
SVN to Git guide for WRF developers
This is a guide for those with experience in Subversion (SVN) to get comfortable with Git commands. For instructions on opening pull requests and more
Github-specific stuff, see the (you will need repository access; contact or for details).WRF Wiki on Github kavulich@ucar.edu wrfhelp@ucar.edu

One-time actions before doing anything else in Git....

Set global configuration options on your local machine(s)

Before you start experimenting with git, you should set the following two "global" git settings on the machine you're using.

$ git config --global user.name "Your full name"
 git config --global user.email your_email@ucar.edu$

You should use the name and email that you would like to be seen in the repository logs.

If you're curious as to why we do this, this page has more information: https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

Create a new fork (Github-specific functionality)

One way of ensuring that your work will not interfere with others is to work off a fork. A fork is a "clone" (copy) of the main repository but
stored under your own Github account. We recommend that development (outside of special cases which need extensive collaboration) be
performed in forks under each developers' own Github account. Here you can create your own branches on your own copy of the
repository, and they can be merged back to the "master" branch of the main repository through pull requests.

To fork the main repository, simply go to in your browser (while logged in), and click "Fork" in the top-https://github.com/wrf-model/WRF
right corner. After the fork is created, you will be brought to the main webpage for your fork ().https://www.github.com/username/WRF

Checking out the code (creating a clone)

Old Procedure:

New Procedure:

https://github.com/wrf-model/WRF/wiki
mailto:kavulich@ucar.edu
mailto:wrfhelp@ucar.edu
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://github.com/wrf-model/WRF
https://www.github.com/username/WRF

svn checkout
https://svn-wrf-model.
cgd.ucar.edu/trunk/

Instead of checking out the main repository, in most cases you will check out your fork:

git clone https://username@github.com/username/WRF

On Mac machines you can probably omit the first "username" part, though it will depend on your git version:

git clone https://github.com/username/WRF

You can also set up your machine to connect via ssh; this is useful for scripting on Linux machines (such as
Yellowstone/Cheyenne) to avoid having to enter your password every time you clone/push/pull code (Mac machines
should have built-in password management).

git clone ssh://ssh@github.com/wrf-model/WRF

There are some instructions on how to set up an SSH key here: https://help.github.com/articles/generating-a-new-ssh-
key-and-adding-it-to-the-ssh-agent/

Once it is generated, you can add an SSH key to your account here: https://github.com/settings/keys

Creating/checking out a branch
While it was only recommended that you do work on branches with SVN, , since this allows you to with git all work should take place on branches
access a lot of the new beneficial features that git and Github have to offer (including pull requests), and avoids accidentally committing directly to the main
master branch (in Subversion this was called the "trunk").

Old procedure: New procedure:

https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://github.com/settings/keys

In subversion, branches are essentially just
copies of the trunk stored in the SVN
repository. They are created with the "svn
copy" command:

svn copy https://svn-wrf-model.
cgd.ucar.edu/trunk/
 https://svn-wrf-model.cgd.ucar.
edu/branches/new-branch

In Git, branches are way more involved, and way more useful. When you check out the code, you have
access to all the repository's branches as well. Additionally, when you create a branch, it can be stored
locally, rather than cluttering up the main repository, until you are ready to commit your changes to the
master/trunk

To create a new branch, simply use the "git checkout" command, with the "-b" argument to specify that
you're creating a new branch

git checkout -b new-branch

If you forgot to create a new branch before starting your changes, that's no problem: the changes will
automatically be carried over to your new branch with the above command.

To see a list of branches that you have checked out locally, use the "git branch" command.

$ git branch

 master
* new-branch

To switch back to the master (or any other locally-tracked branch), use the "git checkout" command
again, without the -b argument.

$ git checkout master

Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.

As I hinted at above, the above command only shows you "local" branches, that you have created or
checked out from the "remote" repository on Github. To see a full list of branches you could check out,
use git branch -a

$ git branch -a

 master
* new-branch
 remotes/origin/AER-radiation
 remotes/origin/AFWA_SAMPLE_BRANCH
 remotes/origin/AFWA_test_7242
 remotes/origin/ANL_BDY
 ...

All these listings under "remotes/origin" are "remote" branches, which in this case are from the "origin" of
your repository, which is the Github repository.

To check out one of these "remote" branches, again use the "git checkout" command.

$ git checkout AER-radiation

Branch AER-radiation set up to track remote branch AER-radiation from origin.
Switched to a new branch 'AER-radiation'

You are now tracking the remote branch "AER-radiation" locally, and can make changes to it and push
those changes back to that branch in the main repository.

Adding, moving, and deleting files

Old procedure: New procedure:

In Subversion, you must use specific commands to tell SVN that you are adding, renaming, or
deleting a file:

$ svn add new_file.txt
$ svn mv README README.NEW
$ svn rm README.hydro

The same is true in Git, and the commands are all
the same.

$ git add new_file.txt
$ git mv README README.NEW
$ git rm README.hydro

There is one more catch to using git: If you change a file it is not automatically added to the list of files to commit. Read the next sections for
more info.

Viewing your uncommitted changes

Status (list of changed files)

Old procedure: New procedure:

In git, the command is the same, but it gives you more information:

In SVN, to see the list of files
you have modified, you use the
"svn status" command

$ svn status

? un-added_file.
txt
D README
 > moved to
README.NEW
A + README.NEW
 > moved from
README
D README.hydro
A new_file.txt

$ git status

On branch new-branch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README -> README.NEW
deleted: README.hydro
new file: new_file.txt
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: var/build/depend.txt
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
un-added_file.txt

Take special note of the second section: "Changed but not updated". These are existing files which you have
changed, but you have not told git that you want to commit changes to these files yet. To these changes (tell stage
git you want to commit them), use the "git add" command:

$ git add var/build/depend.txt

$ git status

On branch new-branch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README -> README.NEW
deleted: README.hydro
new file: new_file.txt
modified: var/build/depend.txt
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
un-added_file.txt

Diff (Full list of changes line-by-line)

Old procedure: New procedure:

In git, the command is the same, but because of the different commit procedure there are
extra stipulations

In SVN, to see the modifications you have
made, you use the "svn diff" command

$ svn diff

Index: var/da/da_setup_structures
/da_setup_be_ncep_gfs.inc

====================================
===============================

--- var/da/da_setup_structures
/da_setup_be_ncep_gfs.inc (revision 9440)

+++ var/da/da_setup_structures
/da_setup_be_ncep_gfs.inc (working copy)

@@ -182,7 +182,7 @@

 ALLOCATE (be % wgvz(its:ite,jts:jte,kts:kte)
)

 !

-! 2, load the WFR model latitude and map
factor:

+! 2, load the WRF model latitude and map
factor:

 #ifdef DM_PARALLEL

 ij = (ide- ids+1)*(jde- jds+1)

to see the difference between two revisions,
use "-r"

svn diff -r9200:9400

svn diff -r9000:HEAD

to see the difference between two branches,
specify the whole URL

svn diff https://svn-wrf-model.cgd.ucar.edu
/branches/

To see the difference between your modifications and the checked out code, simply use git diff

[kavulich@yslogin3 WRF]$ git diff

diff --git a/var/da/da_setup_structures/da_setup_be_ncep_gfs.inc b/var/da
/da_setup_structures/da_setup_be_ncep_gfs.inc

index 50e9f92..4133795 100644

--- a/var/da/da_setup_structures/da_setup_be_ncep_gfs.inc

+++ b/var/da/da_setup_structures/da_setup_be_ncep_gfs.inc

@@ -182,7 +182,7 @@ subroutine da_setup_be_ncep_gfs(grid, be)

 ALLOCATE (be % wgvz(its:ite,jts:jte,kts:kte))

 !

-! 2, load the WFR model latitude and map factor:

+! 2, load the WRF model latitude and map factor:

 #ifdef DM_PARALLEL

 ij = (ide- ids+1)*(jde- jds+1)

To see the difference for files already staged with "git add" (but not committed), use the "–staged"
option

git diff --staged

To see the difference between your changes and a specific commit, simply specify that commit's
hash. You can also use the shortened hash; the first two commands here are equivalent:

$ git diff ebba289b974e4ce33e959737d75edf28ce6a2558
dea56d515ebdeb73170030ddee60270b185f14b5

$ git diff ebba289 dea56d5

You can also specify "HEAD" for the head (most recent) revision.

$ git diff HEAD dea56d5

To see the difference between two branches, specify the two branch names in the following way:

$ git diff branch_1..branch_2

Reverting unwanted changes

Old procedure: New procedure:

In Subversion, to reset a changed file to the state it was in
when you checked it out, you use the "svn revert" command

$ svn revert README.hydro

Reverted 'README.hydro'

In git, the command will be different depending on what kind of change you want to
revert. You may have noticed some of these commands in the "git status" dialog above.

To un-stage a file (tell git you don't want to commit a file, but keep the changes locally),
use "git reset HEAD":

$ git reset HEAD var/build/depend.txt

On branch new-branch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README -> README.NEW
deleted: README.hydro
new file: new_file.txt
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in
working directory)
#
modified: var/build/depend.txt
#
Untracked files:
(use "git add <file>..." to include in what will be
committed)
#
un-added_file.txt

To revert all changes to a file, use "git checkout":

$ git checkout var/build/depend.txt

On branch new-branch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README -> README.NEW
deleted: README.hydro
new file: new_file.txt
#
Untracked files:
(use "git add <file>..." to include in what will be
committed)
#
un-added_file.txt

To revert all changes you've made to your local working branch, use "git reset --hard". U
se this option with caution: it discards except for untracked files!everything

$ git reset --hard

HEAD is now at 09534a2 TYPE: bug fix

$ git status

On branch new-branch
Untracked files:
(use "git add <file>..." to include in what will be
committed)
#
new_file.txt
un-added_file.txt
nothing added to commit but untracked files present (use "git
add" to track)

Committing your changes

Old procedure: New procedure:

In Subversion, committing was always done
back to the main repository, and done with the
"svn commit" command:

svn commit -m 'This is my commit
message'
Sending testdata.txt
Transmitting file data .
Committed revision 287.

In Git, you can commit "locally" as many times as you want. This means that you can keep your
changes under version control before they are ready to be put in the trunk ("master").

git commit -m 'This is my commit message'
[new-branch a4cf86a] This is my commit message
 1 files changed, 1 insertions(+), 1 deletions(-)

Once your changes are ready for the trunk/master, you can push your local branch into the main
repository . In this case "new-branch" is the branch (remember: always work on a branch in git!)
you are on, having created it in a previous step.

$ git push -u origin new-branch
Password:
Counting objects: 4, done.
Delta compression using up to 32 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 5.51 KiB, done.
Total 3 (delta 1), reused 0 (delta 0)
To https://mkavulich@github.com/wrf-model/WRF
 09534a2..d94c5b7 new-branch -> new-branch
Branch new-branch set up to track remote branch new-branch from origin.

From here, you can submit a pull request through Github, which will be the official proposal to put your changes into the master/trunk.

Viewing the change log

Old procedure: New procedure:
In SVN, the only command for viewing the commit log is "svn log". This is
commonly used in 3 different ways:

svn log (displays log of current checked-out code)

svn log -v (displays verbose log, including files
changed in each commit)

svn log -r9000:HEAD https://svn-wrf-model.cgd.ucar.edu
 /trunk/

 (displays log of specified URL from revision 9000 to
the current revision)

For Git, the above three commands work a bit differently. There is still
your regular old "log" command:

git log (displays log of current checked-out code,
including local commits).

git whatchanged (displays verbose log, including
files changed in each commit)

Viewing "who's to blame" for past commits

Old procedure: New procedure:

In SVN, "svn blame file.txt" would give you the line-by-line contents of "file.txt",
prepended with information about the author and revision the last time each line was
changed.

svn blame file.txt

If you'd like to see the log entry for the commit which changed a certain line, you can
use svn log and specify the revision number:

svn log -r8250

Git has an analogous function: "git blame" which gives you the
author information, date/time, and SHA hash of last commit.

git blame file.txt

If you'd like to see the log entry for the commit which changed a
certain line, you can similarly use git log and specify the SHA
hash:

git log 92e6ba8

https://mkavulich@github.com/wrf-model/WRF
https://svn-wrf-model.cgd.ucar.edu/trunk/
https://svn-wrf-model.cgd.ucar.edu/trunk/

New github goodies:

Github also has detailed "blame" functionality built in: Check this out! https://help.github.com/articles/using-git-blame-to-trace-changes-in-a-file/

https://help.github.com/articles/using-git-blame-to-trace-changes-in-a-file/

	SVN to Git guide for WRF developers

