CLM Coding Conventions

>>Terms of Use
>>Go BACK to previous page.

This page is intended as a guide for CLM coding standards, practices and conventions. On this page, we focus on five items that we want all developers to
concentrate on. Keep these in the back of your mind as you are programming and refer to them if you have a question. We are more than willing to work
with you throughout the process (contact us at CLM-CMT@cgd.ucar.edu). If code doesn't generally conform to these items then it will delay the tagging
process and we will ask you to modify your code accordingly.

Our past experiences have led us to document a more Comprehensive list of standards that we are striving for. You will find constructs that do not follow
these guidelines and we are updating the legacy CLM code base as time and resources permit.

Comments

Argument Passing

Indentation

Statements and Subroutines
Preprocessor Macros (CPP Tokens)

Comments

1. Comment often and include explanations for algorithms and processes. Your code should be easily readable and understandable by anyone else
who reads your work.
a. Logical Branches - include a comment after an else or endif statement. Use something that makes sense for the type of logical branch
you are using. This is particularly important when there are large numbers of nested blocks. Look at the second if statement below for an
even nicer way to accomplish the same thing without comments.

Comments and Logical Branches

if (someLogical) then ! soneLogical controls the assignment of x or y

x = 0.0_r8

el se ! el se sonelLogi cal
y =0.0_r8

endif ! if someLogical

! Alternative to comments
fates_if: if (use_fates) then
lcha_if: if (use_lch4) then
]

end if Ich4_if

end if fates_if

[.

b. Pointer Intent - If you pass information to a subroutine via a pointer in an associate block, include a comment as to the intent (OUT, IN,
INOUT) of that pointer. This is in addition to a description of that pointer as well as the type and array dimensions. Also see Argument
Passing on this page.

Comments and Pointer Intent

associ ate(&

ptrin => derivedType% eadOnl yl nRout i ne , & ! [character(len=8) (:)] intent =in used
for x

ptrinCut => derivedType% eadAndWitelnRoutine , & ! [real(r8) (:,:,:)] intent = inout used
for y

ptrQut => derivedType%witeOnl yl nRoutine & ! [real (r8) (:)] intent = out used
for z

)

end associ ate

i. The meaning (semantic) of intent (out, in, inout)
1. out - a variable is only set within a subroutine
2. in - a variable is only passed into and used by a subroutine
3. inout - a variable may be both modified and used within a subroutine

http://www2.ucar.edu/terms-of-use
https://wiki.ucar.edu/display/ccsm/LMWG
mailto:CLM-CMT@cgd.ucar.edu
https://wiki.ucar.edu/display/ccsm/Comprehensive+list+of+standards

Argument Passing

1. The intent attribute of subroutine input/output variables is used. Argument lists should always use the intent attribute (try to have data be either
IN or OUT and avoid INOUT if possible/reasonable).

2. There are currently three ways in the current code with which you can pass information to subroutines. By interface (best choice), by pointer
(second best choice) and by using a global data type (a bad option, but sometimes still necessary within the current CLM framework). We are in
the process of refactoring the code so that all data will be passed through the subroutine interface. New code coming in should not pass via
global data unless all other options do not work.

a. Subroutine Interface - Use the intent keyword and keyword pairs if you have more than a few arguments. Try to consistently pass
either all derived types or all FORTRAN types. Passing derived types can shorten the list of arguments and make it more
understandable. Below are two examples from CLM, (subsection i, below) and RTM, (subsection ii, below), respectively.

i. CLM example from BandDiagonal::BandDiagonalMod.F90
1. Subroutine definition

Interfaces::CLM. Example from BandDiagonal, definition

subrouti ne BandDi agonal (bounds, 1bj, ubj, jtop, jbot, nunf, filter, nband, b, r, u)

!
! | DESCRI PTI ON:

I Tridiagonal matrix solution
!

!

I ARGUMENTS:

inplicit none

type(bounds_type), intent(in) :: bounds ! bounds

integer , intent(in) ;1 Ibj, ubj ! 1 binning and ubing
I evel indices

integer , intent(in) ;1 jtop(bounds%begc:) ! top level for each
colum [col]

integer , intent(in) ;. jbot(bounds%begc:) ! bottomlevel for
each col um [col]

integer , intent(in) 2o nunf I filter dinension

integer , intent(in) ;. nband ! band width

integer , intent(in) oo filter(:) I filter

real (r8), intent(in) :: b(bounds%begc: , 1: , Ibj:) ! conpact band matrix
[col, nband, j]

real (r8), intent(in) ;. r(bounds%begc: , Ibj:) I "r" rhs of linear
system[col, j]

real (r8), intent(inout) :: u(bounds%egc: , Ibj:) ! solution [col, j]
|

I I LOCAL VARI ABLES:

integer :: j,ci,fc,info,mn l'indi ces

integer :: kl,ku I'number of sub/super diagonals
integer, allocatable :: ipiv(:) Itenmporary

real (r8),allocatable :: ab(:,:),tenp(:,:) !conpact storage array

real (r8),allocatable :: result(:)

! Enforce expected array sizes

SHR_ASSERT_ALL((ubound(jtop) == (/bounds%endc/)), errMsg(__FILE _,
__LINE_))

SHR_ASSERT_ALL((ubound(j bot) == (/bounds%endc/)), errMsg(__FILE _,
__LINE_))

SHR_ASSERT_ALL((ubound(b) == (/ bounds%endc, nband, ubj/)), errMsg(__FILE ,
__LINE_)))

SHR_ASSERT_ALL((ubound(r) == (/bounds%endc, ubj/)), errMsg(__FILE _,
__LINE_))

SHR_ASSERT_ALL((ubound(u) == (/ bounds%endc, ubj/)), errMsg(__FILE _,
__LINE_))

2. The definition above illustrates a few important points.
® Specify the lower bounds of array arguments (this is needed for the subroutine to operate properly in a
threaded region)
® Do not specify the upper bounds of array arguments (doing so can prevent the compiler from checking for
array size agreement between the caller and callee, and can carry a performance penalty)
® The first set of code in the routine should be assertions for the expected array upper bounds
3. The above code demonstrates a few stylistic points as well:
® Specify the lower bound explicitly, even when it is 1 (see the 'b' argument, above)
® Put a space after each "' for readability
® Add comments about expected array sizes, as in [col, nband, j]

4. Subroutine call

Follow this example in which BandDiagonal is called from SoilTemperatureMod.F90:

Interfaces::CLM. Example from BandDiagonal, call

cal | BandDi agonal (bounds, -nlevsno, nlevgrnd, jtop(begc:endc), jbot(begc:endc), &
num nol akec, filter_nol akec, nband, bmatrix(begc:endc, :, :), &
rvector (begc: endc, :), tvector(begc:endc, :))

® The important point here is that the lower and upper bounds are explicitly specified for the gridcell / landunit /
col / pft dimension of all array arguments. This is important for threading to work properly.

® Even for local variables whose dimensions only go begc:endc, please explicitly specify the dimensions as
above when passing the array to a subroutine. This will ensure that threading continues to work if the
variable's dimensions change (e.g., if it is pulled into cimtype, and thus has dimensions that span the

proc_bounds rather than the clump_bounds).
ii. RTM example from RtmMod.F90

Interfaces::RTM. Example from RtmMod.F90

|
! The call of the routine
|
call RinFloodlnit (frivinp_rtm begr, endr, nt_rtm
runof f % t hresh(begr:endr),
evel (begr:endr , :),
runof f %gi ndex(begr:endr),
runof f 9% nunt,
fl ood_acti ve,
ef fvel _active)

R R0 Ro Qo Ro Ro

!

! The interface definition

!

subroutine RtnFloodlnit(frivinp, begr, endr, nt_rtm fthresh, evel, &

gi ndex &
| nunr &
is_rtnflood_on, &
is_effvel _on)

! Subroutine argunents
I in node argunents

character(len=*), intent(in) :: frivinp

integer , intent(in) :: begr, endr, nt_rtm

| ogi cal , intent(in) :: is_rtnflood_on Icontrol flooding

| ogi cal intent(in) :: is_effvel _on lcontrol eff. velocity

i nteger , intent(in) :: gindex(begr:) ! global index [begr:endr]
integer , intent(in) :: Inunr ! local nunber of cells

! check bounds of arrays

SHR_ASSERT_ALL((ubound(fthresh) == (/endr/)), errMsg(__FILE , __LINE))
SHR_ASSERT_ALL((ubound(gi ndex) == (/endr/)), errMsg(__FILE _, __LINE_))
SHR_ASSERT_ALL((ubound(evel) == (/endr, nt_rtm)), errMsg(__FILE_ , __ LINE_))

b. Pointer - We are moving away from using pointers as a way pass information into routines. We still allow this but with the use of an

associate statement.

Comments and Pointer Intent

associ ate(&

ptrin => derivedType% eadOnl yl nRout i ne , & ! [character(len=8) (:)] intent = in used for
X

ptrinCut => derivedType% eadAndWitelnRoutine , & ! [real (r8) (:,:,:)] intent = inout used
for y

ptr Qut => derivedType%witeOnlyl nRoutine & ! [real (r8) (:)] intent = out used
for z
)

end associ ate

c. Global data - We are moving away from using global data as a way pass information into routines. Unless you are extending existing
functionality (e.g. using a namelist variable to control some execution) we will generally not allow any new use of a global variable. The
other exception to this rule is that it is OK to you use global type declarations.

Global Data. Global data in CanopyFluxesMod.F90

use clmvarctl , only: iulog, use_cn, use_lch4, use_cl3, use_cl4, use_cndv
!
if (use_cl3) then
c1302(p) = forc_pcl302(g)
endi f ! use_c13

Global Data. Using a global type declaration

use deconphbd , only : bounds_type ! using a global type declaration
subroutine CNSoilLittVertTransp(bounds, numsoilc, filter_soilc)

type(bounds_type), intent(in) :: bounds ! bounds

Indentation

1. Indent consistently and make sure your auto-tab function in your editor converts tabs to spaces.
a. Indent of most blocks (do, if, while, etc.): 3 spaces
b. Indent of "program" blocks (program, module, subroutine, function): 2 spaces
c. Indent of "associate" blocks: 0 spaces
d. Indent of continuation lines: 5 (this can vary based on look and feel)

Indentation

! a dash, '-', represents a space

--use thisModule , only : thisRoutine

!

--subroutine foo

----use thatMddule , only : thatRoutine
----associate (&

------- ptrl => soneDerivedType%ptrl , &
------- ptr2 => soneDerivedType%ptr2 &

----if (soneLogical) then

! leave a line before and after statenents that stand al one.
....... if (x == 0) then endrun()

! leave a line before and after statements that stand al one.
....... do while (x <= 1000)

---------- I do sone stuff

__________ z =1.0_r8/ radius

------- end do ! end x<=1000

----endi f ! soneLogica

|

----end associ ate

--end subroutine

2. Do not leave hanging white space at the end of any line of code; git diff shows this in red spaces.
3. Do not tabularize code by adding extra spaces to any line of code. It may be tempting to do this for better readability, but it also takes time to
manage code that needs realignment when new code comes in.

Statements and Subroutines

1. Don't repeat yourself. If you are copying and pasting code, then write a subroutine or function to encapsulate functionality.

Example of repeated code - Do

|

! an exanpl e of using a subprogramto renove repeated code where
! the max daylength is calculated in a function.
|
!

From i ni Ti neConst :

! initialize maxi mum dayl ength, based on |atitude and maxi mum decl i nati on
I maxi mum declination hardwi red for present-day orbital paraneters,
! + 23.4667 degrees = * 0.409571 radi ans, use negative value for S. Hem
max_decl = 0.409571
if (grc%at(g) .It. 0._r8) max_decl = -max_decl

max_dayl (c) = cal cMaxDayFunc(grc%at (g) , max_decl)

I From CanopyFl uxeshbd:

! cal cul ate dayl ength
dayl (c) = cal cMaxDayFunc(lat(g) , decl(c))

I From CNPhenol ogyMdd (copied & pasted in two places in this nodule):

lat = (SHR_CONST_PI/ 180. _r8)*grc% at deg(pgridcell (p))
dayl (p) = cal cMaxDayFunc(lat , decl(c))

Example of repeated code - Don't do

|

! an exanple of what not to do in terns of repeating code.
! The max dayl ength cal culation is repeated.
|
!

From i ni Ti neConst :

! initialize maxi mum dayl ength, based on |atitude and maxi mum decl i nati on
I maxi mum declination hardwi red for present-day orbital paraneters,
! + 23.4667 degrees = * 0.409571 radi ans, use negative value for S. Hem
max_decl = 0.409571
if (grc%at(g) .It. 0._r8) max_decl = -max_decl
temp = -(sin(grc%at(g))*sin(max_decl))/(cos(grc%at(g)) * cos(max_decl))
tenp = min(l. _r8, max(-1._r8,tenp))
max_dayl (c) = 2.0_r8 * 13750.9871_r8 * acos(tenp)

! From CanopyFl uxeshbd:

I cal cul ate dayl ength

tenp = -(sin(lat(g))*sin(decl(c)))/(cos(lat(g)) * cos(decl(c)))
tenp mn(1l. _r8 nmax(-1._r8,tenp))

dayl 2.0_r8 * 13750.9871_r8 * acos(tenp)

! From CNPhenol ogyMdd (copied & pasted in two places in this nodule):

lat = (SHR_CONST_PI/ 180. _r8)*grc% at deg(pgridcell (p))
temp = -(sin(lat)*sin(decl(c)))/(cos(lat) * cos(decl(c)))
tenp = min(l. _r8, max(-1._r8,tenp))

dayl (p) = 2.0_r8 * 13750.9871_r8 * acos(tenp)

2. Fortran allows you to place multiple statements on one line. Don't do this.

Multiple Statements - Do

! do this:
=0
0
=0

N < X
1

Multiple Statements - Don't do

! not this:
x =0 ,; y=0; z=0

3. Use temporary variables often

Temporary Variables - Do

! do this:

soneFactor = (constl/const2) * const3

addi ti veFl uxes = (addlFl x + add2Fl x + add3FI x) ** someFactor
subFl uxes = (sublFl x + sub2FlI x + sub3Fl x) ** soneFact or

sunval = additiveFl uxes + subFl uxes

Temporary Variables - Don't do

I not this:
sunval = ((addlFl x + add2Fl x + add3Flx) ** ((constl/const2) * const3)) + ((sublFlx + sub2Flx +
sub3FI x) ** ((constl/const2) * const3))

4. Keep subroutines short and organize the code into the smallest reasonable chunk of code that can stand on its own. Basically, you're looking for
dividing routines into logical units of work. For example, don't put initialization, some science and then diagnostics all in one routine, these would
be best divided into 4 routines; in this case one routine that calls three additional routines.

® Use parenthesis to clarify you statements even when the Fortran precedence rules will evaluate items in the correct order.

Preprocessor Macros (CPP Tokens)

® We are in the process of removing CPP Tokens from all of CLM (see our refactoring page) and will not accept code using them.

Preprocessor Macros (CPP Tokens) - Do

! do this:
if (useNewPhysics == .true.) then

! do sonme new physics

endi f

Preprocessor Macros (CPP Tokens) - Don't do

! not this:
#if (defined USENEWPHYSI CS)

! do sone new physics

#endi f

https://wiki.ucar.edu/display/ccsm/Recent+CLM4.5+Refactoring

	CLM Coding Conventions

