(lat)*sin(decl(c)))/(cos(lat) * cos(decl(c)))
 temp = min(1._r8,max(-1._r8,temp))
 dayl(p) = 2.0_r8 * 13750.9871_r8 * acos(temp)

Fortran allows you to place multiple statements on one line. Don't do this.

Multiple Statements - Do

! do this:
x = 0
y = 0
z = 0

Multiple Statements - Don't do

! not this:
x = 0 ; y=0; z=0

Use temporary variables often

Temporary Variables - Do

! do this:
someFactor = (const1/const2) * const3
additiveFluxes = (add1Flx + add2Flx + add3Flx) ** someFactor
subFluxes = (sub1Flx + sub2Flx + sub3Flx) ** someFactor
sumVal = additiveFluxes + subFluxes

3.

4.

Temporary Variables - Don't do

! not this:
sumVal = ((add1Flx + add2Flx + add3Flx) ** ((const1/const2) * const3)) + ((sub1Flx + sub2Flx +
sub3Flx) ** ((const1/const2) * const3))

Keep subroutines short and organize the code into the smallest reasonable chunk of code that can stand on its own. Basically, you're looking for
dividing routines into logical units of work. For example, don't put initialization, some science and then diagnostics all in one routine, these would
be best divided into 4 routines; in this case one routine that calls three additional routines.

Use parenthesis to clarify you statements even when the Fortran precedence rules will evaluate items in the correct order.

Preprocessor Macros (CPP Tokens)

We are in the process of removing CPP Tokens from all of CLM (see our) and will not accept code using them.refactoring page

Preprocessor Macros (CPP Tokens) - Do

! do this:
if (useNewPhysics == .true.) then
 ...
 ! do some new physics
 ...
endif

Preprocessor Macros (CPP Tokens) - Don't do

! not this:
#if (defined USENEWPHYSICS)
 ...
 ! do some new physics
 ...
#endif

https://wiki.ucar.edu/display/ccsm/Recent+CLM4.5+Refactoring

	CLM Coding Conventions

