
1.
2.

3.

4.

5.

6.

7.

8.

1.

1.

1.

1.

Running gcov coverage analysis and profiling tool
To discover which portions of code were never executed, or to more generally profile a code

Step-by-step guide

NOTE: These instructions assume gcc/gfortran compilation environment (gcov does not work with other compilers), and NOT using containers. Though if
using a container, likely some of the steps outlined below could simply be skipped. Also, in my case I was specifically interested in coverage analysis for
the CRTM. For other codes such as FV3, other bundles will be needed.

NOTE also: The CRTM code is pure Fortran, so some of the instructions below such as editing compiler flags will need to be modified and/or augmented if
C or C++ analysis is desired.

NOTE also: Somehow after bulleted items below, numbering starts back at one. I don't know what's going on there, but if someone more familiar with wiki
editing knows how to fix it, please feel free to do so.

Clone the ufo-bundle; cd into the top-level directory.
% git checkout feature/buildtools Soon this branch should be merged into the "develop" branch. But for now it contains extra scripts needed for
building with gcc/gfortran outside of a container. If building inside a container, this step can probably be skipped.
 cd into "tools/", then edit the file and modify as appropriate for your Linux system. If using a module_setup_linuxpc_gcc_openmpi.sh,
container, this step can be skipped.
Still in the "tools/" directory, run the command: The "debug" portion is critical, as gcov needs the flags % build.sh linuxpc gcc openmpi debug
associated with a "debug" build.
Hit "cntl-c" after the text appears. This will ensure that all required bundles are downloaded, but we need to kill the build "-- Generating done"
because we need to modify some of the compilation flags. Don't worry if some files actually get compiled before hitting "cntl-c": The files will get
recompiled later.
Edit top-level file: Before commands that start "ecbuid_bundle" add the line: This will ensure that CMakeLists.txt link_libraries(gcov)
appropriate libraries required by the gcov tool are added at link time.
Edit files containing appropriate compilation flags. For my CRTM analysis, this meant files and ufo/cmake/compiler_flags_GNU_Fortran.cmake

 Add to entry CMAKE_Fortran_FLAGS_DEBUG the flags: Tcrtm/cmake/compiler_flags_GNU_Fortran.cmake -fprofile-arcs -ftest-coverage
hese flags are required by gcov in order for it to work properly. For C/C++ analysis, you'll need to find in which files the appropriate flags are set,
but gcc and gfortran both accept these same two flags.
Now cd back into the "tools/" directory and rerun to complete the build with appropriate flags set. The build.sh linuxpc gcc openmpi debug
"debug" portion is critical, as gcov needs the flags associated with a "debug" build. Also: if desired an additional "threads" flag can be included
after to specify number of threads to use for a parallel make. The default is 1. Hopefully it will run to completion and produce the debug
executable(s) needed for coverage analysis/profiling.
Do the appropriate run. For my CRTM test this meant:

% cd build_linuxpc_gcc_openmpi_debug/ufo/test
% test_ufo_amsua "--" "testinput/amsua.jso

cd to where the .o files live that you want to profile. For me this was:

% cd build_linuxpc_gcc_openmpi_debug/crtm/libsrc/CMakeFiles/crtm.dir

 Unfortunately, at least for CRTM, the compilation command does not use standard naming for .o files, e.g. instead of CRTM_x.f90 compiling to
CRTM_x.o, it actually compiles to CRTM_x.f90.o This confuses gcov, so we need to rename the gcov-specific files which were created by the
run so that when gcov is run, it will find what it is looking for. gcov-generated files are named *.gcda and *.gcno What I did to get around this
problem was to write a script to provide soft link names that gcov will understand:

for i in $(ls *.f90.gcda *.f90.gcno); do
 newname=$(echo $i | sed -e 's/\.f90\././1')
 if [! -f $newname]; then
 ln -s $i $newname;
fi
done

Next, gcov needs the source files to live in this same directory, which unfortunately they do not. So, again for CRTM, I needed to do this (still in
the directory where the .o files live):

% ln -s ../../../../../crtm/libsrc/*f90 .

 Coverage analysis is per-file, and contained in files named *.gcov. So for example I was most interested in CRTM_K_Matrix_Module.f90, so
looked at CRTM_K_Matrix_Module.f90.gcov Inside this file on the left hand side of each line are execution counts for each line of source code.
The most important marks are:

"#####" Five hash marks means the line did compile to executable code, This is what is most critical to but was never actually executed.
coverage analysis. Either input data and/or control structures will need to be modified in order to ensure that these lines do get executed, if it is
important that they do get executed. In CRTM there are a number of tests that exit upon failure. Since these lines are never executed, that is
probably fine and no additions are necessary since they represent error conditions.
"-" A dash means that the line did not compile into executable code. Comment lines are an example.
"<some_number>" Numbers are a count of the number of times the line did get executed. From my cursory analysis, these numbers appear to be
an of the number of times it got executed, not a precise value.estimate

Related articles

Running gcov coverage analysis and profiling tool

	Running gcov coverage analysis and profiling tool

