
Observation Space Fortran Interfaces
The classes above manipulate data in observation space. Three classes will be used to handle this data. The first class represent the "observation space".
It can be interpreted as a mirror image in the observation world of what the grid definition is in model/state space. As such, it will be passed as input to the
constructors of objects in observation space. Its role is however more complex than the grid definition in model space because metadata is associated to
observations. The obs_space objects will handle the metadata for objects in the observation space. In concrete terms, this object will encapsulate the main
observation data structure. However, it will not contain all objects in this observation space. For example, all intermediate quantities computed in the data
assimilation process, such as o-b, o-a, etc... will exist as independent objects (of type obs_data or obs_vector).

From an abstract point of view, the obs_space class has a very simple interface, although more functionality might be needed at lower level.

Observation Space

type :: obs_space
contains
 procedure(obs_create) :: create ! Constructor
 procedure(obs_delete) :: delete ! Destructor
 procedure(obs_print) :: print ! Prints human readable info
end type obs_space

In its first implementation, the obs_space structure can be the linked-list that already exists in the GSI, but where "columns" created in the DA system are
removed and stored in obs_data objects.

Data in observation space is stored in objects of class obs_data. Interpreting the overall observation data structure as a generalized table, an instance of
type obs_data would hold one column of that table (but not a column of metadata). Such objects can be manipulated as required by high level algorithms:
one instance for y^{obs}, one for H(x), etc... Continuing with the analogy with the model space, an obs_data instance is the equivalent of a state instance.
At the interface level, it will have similar methods for read and write, although there implementation will most likely be very different: it is most likely that the
read will access the obs_space object to read values while the write will add a column to the obs_space object. Actual I/O will most likely happen in the
constructor (read) and destructor (write) of the obs_space object but this is not visible from the users point of view. For all this to be possible, the obs_data
and/or obs_space implementations will need to keep enough information to match the values in the obs_data column with the appropriate "rows" in the
obs_space object.

Observation Data

type :: obs_data
contains
 procedure(obsdata_create) :: create ! Constructor
 procedure(obsdata_delete) :: delete ! Destructor
 procedure(obsdata_delete) :: read ! Read data
 procedure(obsdata_delete) :: write ! Write data
 procedure(obsdata_print) :: print ! Prints human readable info
end type obs_data

Finally, the obs_vector class is an extension of the obs_data class with added functionality for linear algebra.

Observation Vector

type, extends(obs_data) :: obs_vector
contains
 procedure(obsvec_add) :: add ! Add vectors
 procedure(obsvec_sub) :: sub ! Subtract vectors
 procedure(obsvec_mult) :: mult ! Multiply vector by scalar
 procedure(obsvec_zero) :: zero ! Set vector to zero
 procedure(obsvec_dotp) :: dot_product ! Dot product
end type obs_vector

Other classes

Additional classes for handling observation bias correction (or other observation space auxiliary variables) will be added.

	Observation Space Fortran Interfaces

