November 2017 Hackathon

Dates: November 6-17

Place: NCAR Mesa Lab, Fleischmann Board Room (https://staff.ucar.edu/browse/locations/fb)

Participants: Anna Shlyaeva, mhu, Xin Zhang, user-cf056, Jing Guo, Ricardo Todling, gvernier, Benjamin Johnson, Bryan Karpowicz, John Michalakes, Yannick Tremolet, Gael Descombes, BJ Jung

(List to be completed, I'm having trouble with the "@ user" mentions. Support says there is a bug in the wiki software, they are looking into it. YT)

Goal: Two (or more) observation operators working in the JEDI framework

Scope:

- Implement one satellite and one conventional observation operator in the JEDI framework
 - Priority will be given to clear-sky radiance (AMSU-A first) and radiosondes (T, Q and wind)
 - GPSRO, other conventional observations and all-sky radiance can be added if time and resources allow
- Observation operators should include quality control
- Bias correction is not included in the scope of this hackathon
- Interpolations to observations locations are not included in the scope of this hackathon (a by-pass might be required if interpolations are not
 available by November 6)

Required before Nov 6:

- · Sample observation data files (with only a few observations for quick testing and with many observations)
- Interpolation routines from grid to observations locations (preferred) or saved interpolated fields from GSI
- JEDI-OOPS source code
- Environment to compile and run tests (docker)
- Access to latest GSI and CRTM source code (read-only)
- Working UFO repository for developments (where we can all write)
- GSI H(x) output for test cases (NetCDF diag files preferred)
- Background or interpolated background sample files (low and high resolution)

Pre-requirements for participants:

- · Working knowledge of git:
 - o clone, commit, pull, push, branch, merge
 - o understanding of git-flow branching model
 - o introductions are available here, here and here.
- · Basic understanding of cmake and ctest (any good tutorials?)
- Understanding of Fortran 2003 polymorphism and inheritance
- Basic knowledge of issue tracking in JIRA (tutorial?)
- Information slides from Yannick:

Tasks for this hackathon:

- · Define data structures for
 - o Observations locations
 - Interpolated fields (to obs locations)
 - Observation vectors
 - Simplified observation space
- For selected "plain" observation operators:
 - o Determine required inputs (fields and metadata)

- o Identify outputs
- Encapsulate inputs and outputs
- Interface inputs and outputs with framework
- o Write tests
- o Run tests and validate code
- Add quality control
 - Identify required inputs
 - Evaluate scope for generic QC operators
 - Write tests
 - o Run tests and validate code

Repositories and branches for code sprint:

To check which repository you have cloned from: git remote - \mathbf{v}

OOPS:

https://github.com/UCAR/oops.git

git pull (if you have already cloned but not recently)

git checkout --track origin/feature/ufo

UFO:

https://github.com/UCAR/ufo.git

git checkout --track origin/develop

git flow init -d

When you are ready to start your new development:

git flow feature start mystuff

GSI (still on bitbucket):

https://username@bitbucket.org/jcsda/gsi-vlab.git

branch that was used to write out netcdf files: csd-ioda_nc4_amsu_conv

NetCDF file with AMSU-A data (and GeoVaLs):

in GSI repo in util/read_ncobs/amsua_n19_wprofiles.nc4

NetCDF T conventional file:

ftp://ftp.ucar.edu/pub/mmm/xinzhang/JEDI

To compile UFO (in container):

cd /jedi/build

mkdir ufo

cd ufo

 $\label{loops_path} $$ \begin{array}{ll} ecbuild -DOOPS_PATH=$BUILD}/oops -DIODA_PATH=$BUILD}/ooda \\ -DCRTM_LIBRARIES=$BUILD}/crtm-v2.2.3/libsrc/libcrtm.a -DCRTM_INCLUDE=$BUILD}/crtm-v2.2.3/libsrc \\ $$ (SRC)/ufo \\ \end{array} $$$

make